Banarse, D.S.,
Duller, A.W.G.,
Deformation Invariant Visual Object Recognition:
Experiments with a Self-Organizing Neural Architecture,
NeurCompApp(6), No. 2, 1997, pp. 79-90.
9801
BibRef
Shih, F.Y.[Frank Y.],
Moh, J.[Jenlong],
Chang, F.C.[Fu-Chun],
A new art-based neural architecture for pattern classification and
image enhancement without prior knowledge,
PR(25), No. 5, May 1992, pp. 533-542.
Elsevier DOI
0401
BibRef
Taylor, J.G.,
Hartley, M.,
Taylor, N.,
Panchev, C.,
Kasderidis, S.,
A hierarchical attention-based neural network architecture, based on
human brain guidance, for perception, conceptualisation, action and
reasoning,
IVC(27), No. 11, 2 October 2009, pp. 1641-1657.
Elsevier DOI
0909
Dorsal and ventral vision; Object representations; Dopamine as reward;
TD learning
BibRef
Lerouge, J.,
Herault, R.,
Chatelain, C.,
Jardin, F.,
Modzelewski, R.,
IODA: An input/output deep architecture for image labeling,
PR(48), No. 9, 2015, pp. 2847-2858.
Elsevier DOI
1506
Deep learning architectures
BibRef
Sun, Y.,
Xue, B.,
Zhang, M.,
Yen, G.G.,
Lv, J.,
Automatically Designing CNN Architectures Using the Genetic Algorithm
for Image Classification,
Cyber(50), No. 9, September 2020, pp. 3840-3854.
IEEE DOI
2008
Tuning, Genetic algorithms,
Evolutionary computation, Manuals, Genetics, Evolution (biology),
neural-network architecture optimization
BibRef
Zhao, J.[Junhe],
Xu, S.[Sheng],
Zhang, B.C.[Bao-Chang],
Gu, J.X.[Jia-Xin],
Doermann, D.[David],
Guo, G.D.[Guo-Dong],
Towards Compact 1-bit CNNs via Bayesian Learning,
IJCV(130), No. 2, February 2022, pp. 201-225.
Springer DOI
2202
BibRef
Chen, Z.Q.[Zhi-Qiang],
Xu, T.B.[Ting-Bing],
Liao, W.J.[Wei-Jian],
Li, Z.C.[Zheng-Cheng],
Li, J.P.[Jin-Peng],
Liu, C.L.[Cheng-Lin],
He, H.G.[Hui-Guang],
SNAP: Shaping neural architectures progressively via information
density criterion,
PR(116), 2021, pp. 107923.
Elsevier DOI
2106
Auto-generated neural architectures, Information density,
Greedy strategy, Progressively, Efficient and adaptive
BibRef
Khatib, R.[Rajaei],
Simon, D.[Dror],
Elad, M.[Michael],
Learned Greedy Method (LGM):
A novel neural architecture for sparse coding and beyond,
JVCIR(77), 2021, pp. 103095.
Elsevier DOI
2106
Sparse representation, Orthogonal Matching Pursuit,
Unfolding pursuit algorithms, Deraining
BibRef
Tang, Y.H.[Ye-Hui],
Wang, Y.H.[Yun-He],
Xu, Y.X.[Yi-Xing],
Chen, H.T.[Han-Ting],
Shi, B.X.[Bo-Xin],
Xu, C.[Chao],
Xu, C.J.[Chun-Jing],
Tian, Q.[Qi],
Xu, C.[Chang],
A Semi-Supervised Assessor of Neural Architectures,
CVPR20(1807-1816)
IEEE DOI
2008
Training, Task analysis, Microprocessors,
Optimization, Neural networks, Feature extraction
BibRef
Wang, Z.Y.[Zu-Yuan],
Remote Sensing Scene Classification via Multi-Branch Local Attention
Network,
IP(31), 2022, pp. 99-109.
IEEE DOI
2112
Different classes aren't that different.
Remote sensing, Feature extraction,
Convolutional neural networks, Image color analysis,
attention mechanism
BibRef
Chen, J.[Jie],
Huang, H.Z.[Hao-Zhe],
Peng, J.[Jian],
Zhu, J.W.[Jia-Wei],
Chen, L.[Li],
Tao, C.[Chao],
Li, H.F.[Hai-Feng],
Contextual Information-Preserved Architecture Learning for
Remote-Sensing Scene Classification,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Remote sensing, Task analysis, Convolution,
Architecture, Semantics, Space exploration, scene classification
BibRef
Li, G.[Gen],
Gu, Y.T.[Yuan-Tao],
Ding, J.[Jie],
L_1 Regularization in Two-Layer Neural Networks,
SPLetters(29), 2022, pp. 135-139.
IEEE DOI
2202
Biological neural networks, Complexity theory, Neurons, Training,
Approximation error, Convergence, Computational modeling, regularization
BibRef
Shi, Z.L.[Zeng-Lin],
Mettes, P.S.[Pascal S.],
Maji, S.[Subhransu],
Snoek, C.G.M.[Cees G. M.],
On Measuring and Controlling the Spectral Bias of the Deep Image Prior,
IJCV(130), No. 1, January 2022, pp. 885-908.
Springer DOI
2204
Code, Spectal Bias.
WWW Link.
BibRef
Dong, N.Q.[Nan-Qing],
Kampffmeyer, M.[Michael],
Voiculescu, I.[Irina],
Xing, E.[Eric],
Negational symmetry of quantum neural networks for binary pattern
classification,
PR(129), 2022, pp. 108750.
Elsevier DOI
2206
Deep learning, Quantum machine learning,
Binary pattern classification, Representation learning, Symmetry
BibRef
Guo, Y.[Yong],
Zheng, Y.[Yin],
Tan, M.K.[Ming-Kui],
Chen, Q.[Qi],
Li, Z.P.[Zhi-Peng],
Chen, J.[Jian],
Zhao, P.L.[Pei-Lin],
Huang, J.Z.[Jun-Zhou],
Towards Accurate and Compact Architectures via Neural Architecture
Transformer,
PAMI(44), No. 10, October 2022, pp. 6501-6516.
IEEE DOI
2209
Optimization, Computational efficiency,
Convolution, Computational modeling, Kernel, Microprocessors,
operation transition
BibRef
Cao, H.M.[Hui-Min],
Luo, X.B.[Xiao-Bo],
Peng, Y.D.[Yi-Dong],
Xie, T.S.[Tian-Shou],
MANet: A Network Architecture for Remote Sensing Spatiotemporal
Fusion Based on Multiscale and Attention Mechanisms,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, H.F.[Hai-Feng],
Xu, C.[Cong],
Ma, L.[Lin],
Bo, H.J.[Hong-Jian],
Zhang, D.[David],
MODENN: A Shallow Broad Neural Network Model Based on Multi-Order
Descartes Expansion,
PAMI(44), No. 12, December 2022, pp. 9417-9433.
IEEE DOI
2212
Neurons, Biological neural networks, Task analysis, Brain modeling,
Parallel processing, Information processing, Training,
parallel computing
BibRef
Ao, S.[Sheng],
Guo, Y.L.[Yu-Lan],
Hu, Q.Y.[Qing-Yong],
Yang, B.[Bo],
Markham, A.[Andrew],
Chen, Z.P.[Zeng-Ping],
You Only Train Once:
Learning General and Distinctive 3D Local Descriptors,
PAMI(45), No. 3, March 2023, pp. 3949-3967.
IEEE DOI
2302
Feature extraction, Point cloud compression, Histograms, Shape, Transformers,
Task analysis, Cross-dataset generalization, rotation invariance
BibRef
Chun, I.Y.[Il Yong],
Huang, Z.Y.[Zheng-Yu],
Lim, H.[Hongki],
Fessler, J.A.[Jeffrey A.],
Momentum-Net: Fast and Convergent Iterative Neural Network for
Inverse Problems,
PAMI(45), No. 4, April 2023, pp. 4915-4931.
IEEE DOI
2303
Convergence, Artificial neural networks, Imaging, Acceleration,
Image reconstruction, Optimization, Extrapolation,
X-ray computational tomography
BibRef
Ning, X.F.[Xue-Fei],
Zheng, Y.[Yin],
Zhou, Z.X.[Zi-Xuan],
Zhao, T.C.[Tian-Chen],
Yang, H.Z.[Hua-Zhong],
Wang, Y.[Yu],
A Generic Graph-Based Neural Architecture Encoding Scheme With
Multifaceted Information,
PAMI(45), No. 7, July 2023, pp. 7955-7969.
IEEE DOI
2306
BibRef
Earlier: A1, A2, A4, A6, A5, Only:
A Generic Graph-based Neural Architecture Encoding Scheme for
Predictor-based NAS,
ECCV20(XIII:189-204).
Springer DOI
2011
BibRef
Rao, Y.[Yunbo],
Xu, P.[Ping],
Zeng, S.N.[Shao-Ning],
Gou, J.P.[Jian-Ping],
Point completion by a Stack-Style Folding Network with multi-scaled
graphical features,
IET-CV(17), No. 5, 2023, pp. 576-585.
DOI Link
2309
convolutional neural nets, neural net architecture
BibRef
Chen, B.[Bohong],
Lin, M.[Mingbao],
Ji, R.R.[Rong-Rong],
Cao, L.J.[Liu-Juan],
Prioritized Subnet Sampling for Resource-Adaptive Supernet Training,
PAMI(45), No. 9, September 2023, pp. 11108-11119.
IEEE DOI
2309
WWW Link.
BibRef
Tian, J.[Jinkai],
Sun, X.Y.[Xiao-Yu],
Du, Y.X.[Yu-Xuan],
Zhao, S.S.[Shan-Shan],
Liu, Q.[Qing],
Zhang, K.[Kaining],
Yi, W.[Wei],
Huang, W.[Wanrong],
Wang, C.[Chaoyue],
Wu, X.Y.[Xing-Yao],
Hsieh, M.H.[Min-Hsiu],
Liu, T.L.[Tong-Liang],
Yang, W.J.[Wen-Jing],
Tao, D.C.[Da-Cheng],
Recent Advances for Quantum Neural Networks in Generative Learning,
PAMI(45), No. 10, October 2023, pp. 12321-12340.
IEEE DOI
2310
BibRef
Sun, Y.H.[Yue-Heng],
Jia, M.Y.[Meng-Yu],
Liu, C.[Chang],
Shao, M.L.[Ming-Lai],
Heterogeneous network representation learning based on role feature
extraction,
PR(144), 2023, pp. 109870.
Elsevier DOI
2310
Representation learning, Role discovery, Heterogeneous network,
Matrix factorization
BibRef
Chen, S.F.[Shou-Fa],
Xie, E.[Enze],
Ge, C.J.[Chong-Jian],
Chen, R.J.[Run-Jian],
Liang, D.[Ding],
Luo, P.[Ping],
CycleMLP: A MLP-Like Architecture for Dense Visual Predictions,
PAMI(45), No. 12, December 2023, pp. 14284-14300.
IEEE DOI
2311
multilayer perceptron.
BibRef
Zhang, C.[Chao],
Liwicki, S.[Stephan],
He, S.[Sen],
Smith, W.[William],
Cipolla, R.[Roberto],
HexNet: An Orientation-Aware Deep Learning Framework for
Omni-Directional Input,
PAMI(45), No. 12, December 2023, pp. 14665-14681.
IEEE DOI
2311
deep learning for spherical images.
BibRef
Peng, H.Y.[Han-Yang],
Yu, Y.[Yue],
Yu, S.Q.[Shi-Qi],
Re-Thinking the Effectiveness of Batch Normalization and Beyond,
PAMI(46), No. 1, January 2024, pp. 465-478.
IEEE DOI
2312
BibRef
Shahadat, N.[Nazmul],
Maida, A.S.[Anthony S.],
Cross channel weight sharing for image classification,
IVC(141), 2024, pp. 104872.
Elsevier DOI
2402
Hypercomplex networks, Quaternion networks, PHM layer,
Axial-attention networks, Attention networks, Deep learning
BibRef
Gaudet, C.J.[Chase J.],
Maida, A.S.[Anthony S.],
Removing Dimensional Restrictions on Complex/Hyper-Complex Neural
Networks,
ICIP21(319-323)
IEEE DOI
2201
Image color analysis, Algebra, Quaternions, Neural networks, MIMICs,
Task analysis, cnn, quaternion, complex, multidimensional
BibRef
Tang, Y.P.[Yi-Ping],
Hatano, K.[Kohei],
Takimoto, E.[Eiji],
Rotation-Invariant Convolution Networks with Hexagon-Based Kernels,
IEICE(E108-D), No. 2, February 2024, pp. 220-228.
WWW Link.
2402
BibRef
Liu, S.[Shuang],
Suganuma, M.[Masanori],
Okatani, T.[Takayuki],
Symmetry-aware Neural Architecture for Embodied Visual Navigation,
IJCV(132), No. 4, April 2024, pp. 1091-1107.
Springer DOI
2404
BibRef
Earlier: A1, A3, Only:
Symmetry-aware Neural Architecture for Embodied Visual Exploration,
CVPR22(17221-17230)
IEEE DOI
2210
Training, Visualization, Simultaneous localization and mapping,
Convolution, Neural networks, Training data, Robot vision
BibRef
Marcondes, D.[Diego],
Barrera, J.[Junior],
Discrete Morphological Neural Networks,
SIIMS(17), No. 3, 2024, pp. 1650-1689.
DOI Link
2501
BibRef
Cantini, C.[Clotilde],
Rolland-Piègue, E.[Emilie],
Schmitter, D.[Daniel],
Exact Implementation of Closed-Form Liquid Neural Networks With
Arbitrary Precision,
SPLetters(32), 2025, pp. 921-925.
IEEE DOI
2503
emulate the dynamics of biological neurons and synapses.
Neurons, Synapses, Biological neural networks, Mathematical models,
Electrocardiography, Training, Liquids, Data models,
sampling
BibRef
He, W.[Wei],
Jiang, J.Y.[Jin-Yang],
Liu, T.Y.[Tian-Yue],
Aikoun, Y.F.[Yves Fidele],
Mao, Y.[Yi],
Edge-Preserving Consensus by Exploring the Feedback-Based Masking
Method,
SPLetters(32), 2025, pp. 936-940.
IEEE DOI
2503
Privacy, Protocols, Transfer functions,
Eigenvalues and eigenfunctions, Signal processing algorithms,
channel filter
BibRef
Ma, X.[Xu],
Dai, X.[Xiyang],
Bai, Y.[Yue],
Wang, Y.Z.[Yi-Zhou],
Fu, Y.[Yun],
Rewrite the Stars,
CVPR24(5694-5703)
IEEE DOI Code:
WWW Link.
2410
Visualization, Stars, Prototypes, Solids, Polynomials,
StarNet, element-wise multiplication, rewrite the stars
BibRef
Chen, G.[Guikun],
Li, X.[Xia],
Yang, Y.[Yi],
Wang, W.G.[Wen-Guan],
Neural Clustering Based Visual Representation Learning,
CVPR24(5714-5725)
IEEE DOI
2410
Representation learning, Visualization, Data analysis,
Machine vision, Computational modeling, Feature extraction
BibRef
Abdelouahed, S.M.[Sabri My],
Abla, R.[Rahmouni],
Asmae, E.[Ennaji],
Abdellah, A.[Aarab],
Harnessing feature engineering to improve machine learning:
A review of different data processing techniques,
ISCV24(1-6)
IEEE DOI
2408
Support vector machines, Measurement,
Machine learning algorithms, Data preprocessing,
Data Scaling
BibRef
Abdelouahed, S.M.[Sabri My],
Mohamed, E.[El_Hafci],
Abdellah, A.[Aarab],
Implementing Analog Artificial Neural Networks for Enhanced Energy
Efficiency and Speed in Machine Learning Applications,
ISCV24(1-6)
IEEE DOI
2408
Operational amplifiers, Accuracy, Scalability,
Artificial neural networks, Machine learning, Voltage, Intensity
BibRef
Carmichael, Z.[Zachariah],
Redgrave, T.[Timothy],
Cedre, D.G.[Daniel Gonzalez],
Scheirer, W.J.[Walter J.],
This Probably Looks Exactly Like That: An Invertible Prototypical
Network,
ECCV24(XXXVII: 221-240).
Springer DOI
2412
BibRef
Carmichael, Z.[Zachariah],
Lohit, S.[Suhas],
Cherian, A.[Anoop],
Jones, M.J.[Michael J.],
Scheirer, W.J.[Walter J.],
Pixel-Grounded Prototypical Part Networks,
WACV24(4756-4767)
IEEE DOI
2404
Location awareness, Training, Visualization, Neural networks,
Prototypes, Space mapping, Machine learning, Algorithms, Explainable
BibRef
Haque, M.[Mirazul],
Yang, W.[Wei],
Dynamic Neural Network is All You Need: Understanding the Robustness
of Dynamic Mechanisms in Neural Networks,
REDLCV23(1489-1498)
IEEE DOI
2401
BibRef
Babiloni, F.[Francesca],
Tanay, T.[Thomas],
Deng, J.K.[Jian-Kang],
Maggioni, M.[Matteo],
Zafeiriou, S.[Stefanos],
Factorized Dynamic Fully-Connected Layers for Neural Networks,
REDLCV23(1366-1375)
IEEE DOI
2401
BibRef
Ferianc, M.[Martin],
Rodrigues, M.[Miguel],
MIMMO: Multi-Input Massive Multi-Output Neural Network,
ECV23(4564-4569)
IEEE DOI
2309
BibRef
Yi, Y.[Yun],
Zhang, H.[Haokui],
Hu, W.Z.[Wen-Ze],
Wang, N.N.[Nan-Nan],
Wang, X.Y.[Xiao-Yu],
NAR-Former: Neural Architecture Representation Learning Towards
Holistic Attributes Prediction,
CVPR23(7715-7724)
IEEE DOI
2309
BibRef
Shen, X.[Xuan],
Wang, Y.[Yaohua],
Lin, M.[Ming],
Huang, Y.L.[Yi-Lun],
Tang, H.[Hao],
Sun, X.[Xiuyu],
Wang, Y.Z.[Yan-Zhi],
DeepMAD: Mathematical Architecture Design for Deep Convolutional
Neural Network,
CVPR23(6163-6173)
IEEE DOI
2309
BibRef
Liu, J.M.[Jin-Ming],
Sun, H.M.[He-Ming],
Katto, J.[Jiro],
Learned Image Compression with Mixed Transformer-CNN Architectures,
CVPR23(14388-14397)
IEEE DOI
2309
BibRef
Saxena, D.[Divya],
Cao, J.[Jiannong],
Xu, J.H.[Jia-Hao],
Kulshrestha, T.[Tarun],
Re-GAN: Data-Efficient GANs Training via Architectural
Reconfiguration,
CVPR23(16230-16240)
IEEE DOI
2309
BibRef
Guo, Y.[Yong],
Chen, Y.F.[Yao-Fo],
Zheng, Y.[Yin],
Chen, Q.[Qi],
Zhao, P.L.[Pei-Lin],
Huang, J.Z.[Jun-Zhou],
Chen, J.[Jian],
Tan, M.K.[Ming-Kui],
Pareto-aware Neural Architecture Generation for Diverse Computational
Budgets,
NAS23(2248-2258)
IEEE DOI
2309
BibRef
Hryniowski, A.[Andrew],
Wong, A.[Alexander],
Systematic Architectural Design of Scale Transformed Attention
Condenser DNNs via Multi-Scale Class Representational Response
Similarity Analysis,
NAS23(2284-2292)
IEEE DOI
2309
BibRef
Lacharme, G.[Guillaume],
Cardot, H.[Hubert],
Lenté, C.[Christophe],
Monmarché, N.[Nicolas],
DARTS with Degeneracy Correction,
IbPRIA23(40-53).
Springer DOI
2307
BibRef
Prach, B.[Bernd],
Lampert, C.H.[Christoph H.],
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz
Networks,
ECCV22(XXI:350-365).
Springer DOI
2211
WWW Link.
BibRef
Zhao, Y.[Yue],
Chen, J.Z.[Jun-Zhou],
Zhang, Z.[Zirui],
Zhang, R.H.[Rong-Hui],
BA-Net: Bridge Attention for Deep Convolutional Neural Networks,
ECCV22(XXI:297-312).
Springer DOI
2211
WWW Link.
BibRef
Davis, J.[Jim],
Frank, L.[Logan],
Revisiting Batch Norm Initialization,
ECCV22(XXI:212-228).
Springer DOI
2211
WWW Link.
BibRef
Trimmel, M.[Martin],
Zanfir, M.[Mihai],
Hartley, R.I.[Richard I.],
Sminchisescu, C.[Cristian],
ERA: Enhanced Rational Activations,
ECCV22(XX:722-738).
Springer DOI
2211
ReLU
BibRef
Zhou, Z.X.[Zi-Xuan],
Ning, X.F.[Xue-Fei],
Cai, Y.[Yi],
Han, J.[Jiashu],
Deng, Y.P.[Yi-Ping],
Dong, Y.H.[Yu-Han],
Yang, H.Z.[Hua-Zhong],
Wang, Y.[Yu],
CLOSE: Curriculum Learning on the Sharing Extent Towards Better
One-Shot NAS,
ECCV22(XX:578-594).
Springer DOI
2211
BibRef
Yun, J.[Juseung],
Lee, J.[Janghyeon],
Shon, H.[Hyounguk],
Yi, E.[Eojindl],
Kim, S.H.[Seung Hwan],
Kim, J.[Junmo],
On the Angular Update and Hyperparameter Tuning of a Scale-Invariant
Network,
ECCV22(XII:121-136).
Springer DOI
2211
BibRef
Dutson, M.[Matthew],
Li, Y.[Yin],
Gupta, M.[Mohit],
Event Neural Networks,
ECCV22(XI:276-293).
Springer DOI
2211
BibRef
Utasi, Á.[Ákos],
PEA: Improving the Performance of ReLU Networks for Free by Using
Progressive Ensemble Activations,
ECV22(2797-2805)
IEEE DOI
2210
Training, Image segmentation, Semantics,
Neural networks, Network architecture
BibRef
Ding, X.H.[Xiao-Han],
Zhang, X.Y.[Xiang-Yu],
Han, J.G.[Jun-Gong],
Ding, G.G.[Gui-Guang],
Scaling Up Your Kernels to 31X31:
Revisiting Large Kernel Design in CNNs,
CVPR22(11953-11965)
IEEE DOI
2210
Convolutional codes, Shape, Scalability, Transformers, Data models,
Convolutional neural networks,
Deep learning architectures and techniques
BibRef
Lin, F.Q.[Fan-Qing],
Price, B.[Brian],
Martinez, T.[Tony],
Generalizing Interactive Backpropagating Refinement for Dense
Prediction Networks,
CVPR22(763-772)
IEEE DOI
2210
Deep learning, Image segmentation, Visualization, Shape, Semantics,
Estimation, Deep learning architectures and techniques,
Vision applications and systems
BibRef
Liu, C.J.[Chuan-Jian],
Han, K.[Kai],
Xiao, A.[An],
Nie, Y.[Ying],
Zhang, W.[Wei],
Wang, Y.H.[Yun-He],
Network Amplification with Efficient MACs Allocation,
NAS22(1932-1941)
IEEE DOI
2210
Statistical analysis, Computational modeling,
Heuristic algorithms, Neural networks, Network architecture,
Dynamic programming
BibRef
Courtois, A.[Adrien],
Morel, J.M.[Jean-Michel],
Arias, P.[Pablo],
Investigating Neural Architectures by Synthetic Dataset Design,
VDU22(4886-4895)
IEEE DOI
2210
Systematics, Neural networks, Buildings, Estimation, Computer architecture
BibRef
Chen, Y.[Ying],
Mao, F.[Feng],
Song, J.[Jie],
Wang, X.C.[Xin-Chao],
Wang, H.Q.[Hui-Qiong],
Song, M.L.[Ming-Li],
Self-born Wiring for Neural Trees,
ICCV21(5027-5036)
IEEE DOI
2203
Wiring, Deep learning, Representation learning, Greedy algorithms,
Scalability, Neural networks, Explainable AI
BibRef
Deng, C.[Congyue],
Litany, O.[Or],
Duan, Y.[Yueqi],
Poulenard, A.[Adrien],
Tagliasacchi, A.[Andrea],
Guibas, L.J.[Leonidas J.],
Vector Neurons: A General Framework for SO(3)-Equivariant Networks,
ICCV21(12180-12189)
IEEE DOI
2203
Geometry, Shape, Neurons,
Network architecture, Task analysis, 3D from multiview and other sensors
BibRef
Liu, Y.Q.[Yu-Qiao],
Tang, Y.[Yehui],
Sun, Y.[Yanan],
Homogeneous Architecture Augmentation for Neural Predictor,
ICCV21(12229-12238)
IEEE DOI
2203
Training, Performance evaluation, Deep learning, Neural networks,
Training data, Transforms,
BibRef
Yuan, K.[Kun],
Li, Q.Q.[Quan-Quan],
Guo, S.P.[Shao-Peng],
Chen, D.P.[Da-Peng],
Zhou, A.[Aojun],
Yu, F.W.[Feng-Wei],
Liu, Z.W.[Zi-Wei],
Differentiable Dynamic Wirings for Neural Networks,
ICCV21(317-326)
IEEE DOI
2203
Wiring, Training, Costs, Computational modeling, Aggregates,
Neural networks,
Efficient training and inference methods
BibRef
Hu, J.[Jie],
Cao, L.J.[Liu-Juan],
Tong, T.[Tong],
Ye, Q.X.[Qi-Xiang],
Zhang, S.C.[Sheng-Chuan],
Li, K.[Ke],
Huang, F.Y.[Fei-Yue],
Shao, L.[Ling],
Ji, R.R.[Rong-Rong],
Architecture Disentanglement for Deep Neural Networks,
ICCV21(652-661)
IEEE DOI
2203
Deep learning, Codes, Semantics, Neural networks,
Network architecture, Explainable AI,
Representation learning
BibRef
Jeevan, P.[Pranav],
Sethi, A.[Amit],
Resource-efficient Hybrid X-formers for Vision,
WACV22(3555-3563)
IEEE DOI
2202
Computational modeling, Memory management,
Graphics processing units, Training data, Transformers, Scene Understanding
BibRef
Yu, T.[Tan],
Li, X.[Xu],
Cai, Y.F.[Yun-Feng],
Sun, M.M.[Ming-Ming],
Li, P.[Ping],
S2-MLP: Spatial-Shift MLP Architecture for Vision,
WACV22(3615-3624)
IEEE DOI
2202
Training, Visualization, Image recognition,
Convolution, Transformers,
Deep Learning vision architecture
BibRef
Gong, X.Y.[Xin-Yu],
Chen, W.Y.[Wu-Yang],
Chen, T.L.[Tian-Long],
Wang, Z.Y.[Zhang-Yang],
Sandwich Batch Normalization:
A Drop-In Replacement for Feature Distribution Heterogeneity,
WACV22(2957-2967)
IEEE DOI
2202
Code, Normalization.
WWW Link. Build on DARTS.
Training, Codes, Image synthesis,
Semisupervised learning, Data models, Robustness, Deep Learning
BibRef
Henmi, T.[Takahiko],
Zara, E.R.R.[Esmeraldo Ronnie Rey],
Hirohashi, Y.[Yoshihiro],
Kato, T.[Tsuyoshi],
Adaptive Signal Variances:
CNN Initialization Through Modern Architectures,
ICIP21(374-378)
IEEE DOI
2201
Adaptation models, Convolution, Image processing,
Stability analysis, Convolutional neural networks, Standards, Initialization
BibRef
Gupta, S.[Shashank],
Robles-Kelly, A.[Antonio],
Feature-Extracting Functions for Neural Logic Rule Learning,
DICTA20(1-2)
IEEE DOI
2201
Domain knowledge into behavior of neural network.
Training, Knowledge engineering, Sentiment analysis,
Neural networks, Programming, Feature extraction, rule learning
BibRef
Imamura, A.[Akihiro],
Arizumi, N.[Nana],
Gabor Filter Incorporated CNN for Compression,
IVCNZ21(1-5)
IEEE DOI
2201
Gabor in early layers of CNN.
Image coding, Dictionaries, Costs, Convolution, Real-time systems,
Gabor filters, compression, CNN, Gabor
BibRef
Chen, Z.D.[Zhen-Duo],
Liu, F.[Feng],
Zhao, Z.L.[Zheng-Lai],
Let Them Choose What They Want: A Multi-Task CNN Architecture
Leveraging Mid-Level Deep Representations for Face Attribute
Classification,
ICIP21(879-883)
IEEE DOI
2201
Correlation, Image processing,
Task analysis, Faces, deep learning, multi-task learning, attention
BibRef
Zhang, K.[Kaihua],
Dong, M.L.[Ming-Liang],
Liu, B.[Bo],
Yuan, X.T.[Xiao-Tong],
Liu, Q.S.[Qing-Shan],
DeepACG: Co-Saliency Detection via Semantic-aware Contrast
Gromov-Wasserstein Distance,
CVPR21(13698-13707)
IEEE DOI
2111
Image segmentation, Correlation,
Image edge detection, Semantics, Network architecture, Benchmark testing
BibRef
Gao, S.H.[Shang-Hua],
Han, Q.[Qi],
Li, D.[Duo],
Cheng, M.M.[Ming-Ming],
Peng, P.[Pai],
Representative Batch Normalization with Feature Calibration,
CVPR21(8665-8675)
IEEE DOI
2111
Training, Costs, Neural networks, Standardization,
Calibration
BibRef
Cui, Y.F.[Yu-Fei],
Liu, Z.Q.[Zi-Quan],
Li, Q.[Qiao],
Chan, A.B.[Antoni B.],
Xue, C.J.[Chun Jason],
Bayesian Nested Neural Networks for Uncertainty Calibration and
Adaptive Compression,
CVPR21(2392-2401)
IEEE DOI
2111
Training, Uncertainty, Computational modeling,
Neural networks, Data models, Bayes methods
BibRef
Li, Y.[Yawei],
Li, W.[Wen],
Danelljan, M.[Martin],
Zhang, K.[Kai],
Gu, S.H.[Shu-Hang],
Van Gool, L.J.[Luc J.],
Timofte, R.[Radu],
The Heterogeneity Hypothesis:
Finding Layer-Wise Differentiated Network Architectures,
CVPR21(2144-2153)
IEEE DOI
2111
Training, Visualization, Protocols, Computational modeling,
Network architecture
BibRef
Peer, D.[David],
Stabinger, S.[Sebastian],
Rodríguez-Sánchez, A.[Antonio],
Conflicting Bundles: Adapting Architectures Towards the Improved
Training of Deep Neural Networks,
WACV21(256-265)
IEEE DOI
2106
Training, Measurement, Adaptation models,
Neural networks, Memory management
BibRef
Alt, T.[Tobias],
Peter, P.[Pascal],
Weickert, J.[Joachim],
Schrader, K.[Karl],
Translating Numerical Concepts for PDEs into Neural Architectures,
SSVM21(294-306).
Springer DOI
2106
BibRef
Ruiz, A.[Adria],
Agudo, A.[Antonio],
Moreno-Noguer, F.[Francesc],
Generating Attribution Maps with Disentangled Masked Backpropagation,
ICCV21(885-894)
IEEE DOI
2203
Backpropagation, Visualization, Computational modeling,
Piecewise linear approximation, Neural networks,
BibRef
La Grassa, R.[Riccardo],
Gallo, I.[Ignazio],
Landro, N.[Nicola],
EnGraf-Net: Multiple Granularity Branch Network with Fine-Coarse Graft
Grained for Classification Task,
CAIP21(I:393-402).
Springer DOI
2112
BibRef
Yuan, Q.W.[Qiong-Wen],
He, J.W.[Jing-Wei],
Yu, L.[Lei],
Zheng, G.[Gang],
AIM-Net: Bring Implicit Euler to Network Design,
ICIP20(1926-1930)
IEEE DOI
2011
Neural networks, Adaptation models, Convergence,
Mathematical model, Image resolution, Signal resolution,
image superresolution
BibRef
Murdock, C.[Calvin],
Lucey, S.[Simon],
Dataless Model Selection With the Deep Frame Potential,
CVPR20(11254-11262)
IEEE DOI
2008
Dictionaries, Sparse representation, Robustness, Coherence,
Neural networks, Machine learning
BibRef
Radosavovic, I.[Ilija],
Kosaraju, R.P.[Raj Prateek],
Girshick, R.[Ross],
He, K.[Kaiming],
Dollár, P.[Piotr],
Designing Network Design Spaces,
CVPR20(10425-10433)
IEEE DOI
2008
Computational modeling, Manuals, Tools, Sociology, Statistics,
Training, Visualization
BibRef
Zoran, D.[Daniel],
Chrzanowski, M.[Mike],
Huang, P.S.[Po-Sen],
Gowal, S.[Sven],
Mott, A.[Alex],
Kohli, P.[Pushmeet],
Towards Robust Image Classification Using Sequential Attention Models,
CVPR20(9480-9489)
IEEE DOI
2008
Augment NN with attention model.
Robustness, Computational modeling,
Adaptation models, Brain modeling, Biological system modeling, Training
BibRef
Huang, L.[Lei],
Zhao, L.[Lei],
Zhou, Y.[Yi],
Zhu, F.[Fan],
Liu, L.[Li],
Shao, L.[Ling],
An Investigation Into the Stochasticity of Batch Whitening,
CVPR20(6438-6447)
IEEE DOI
2008
Training, Principal component analysis, Covariance matrices,
Standardization, Optimization, Sociology
BibRef
Lin, R.,
Liu, W.,
Liu, Z.,
Feng, C.,
Yu, Z.,
Rehg, J.M.,
Xiong, L.,
Song, L.,
Regularizing Neural Networks via Minimizing Hyperspherical Energy,
CVPR20(6916-6925)
IEEE DOI
2008
Neurons, Biological neural networks, Training, Optimization,
Task analysis, Testing, Linear programming
BibRef
Atzmon, M.[Matan],
Lipman, Y.[Yaron],
SAL: Sign Agnostic Learning of Shapes From Raw Data,
CVPR20(2562-2571)
IEEE DOI
2008
Surface reconstruction, Shape,
Neural networks, Interpolation, Mathematical model, Training
BibRef
Tao, Y.,
Ma, R.,
Shyu, M.,
Chen, S.,
Challenges in Energy-Efficient Deep Neural Network Training with FPGA,
LPCV20(1602-1611)
IEEE DOI
2008
Field programmable gate arrays, Computational modeling, Training,
Hardware, Neural networks, Machine learning, Graphics processing units
BibRef
Banerjee, S.,
Chakraborty, S.,
Deepsub: A Novel Subset Selection Framework for Training Deep
Learning Architectures,
ICIP19(1615-1619)
IEEE DOI
1910
Submodular optimization, Deep learning
BibRef
Rashwan, A.,
Kalra, A.,
Poupart, P.,
Matrix Nets: A New Deep Architecture for Object Detection,
NeruArch19(2025-2028)
IEEE DOI
2004
learning (artificial intelligence), neural net architecture,
object detection, Matrix Nets, deep architecture, object detection,
neural architecture
BibRef
Chen, H.T.[Han-Ting],
Wang, Y.H.[Yun-He],
Xu, C.[Chang],
Yang, Z.H.[Zhao-Hui],
Liu, C.J.[Chuan-Jian],
Shi, B.X.[Bo-Xin],
Xu, C.J.[Chun-Jing],
Xu, C.[Chao],
Tian, Q.[Qi],
Data-Free Learning of Student Networks,
ICCV19(3513-3521)
IEEE DOI
2004
convolutional neural nets,
learning (artificial intelligence), neural net architecture,
Knowledge engineering
BibRef
Srinivas, S.[Suraj],
Babu, V.[Venkatesh],
Learning Neural Network Architectures using Backpropagation,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Hasegawa, R.[Ryoma],
Hotta, K.[Kazuhiro],
PLSNet: A simple network using Partial Least Squares regression for
image classification,
ICPR16(1601-1606)
IEEE DOI
1705
Convolution, Databases, Feature extraction, Image classification,
Network architecture, Principal component analysis, Training,
Convolutional Neural Network, Deep Learning, PCANet, PLSNet,
Partial Least Squares Regression, Stacked, PLS
BibRef
Elliman, D.G.[David G.],
Youssef, S.M.[Sherin M.],
Contextual Swarm-Based Multi-layered Lattices:
A New Architecture for Contextual Pattern Recognition,
DAS04(496-507).
Springer DOI
0505
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Architecture, Neural Architecture Search, NAS .