Maselli, F.[Fabio],
Chiesi, M.[Marta],
Evaluation of Statistical Methods to Estimate Forest Volume in a
Mediterranean Region,
GeoRS(44), No. 8, August 2006, pp. 2239-2250.
IEEE DOI
0608
BibRef
Maselli, F.[Fabio],
Chiesi, M.[Marta],
Montaghi, A.[Alessandro],
Pranzini, E.[Enzo],
Use of ETM+ images to extend stem volume estimates obtained from LiDAR
data,
PandRS(66), No. 5, September 2011, pp. 662-671.
Elsevier DOI
1110
Stem volume; LiDAR; Landsat ETM+; k-NN; Local regression
BibRef
van Aardt, J.A.N.[Jan A.N.],
Wynne, R.H.[Randolph H.],
Scrivani, J.A.[John A.],
Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group
Using Structurally Homogenous Segments,
PhEngRS(74), No. 8, August 2008, pp. 1033-1044.
WWW Link.
0804
An evaluation of an object-oriented approach to deciduous and
coniferous forest classification, as well as volume and biomass
estimation, using small-footprint lidar height and intensity
distributions, and highlights of the potential of perobject lidar data
analysis for stand-level forest inventories.
BibRef
Hecht, R.,
Meinel, G.,
Buchroithner, M.F.,
Estimation of Urban Green Volume Based on Single-Pulse LiDAR Data,
GeoRS(46), No. 11, November 2008, pp. 3832-3840.
IEEE DOI
0812
BibRef
Dalponte, M.[Michele],
Martinez, C.[Cristina],
Rodeghiero, M.[Mirco],
Gianelle, D.[Damiano],
The role of ground reference data collection in the prediction of stem
volume with LiDAR data in mountain areas,
PandRS(66), No. 6, November 2011, pp. 787-797.
Elsevier DOI
1112
LiDAR; Forestry; Reference data; Forest inventory design; Prediction
BibRef
Matikainen, L.[Leena],
Karila, K.[Kirsi],
Litkey, P.[Paula],
Ahokas, E.[Eero],
Hyyppä, J.[Juha],
Combining single photon and multispectral airborne laser scanning for
land cover classification,
PandRS(164), 2020, pp. 200-216.
Elsevier DOI
2005
Laser scanning, Lidar, Single photon, Multispectral, Land cover, Classification
BibRef
Niska, H.,
Skon, J.P.,
Packalen, P.,
Tokola, T.,
Maltamo, M.,
Kolehmainen, M.,
Neural Networks for the Prediction of Species-Specific Plot Volumes
Using Airborne Laser Scanning and Aerial Photographs,
GeoRS(48), No. 3, March 2010, pp. 1076-1085.
IEEE DOI
1003
BibRef
Kankare, V.[Ville],
Vauhkonen, J.[Jari],
Tanhuanpää, T.[Topi],
Holopainen, M.[Markus],
Vastaranta, M.[Mikko],
Joensuu, M.[Marianna],
Krooks, A.[Anssi],
Hyyppä, J.[Juha],
Hyyppä, H.[Hannu],
Alho, P.[Petteri],
Viitala, R.[Risto],
Accuracy in Estimation of Timber Assortments and Stem Distribution:
A Comparison of Airborne and Terrestrial Laser Scanning Techniques,
PandRS(97), No. 1, 2014, pp. 89-97.
Elsevier DOI
1410
Stem distribution
BibRef
Yu, X.W.[Xiao-Wei],
Hyyppä, J.[Juha],
Litkey, P.[Paula],
Kaartinen, H.[Harri],
Vastaranta, M.[Mikko],
Holopainen, M.[Markus],
Single-Sensor Solution to Tree Species Classification Using
Multispectral Airborne Laser Scanning,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Ahokas, E.[Eero],
Hyyppä, J.[Juha],
Yu, X.,
Liang, X.L.[Xin-Lian],
Matikainen, L.[Leena],
Karila, K.[Kirsi],
Litkey, P.[Paula],
Kukko, A.,
Jaakkola, A.,
Kaartinen, H.,
Holopainen, M.,
Vastaranta, M.,
Towards Automatic Single-sensor Mapping By Multispectral Airborne Laser
Scanning,
ISPRS16(B3: 155-162).
DOI Link
1610
BibRef
Treitz, P.,
Lim, K.,
Woods, M.,
Pitt, D.,
Nesbitt, D.,
Etheridge, D.,
LiDAR Sampling Density for Forest Resource Inventories in Ontario,
Canada,
RS(4), No. 4, April 2012, pp. 830-848.
DOI Link
1202
BibRef
Lindberg, E.,
Hollaus, M.,
Comparison of Methods for Estimation of Stem Volume, Stem Number and
Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest,
RS(4), No. 4, April 2012, pp. 1004-1023.
DOI Link
1202
BibRef
Hyyppä, J.,
Yu, X.,
Hyyppä, H.,
Vastaranta, M.,
Holopainen, M.,
Kukko, A.,
Kaartinen, H.,
Jaakkola, A.,
Vaaja, M.,
Koskinen, J.,
Alho, P.,
Advances in Forest Inventory Using Airborne Laser Scanning,
RS(4), No. 5, May 2012, pp. 1190-1207.
DOI Link
1205
BibRef
Estornell, J.,
Ruiz, L.A.,
Velázquez-Martí, B.,
Hermosilla, T.,
Assessment of factors affecting shrub volume estimations
using airborne discrete-return LiDAR data in Mediterranean areas,
AppRS(6), 2012, pp. 063544.
WWW Link.
1210
BibRef
Straub, C.[Christoph],
Dees, M.[Matthias],
Weinacker, H.[Holger],
Koch, B.[Barbara],
Using Airborne Laser Scanner Data and CIR Orthophotos to Estimate the
Stem Volume of Forest Stands,
PFG(2009), No. 3, 2009, pp. 277-287.
WWW Link.
1211
BibRef
Estornell, J.,
Ruiz, L.A.,
Velázquez-Martí, B.,
Hermosilla, T.,
Estimation of biomass and volume of shrub vegetation using
LiDAR and spectral data in a Mediterranean environment,
Biomass and Bioenergy(46), 2012, pp. 710-721.
Elsevier DOI
1212
BibRef
Mora, B.[Brice],
Wulder, M.A.[Michael A.],
White, J.C.[Joanne C.],
Hobart, G.[Geordie],
Modeling Stand Height, Volume, and Biomass from
Very High Spatial Resolution Satellite Imagery and Samples
of Airborne LiDAR,
RS(5), No. 5, 2013, pp. 2308-2326.
DOI Link
1307
BibRef
Rana, P.[Parvez],
Tokola, T.[Timo],
Korhonen, L.[Lauri],
Xu, Q.[Qing],
Kumpula, T.[Timo],
Vihervaara, P.[Petteri],
Mononen, L.[Laura],
Training Area Concept in a Two-Phase Biomass Inventory Using Airborne
Laser Scanning and RapidEye Satellite Data,
RS(6), No. 1, 2013, pp. 285-309.
DOI Link
1402
BibRef
And:
Correction:
RS(7), No. 8, 2015, pp. 10242.
DOI Link
1509
BibRef
Laurin, G.V.[Gaia Vaglio],
Chen, Q.[Qi],
Lindsell, J.A.[Jeremy A.],
Coomes, D.A.[David A.],
del Frate, F.[Fabio],
Guerriero, L.[Leila],
Pirotti, F.[Francesco],
Valentini, R.[Riccardo],
Above ground biomass estimation in an African tropical forest with
lidar and hyperspectral data,
PandRS(89), No. 1, 2014, pp. 49-58.
Elsevier DOI
1403
Lidar
BibRef
Rana, P.[Parvez],
Korhonen, L.[Lauri],
Gautam, B.[Basanta],
Tokola, T.[Timo],
Effect of field plot location on estimating tropical forest
above-ground biomass in Nepal using airborne laser scanning data,
PandRS(94), No. 1, 2014, pp. 55-62.
Elsevier DOI
1407
ALS
BibRef
Hernández-Stefanoni, J.L.[José Luis],
Dupuy, J.M.[Juan Manuel],
Johnson, K.D.[Kristofer D.],
Birdsey, R.[Richard],
Tun-Dzul, F.[Fernando],
Peduzzi, A.[Alicia],
Caamal-Sosa, J.P.[Juan Pablo],
Sánchez-Santos, G.[Gonzalo],
López-Merlín, D.[David],
Improving Species Diversity and Biomass Estimates of Tropical Dry
Forests Using Airborne LiDAR,
RS(6), No. 6, 2014, pp. 4741-4763.
DOI Link
1407
BibRef
Wallace, L.,
Musk, R.,
Lucieer, A.,
An Assessment of the Repeatability of Automatic Forest Inventory
Metrics Derived From UAV-Borne Laser Scanning Data,
GeoRS(52), No. 11, November 2014, pp. 7160-7169.
IEEE DOI
1407
Lasers
BibRef
Cao, L.[Lin],
Coops, N.C.[Nicholas C.],
Hermosilla, T.[Txomin],
Innes, J.[John],
Dai, J.S.[Jin-Song],
She, G.H.[Guang-Hui],
Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR
Metrics to Estimate Total Biomass and Biomass Components in
Subtropical Forests,
RS(6), No. 8, 2014, pp. 7110-7135.
DOI Link
1410
BibRef
Pirotti, F.[Francesco],
Laurin, G.V.[Gaia Vaglio],
Vettore, A.[Antonio],
Masiero, A.[Andrea],
Valentini, R.[Riccardo],
Small Footprint Full-Waveform Metrics Contribution to the Prediction
of Biomass in Tropical Forests,
RS(6), No. 10, 2014, pp. 9576-9599.
DOI Link
1411
BibRef
Hansen, E.H.[Endre Hofstad],
Gobakken, T.[Terje],
Bollandsås, O.M.[Ole Martin],
Zahabu, E.[Eliakimu],
Næsset, E.[Erik],
Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest
Using Airborne Laser Scanner Data,
RS(7), No. 1, 2015, pp. 788-807.
DOI Link
1502
BibRef
Sheridan, R.D.[Ryan D.],
Popescu, S.C.[Sorin C.],
Gatziolis, D.[Demetrios],
Morgan, C.L.S.[Cristine L. S.],
Ku, N.W.[Nian-Wei],
Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR
Metrics and Forest Inventory and Analysis Data in the Pacific
Northwest,
RS(7), No. 1, 2014, pp. 229-255.
DOI Link
1502
BibRef
Singh, K.K.[Kunwar K.],
Chen, G.[Gang],
McCarter, J.B.[James B.],
Meentemeyer, R.K.[Ross K.],
Effects of LiDAR point density and landscape context on estimates of
urban forest biomass,
PandRS(101), No. 1, 2015, pp. 310-322.
Elsevier DOI
1503
LiDAR
BibRef
Li, L.[Le],
Guo, Q.H.[Qing-Hua],
Tao, S.L.[Sheng-Li],
Kelly, M.[Maggi],
Xu, G.C.[Guang-Cai],
Lidar with multi-temporal MODIS provide a means to upscale
predictions of forest biomass,
PandRS(102), No. 1, 2015, pp. 198-208.
Elsevier DOI
1503
Lidar
BibRef
Ceballos, A.[Andrés],
Hernández, J.[Jaime],
Corvalán, P.[Patricio],
Galleguillos, M.[Mauricio],
Comparison of Airborne LiDAR and Satellite Hyperspectral Remote
Sensing to Estimate Vascular Plant Richness in Deciduous
Mediterranean Forests of Central Chile,
RS(7), No. 3, 2015, pp. 2692-2714.
DOI Link
1504
BibRef
Badreldin, N.[Nasem],
Sanchez-Azofeifa, G.A.[G. Arturo],
Estimating Forest Biomass Dynamics by Integrating Multi-Temporal
Landsat Satellite Images with Ground and Airborne LiDAR Data in the
Coal Valley Mine, Alberta, Canada,
RS(7), No. 3, 2015, pp. 2832-2849.
DOI Link
1504
BibRef
Medeiros, S.[Stephen],
Hagen, S.[Scott],
Weishampel, J.[John],
Angelo, J.[James],
Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes
Based on Estimated Aboveground Biomass Density,
RS(7), No. 4, 2015, pp. 3507-3525.
DOI Link
1505
BibRef
Chen, Q.[Qi],
Modeling aboveground tree woody biomass using national-scale
allometric methods and airborne lidar,
PandRS(106), No. 1, 2015, pp. 95-106.
Elsevier DOI
1507
Biomass
See also Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data.
BibRef
Véga, C.[Cédric],
Vepakomma, U.[Udayalakshmi],
Morel, J.[Jules],
Bader, J.L.[Jean-Luc],
Rajashekar, G.[Gopalakrishnan],
Jha, C.S.[Chandra Shekhar],
Ferêt, J.[Jérôme],
Proisy, C.[Christophe],
Pélissier, R.[Raphaël],
Dadhwal, V.K.[Vinay Kumar],
Aboveground-Biomass Estimation of a Complex Tropical Forest in India
Using Lidar,
RS(7), No. 8, 2015, pp. 10607.
DOI Link
1509
BibRef
Molina, P.X.[Patricio Xavier],
Asner, G.P.[Gregory P.],
Abadía, M.F.[Mercedes Farjas],
Manrique, J.C.O.[Juan Carlos Ojeda],
Diez, L.A.S.[Luis Alberto Sánchez],
Valencia, R.[Renato],
Spatially-Explicit Testing of a General Aboveground Carbon Density
Estimation Model in a Western Amazonian Forest Using Airborne LiDAR,
RS(8), No. 1, 2016, pp. 9.
DOI Link
1602
BibRef
Chen, Q.[Qi],
Lu, D.S.[Deng-Sheng],
Keller, M.[Michael],
dos-Santos, M.N.[Maiza Nara],
Bolfe, E.L.[Edson Luis],
Feng, Y.Y.[Yun-Yun],
Wang, C.W.[Chang-Wei],
Modeling and Mapping Agroforestry Aboveground Biomass in the
Brazilian Amazon Using Airborne Lidar Data,
RS(8), No. 1, 2016, pp. 21.
DOI Link
1602
BibRef
Giannico, V.[Vincenzo],
Lafortezza, R.[Raffaele],
John, R.[Ranjeet],
Sanesi, G.[Giovanni],
Pesola, L.[Lucia],
Chen, J.Q.[Ji-Quan],
Estimating Stand Volume and Above-Ground Biomass of Urban Forests
Using LiDAR,
RS(8), No. 4, 2016, pp. 339.
DOI Link
1604
BibRef
Hu, T.Y.[Tian-Yu],
Su, Y.J.[Yan-Jun],
Xue, B.L.[Bao-Lin],
Liu, J.[Jin],
Zhao, X.Q.[Xiao-Qian],
Fang, J.Y.[Jing-Yun],
Guo, Q.H.[Qing-Hua],
Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR,
Optical Imagery, and Forest Inventory Data,
RS(8), No. 7, 2016, pp. 565.
DOI Link
1608
BibRef
Lin, C.S.[Chin-Su],
Thomson, G.[Gavin],
Popescu, S.C.[Sorin C.],
An IPCC-Compliant Technique for Forest Carbon Stock Assessment Using
Airborne LiDAR-Derived Tree Metrics and Competition Index,
RS(8), No. 6, 2016, pp. 528.
DOI Link
1608
BibRef
Ferraz, A.[António],
Saatchi, S.[Sassan],
Mallet, C.[Clément],
Jacquemoud, S.[Stéphane],
Gonçalves, G.[Gil],
Silva, C.A.[Carlos Alberto],
Soares, P.[Paula],
Tomé, M.[Margarida],
Pereira, L.[Luisa],
Airborne Lidar Estimation of Aboveground Forest Biomass in the
Absence of Field Inventory,
RS(8), No. 8, 2016, pp. 653.
DOI Link
1609
BibRef
Kramer, H.A.[Heather A.],
Collins, B.M.[Brandon M.],
Lake, F.K.[Frank K.],
Jakubowski, M.K.[Marek K.],
Stephens, S.L.[Scott L.],
Kelly, M.[Maggi],
Estimating Ladder Fuels:
A New Approach Combining Field Photography with LiDAR,
RS(8), No. 9, 2016, pp. 766.
DOI Link
1610
BibRef
Laurin, G.V.[Gaia Vaglio],
Pirotti, F.[Francesco],
Callegari, M.[Mattia],
Chen, Q.[Qi],
Cuozzo, G.[Giovanni],
Lingua, E.[Emanuele],
Notarnicola, C.[Claudia],
Papale, D.[Dario],
Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass,
and Comparison with Lidar-Derived Estimates,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Qian, C.[Chuang],
Liu, H.[Hui],
Tang, J.[Jian],
Chen, Y.W.[Yu-Wei],
Kaartinen, H.[Harri],
Kukko, A.[Antero],
Zhu, L.L.[Ling-Li],
Liang, X.[Xinlian],
Chen, L.[Liang],
Hyyppä, J.[Juha],
An Integrated GNSS/INS/LiDAR-SLAM Positioning Method for Highly
Accurate Forest Stem Mapping,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Kauranne, T.[Tuomo],
Joshi, A.[Anup],
Gautam, B.[Basanta],
Manandhar, U.[Ugan],
Nepal, S.[Santosh],
Peuhkurinen, J.[Jussi],
Hämäläinen, J.[Jarno],
Junttila, V.[Virpi],
Gunia, K.[Katja],
Latva-Käyrä, P.[Petri],
Kolesnikov, A.[Alexander],
Tegel, K.[Katri],
Leppänen, V.[Vesa],
LiDAR-Assisted Multi-Source Program (LAMP) for Measuring Above Ground
Biomass and Forest Carbon,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
El Hajj, M.[Mohammad],
Baghdadi, N.[Nicolas],
Fayad, I.[Ibrahim],
Vieilledent, G.[Ghislain],
Bailly, J.S.[Jean-Stéphane],
Minh, D.H.T.[Dinh Ho Tong],
Interest of Integrating Spaceborne LiDAR Data to Improve the
Estimation of Biomass in High Biomass Forested Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Deo, R.K.[Ram K.],
Russell, M.B.[Matthew B.],
Domke, G.M.[Grant M.],
Andersen, H.E.[Hans-Erik],
Cohen, W.B.[Warren B.],
Woodall, C.W.[Christopher W.],
Evaluating Site-Specific and Generic Spatial Models of Aboveground
Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples
in the Eastern USA,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Yoga, S.[Sarah],
Bégin, J.[Jean],
St-Onge, B.[Benoît],
Riopel, M.[Martin],
Modeling the Effect of the Spatial Pattern of Airborne Lidar Returns
on the Prediction and the Uncertainty of Timber Merchantable Volume,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Silva, C.A.[Carlos Alberto],
Hudak, A.T.[Andrew Thomas],
Vierling, L.A.[Lee Alexander],
Klauberg, C.[Carine],
Garcia, M.[Mariano],
Ferraz, A.[António],
Keller, M.[Michael],
Eitel, J.[Jan],
Saatchi, S.[Sassan],
Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks
and Changes in a Selectively Logged Tropical Forest,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Li, A.[Aihua],
Dhakal, S.[Shital],
Glenn, N.F.[Nancy F.],
Spaete, L.P.[Lucas P.],
Shinneman, D.J.[Douglas J.],
Pilliod, D.S.[David S.],
Arkle, R.S.[Robert S.],
McIlroy, S.K.[Susan K.],
Lidar Aboveground Vegetation Biomass Estimates in Shrublands:
Prediction, Uncertainties and Application to Coarser Scales,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Spriggs, R.A.[Rebecca A.],
Coomes, D.A.[David A.],
Jones, T.A.[Trevor A.],
Caspersen, J.P.[John P.],
Vanderwel, M.C.[Mark C.],
An Alternative Approach to Using LiDAR Remote Sensing Data to Predict
Stem Diameter Distributions across a Temperate Forest Landscape,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Rana, P.[Parvez],
Vauhkonen, J.[Jari],
Junttila, V.[Virpi],
Hou, Z.Y.[Zheng-Yang],
Gautam, B.[Basanta],
Cawkwell, F.[Fiona],
Tokola, T.[Timo],
Large tree diameter distribution modelling using sparse airborne
laser scanning data in a subtropical forest in Nepal,
PandRS(134), No. Supplement C, 2017, pp. 86-95.
Elsevier DOI
1712
Diameter distribution, -MSN, Large tree, Nepal, Tropical forests, LiDAR
BibRef
Fu, L.Y.[Li-Yong],
Liu, Q.W.[Qing-Wang],
Sun, H.[Hua],
Wang, Q.Y.[Qiu-Yan],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Pang, Y.[Yong],
Song, X.Y.[Xin-Yu],
Wang, G.X.[Guang-Xing],
Development of a System of Compatible Individual Tree Diameter and
Aboveground Biomass Prediction Models Using Error-In-Variable
Regression and Airborne LiDAR Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Pang, Y.[Yong],
Li, Z.Y.[Zeng-Yuan],
Subtropical Forest Biomass Estimation Using Airborne Lidar And
Hyperspectral Data,
ISPRS16(B8: 747-749).
DOI Link
1610
BibRef
Wang, M.J.[Meng-Jia],
Sun, R.[Rui],
Xiao, Z.Q.[Zhi-Qiang],
Estimation of Forest Canopy Height and Aboveground Biomass from
Spaceborne LiDAR and Landsat Imageries in Maryland,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Hirata, Y.[Yasumasa],
Furuya, N.[Naoyuki],
Saito, H.[Hideki],
Pak, C.[Chealy],
Leng, C.[Chivin],
Sokh, H.[Heng],
Ma, V.[Vuthy],
Kajisa, T.[Tsuyoshi],
Ota, T.[Tetsuji],
Mizoue, N.[Nobuya],
Object-Based Mapping of Aboveground Biomass in Tropical Forests Using
LiDAR and Very-High-Spatial-Resolution Satellite Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Tenneson, K.[Karis],
Patterson, M.S.[Matthew S.],
Mellin, T.[Thomas],
Nigrelli, M.[Mark],
Joria, P.[Peter],
Mitchell, B.[Brent],
Development of a Regional LIDAR-Derived Above-Ground Biomass Model
with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed
Conifer Forests in Arizona and New Mexico, USA,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Cao, L.[Luodan],
Pan, J.J.[Jian-Jun],
Li, R.J.[Rui-Juan],
Li, J.L.[Jia-Lin],
Li, Z.F.[Zhao-Fu],
Integrating Airborne LiDAR and Optical Data to Estimate Forest
Aboveground Biomass in Arid and Semi-Arid Regions of China,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
González-Jaramillo, V.[Víctor],
Fries, A.[Andreas],
Zeilinger, J.[Jörg],
Homeier, J.[Jürgen],
Paladines-Benitez, J.[Jhoana],
Bendix, J.[Jörg],
Estimation of Above Ground Biomass in a Tropical Mountain Forest in
Southern Ecuador Using Airborne LiDAR Data,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Hernández-Stefanoni, J.L.[José Luis],
Reyes-Palomeque, G.[Gabriela],
Castillo-Santiago, M.Á.[Miguel Ángel],
George-Chacón, S.P.[Stephanie P.],
Huechacona-Ruiz, A.H.[Astrid Helena],
Tun-Dzul, F.[Fernando],
Rondon-Rivera, D.[Dinosca],
Dupuy, J.M.[Juan Manuel],
Effects of Sample Plot Size and GPS Location Errors on Aboveground
Biomass Estimates from LiDAR in Tropical Dry Forests,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Navarro-Cerrillo, R.M.[Rafael M.],
Duque-Lazo, J.[Joaquín],
Rodríguez-Vallejo, C.[Carlos],
Varo-Martínez, M.Á.[M. Ángeles],
Palacios-Rodríguez, G.[Guillermo],
Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a
Basis for the Silviculture of Pinus Halepensis Plantations,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Paris, C.,
Bruzzone, L.,
A Growth-Model-Driven Technique for Tree Stem Diameter Estimation by
Using Airborne LiDAR Data,
GeoRS(57), No. 1, January 2019, pp. 76-92.
IEEE DOI
1901
Vegetation, Forestry, Laser radar, Estimation, Surfaces, Data mining,
Data models, Forest parameters, forestry,
tree stem attributes
BibRef
Cao, L.[Lin],
Zhang, Z.N.[Zheng-Nan],
Yun, T.[Ting],
Wang, G.B.[Gui-Bin],
Ruan, H.H.[Hong-Hua],
She, G.H.[Guang-Hui],
Estimating Tree Volume Distributions in Subtropical Forests Using
Airborne LiDAR Data,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Sun, X.F.[Xiao-Fang],
Li, G.[Guicai],
Wang, M.[Meng],
Fan, Z.[Zemeng],
Analyzing the Uncertainty of Estimating Forest Aboveground Biomass
Using Optical Imagery and Spaceborne LiDAR,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wang, M.X.[Meng-Xi],
Liu, Q.W.[Qing-Wang],
Fu, L.Y.[Li-Yong],
Wang, G.X.[Guang-Xing],
Zhang, X.Q.[Xiong-Qing],
Airborne LIDAR-Derived Aboveground Biomass Estimates Using a
Hierarchical Bayesian Approach,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Tian, J.Y.[Jin-Yan],
Wang, L.[Le],
Li, X.J.[Xiao-Juan],
Yin, D.[Dameng],
Gong, H.L.[Hui-Li],
Nie, S.[Sheng],
Shi, C.[Chen],
Zhong, R.F.[Ruo-Fei],
Liu, X.M.[Xiao-Meng],
Xu, R.L.[Rong-Long],
Canopy Height Layering Biomass Estimation Model (CHL-BEM) with
Full-Waveform LiDAR,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zhang, L.J.[Lin-Jing],
Shao, Z.F.[Zhen-Feng],
Liu, J.C.[Jian-Chen],
Cheng, Q.M.[Qi-Min],
Deep Learning Based Retrieval of Forest Aboveground Biomass from
Combined LiDAR and Landsat 8 Data,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Li, S.Q.[Si-Qi],
Quackenbush, L.J.[Lindi J.],
Im, J.[Jungho],
Airborne Lidar Sampling Strategies to Enhance Forest Aboveground
Biomass Estimation from Landsat Imagery,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhang, X.Y.[Xue-Yan], r
Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs
by Using Point Cloud Derived from Unmanned Aerial Vehicle,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Marczak, P.T.[Paulina T.],
van Ewijk, K.Y.[Karin Y.],
Treitz, P.M.[Paul M.],
Scott, N.A.[Neal A.],
Robinson, D.C.E.[Donald C.E.],
Predicting Carbon Accumulation in Temperate Forests of Ontario,
Canada Using a LiDAR-Initialized Growth-and-Yield Model,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Xie, B.[Bo],
Cao, C.X.[Chun-Xiang],
Xu, M.[Min],
Bashir, B.[Barjeece],
Singh, R.P.[Ramesh P.],
Huang, Z.B.[Zhi-Bin],
Lin, X.J.[Xiao-Juan],
Regional Forest Volume Estimation by Expanding LiDAR Samples Using
Multi-Sensor Satellite Data,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Jiang, X.[Xiandie],
Li, G.Y.[Gui-Ying],
Lu, D.S.[Deng-Sheng],
Chen, E.[Erxue],
Wei, X.L.[Xin-Liang],
Stratification-Based Forest Aboveground Biomass Estimation in a
Subtropical Region Using Airborne Lidar Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Kuželka, K.[Karel],
Slavík, M.[Martin],
Surový, P.[Peter],
Very High Density Point Clouds from UAV Laser Scanning for Automatic
Tree Stem Detection and Direct Diameter Measurement,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Rex, F.E.[Franciel Eduardo],
Silva, C.A.[Carlos Alberto],
Corte, A.P.D.[Ana Paula Dalla],
Klauberg, C.[Carine],
Mohan, M.[Midhun],
Cardil, A.[Adrián],
da Silva, V.S.[Vanessa Sousa],
Alves de Almeida, D.R.[Danilo Roberti],
Garcia, M.[Mariano],
Broadbent, E.N.[Eben North],
Valbuena, R.[Ruben],
Stoddart, J.[Jaz],
Merrick, T.[Trina],
Hudak, A.T.[Andrew Thomas],
Comparison of Statistical Modelling Approaches for Estimating
Tropical Forest Aboveground Biomass Stock and Reporting Their Changes
in Low-Intensity Logging Areas Using Multi-Temporal LiDAR Data,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Sagang, L.T.[Le_Bienfaiteur T.],
Ploton, P.[Pierre],
Sonké, B.[Bonaventure],
Poilvé, H.[Hervé],
Couteron, P.[Pierre],
Barbier, N.[Nicolas],
Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions
from Multispectral Images in Forest-Savanna Landscapes,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
Above-Ground-Biomass.
BibRef
d'Oliveira, M.V.N.[Marcus V. N.],
Broadbent, E.N.[Eben N.],
Oliveira, L.C.[Luis C.],
Almeida, D.R.A.[Danilo R. A.],
Papa, D.A.[Daniel A.],
Ferreira, M.E.[Manuel E.],
Zambrano, A.M.A.[Angelica M. Almeyda],
Silva, C.A.[Carlos A.],
Avino, F.S.[Felipe S.],
Prata, G.A.[Gabriel A.],
Mello, R.A.[Ricardo A.],
Figueiredo, E.O.[Evandro O.],
de Castro Jorge, L.A.[Lúcio A.],
Junior, L.[Leomar],
Albuquerque, R.W.[Rafael W.],
Brancalion, P.H.S.[Pedro H. S.],
Wilkinson, B.[Ben],
Oliveira-da-Costa, M.[Marcelo],
Aboveground Biomass Estimation in Amazonian Tropical Forests: a
Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the
Chico Mendes Extractive Reserve in Acre, Brazil,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Windrim, L.[Lloyd],
Bryson, M.[Mitch],
Detection, Segmentation, and Model Fitting of Individual Tree Stems
from Airborne Laser Scanning of Forests Using Deep Learning,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Jiang, X.[Xiandie],
Li, G.Y.[Gui-Ying],
Lu, D.S.[Deng-Sheng],
Moran, E.[Emilio],
Batistella, M.[Mateus],
Modeling Forest Aboveground Carbon Density in the Brazilian Amazon
with Integration of MODIS and Airborne LiDAR Data,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Maesano, M.[Mauro],
Khoury, S.[Sacha],
Nakhle, F.[Farid],
Firrincieli, A.[Andrea],
Gay, A.[Alan],
Tauro, F.[Flavia],
Harfouche, A.[Antoine],
UAV-Based LiDAR for High-Throughput Determination of Plant Height and
Above-Ground Biomass of the Bioenergy Grass Arundo donax,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Almeida, A.[André],
Gonçalves, F.[Fabio],
Silva, G.[Gilson],
Souza, R.[Rodolfo],
Treuhaft, R.[Robert],
Santos, W.[Weslei],
Loureiro, D.[Diego],
Fernandes, M.[Márcia],
Estimating Structure and Biomass of a Secondary Atlantic Forest in
Brazil Using Fourier Transforms of Vertical Profiles Derived from UAV
Photogrammetry Point Clouds,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Loh, H.Y.[Ho Yan],
James, D.[Daniel],
Ioki, K.[Keiko],
Wong, W.V.C.[Wilson Vun Chiong],
Tsuyuki, S.[Satoshi],
Phua, M.H.[Mui-How],
Aboveground Biomass Changes in Tropical Montane Forest of Northern
Borneo Estimated Using Spaceborne and Airborne Digital Elevation Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ramalho de Oliveira, L.F.[Luiz Felipe],
Lassiter, H.A.[H. Andrew],
Wilkinson, B.[Ben],
Whitley, T.[Travis],
Ifju, P.[Peter],
Logan, S.R.[Stephen R.],
Peter, G.F.[Gary F.],
Vogel, J.G.[Jason G.],
Martin, T.A.[Timothy A.],
Moving to Automated Tree Inventory: Comparison of UAS-Derived Lidar
and Photogrammetric Data with Manual Ground Estimates,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Jarocinska, A.[Anna],
Kopec, D.[Dominik],
Tokarska-Guzik, B.[Barbara],
Raczko, E.[Edwin],
Intra-Annual Variabilities of Rubus caesius L. Discrimination on
Hyperspectral and LiDAR Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
European dewberry.
BibRef
Dial, R.[Roman],
Chaussé, P.[Pierre],
Allgeier, M.[Mallory],
Smeltz, T.S.[Tom Scott],
Golden, T.[Trevor],
Day, T.[Thomas],
Wong, R.[Russell],
Andersen, H.E.[Hans-Erik],
Estimating Net Primary Productivity (NPP) and Debris-Fall in Forests
Using Lidar Time Series,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Jiang, H.L.[Hai-Lan],
Hu, R.H.[Rong-Hai],
Yan, G.J.[Guang-Jian],
Cheng, S.Y.[Shi-Yu],
Li, F.[Fan],
Qi, J.B.[Jian-Bo],
Li, L.Y.[Lin-Yuan],
Xie, D.H.[Dong-Hui],
Mu, X.[Xihan],
Influencing Factors in Estimation of Leaf Angle Distribution of an
Individual Tree from Terrestrial Laser Scanning Data,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Qin, H.M.[Hai-Ming],
Zhou, W.Q.[Wei-Qi],
Yao, Y.[Yang],
Wang, W.M.[Wei-Min],
Estimating Aboveground Carbon Stock at the Scale of Individual Trees
in Subtropical Forests Using UAV LiDAR and Hyperspectral Data,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lin, Y.C.[Yi-Chun],
Shao, J.[Jinyuan],
Shin, S.Y.[Sang-Yeop],
Saka, Z.[Zainab],
Joseph, M.[Mina],
Manish, R.[Raja],
Fei, S.L.[Song-Lin],
Habib, A.[Ayman],
Comparative Analysis of Multi-Platform, Multi-Resolution,
Multi-Temporal LiDAR Data for Forest Inventory,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Martín-García, S.[Saray],
Balenovic, I.[Ivan],
Jurjevic, L.[Luka],
Lizarralde, I.[Iñigo],
Buján, S.[Sandra],
Ponce, R.A.[Rafael Alonso],
What Is the Most Suitable Height Range of ALS Point Cloud and LiDAR
Metric for Understorey Analysis? A Study Case in a Mixed Deciduous
Forest, Pokupsko Basin, Croatia,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Gao, L.H.[Ling-Han],
Chai, G.Q.[Guo-Qi],
Zhang, X.L.[Xiao-Li],
Above-Ground Biomass Estimation of Plantation with Different Tree
Species Using Airborne LiDAR and Hyperspectral Data,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Brown, S.[Schyler],
Narine, L.L.[Lana L.],
Gilbert, J.[John],
Using Airborne Lidar, Multispectral Imagery, and Field Inventory Data
to Estimate Basal Area, Volume, and Aboveground Biomass in
Heterogeneous Mixed Species Forests: A Case Study in Southern Alabama,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liao, K.[Kuo],
Li, Y.H.[Yun-He],
Zou, B.Z.[Bing-Zhang],
Li, D.Q.[Deng-Qiu],
Lu, D.S.[Deng-Sheng],
Examining the Role of UAV Lidar Data in Improving Tree Volume
Calculation Accuracy,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhou, L.[Lv],
Li, X.J.[Xue-Jian],
Zhang, B.[Bo],
Xuan, J.[Jie],
Gong, Y.L.[Yu-Lin],
Tan, C.[Cheng],
Huang, H.G.[Hua-Guo],
Du, H.Q.[Hua-Qiang],
Estimating 3D Green Volume and Aboveground Biomass of Urban Forest
Trees by UAV-Lidar,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Deng, Y.C.[Yun-Cheng],
Pan, J.[Jiya],
Wang, J.L.[Jin-Liang],
Liu, Q.W.[Qian-Wei],
Zhang, J.P.[Jian-Peng],
Mapping of Forest Biomass in Shangri-La City Based on LiDAR
Technology and Other Remote Sensing Data,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chen, A.[Ang],
Wang, X.[Xing],
Zhang, M.[Min],
Guo, J.[Jian],
Xing, X.Y.[Xiao-Yu],
Yang, D.[Dong],
Zhang, H.L.[Hui-Long],
Hou, Z.[Zhiyan],
Jia, Z.[Ze],
Yang, X.C.[Xiu-Chun],
Fusion of LiDAR and Multispectral Data for Aboveground Biomass
Estimation in Mountain Grassland,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Georgopoulos, N.[Nikos],
Gitas, I.Z.[Ioannis Z.],
Korhonen, L.[Lauri],
Antoniadis, K.[Konstantinos],
Stefanidou, A.[Alexandra],
Estimating Crown Biomass in a Multilayered Fir Forest Using Airborne
LiDAR Data,
RS(15), No. 11, 2023, pp. 2919.
DOI Link
2306
BibRef
Cushman, K.C.,
Saatchi, S.[Sassan],
McRoberts, R.E.[Ronald E.],
Anderson-Teixeira, K.J.[Kristina J.],
Bourg, N.A.[Norman A.],
Chapman, B.[Bruce],
McMahon, S.M.[Sean M.],
Mulverhill, C.[Christopher],
Small Field Plots Can Cause Substantial Uncertainty in Gridded
Aboveground Biomass Products from Airborne Lidar Data,
RS(15), No. 14, 2023, pp. 3509.
DOI Link
2307
BibRef
Chen, X.J.[Xing-Jing],
Xie, D.B.[Dong-Bo],
Zhang, Z.[Zhuang],
Sharma, R.P.[Ram P.],
Chen, Q.[Qiao],
Liu, Q.W.[Qing-Wang],
Fu, L.Y.[Li-Yong],
Compatible Biomass Model with Measurement Error Using Airborne LiDAR
Data,
RS(15), No. 14, 2023, pp. 3546.
DOI Link
2307
BibRef
Liu, H.Z.[Han-Zhang],
Mou, C.[Chao],
Yuan, J.[Jiateng],
Chen, Z.B.[Zhi-Bo],
Zhong, L.[Liheng],
Cui, X.H.[Xiao-Hui],
Estimating Urban Forests Biomass with LiDAR by Using Deep Learning
Foundation Models,
RS(16), No. 9, 2024, pp. 1643.
DOI Link
2405
BibRef
Fan, W.[Wen],
Tian, J.J.[Jiao-Jiao],
Knoke, T.[Thomas],
Yang, B.S.[Bi-Sheng],
Liang, F.[Fuxun],
Dong, Z.[Zhen],
Investigating Dual-Source Satellite Image Data and ALS Data for
Estimating Aboveground Biomass,
RS(16), No. 10, 2024, pp. 1804.
DOI Link
2405
BibRef
Kurdi, F.T.[Fayez Tarsha],
Lewandowicz, E.[Elzbieta],
Gharineiat, Z.[Zahra],
Shan, J.[Jie],
Accurate Calculation of Upper Biomass Volume of Single Trees Using
Matrixial Representation of LiDAR Data,
RS(16), No. 12, 2024, pp. 2220.
DOI Link
2406
BibRef
Siebers, M.H.[Matthew H.],
Fu, P.[Peng],
Blakely, B.J.[Bethany J.],
Long, S.P.[Stephen P.],
Bernacchi, C.J.[Carl J.],
McGrath, J.M.[Justin M.],
Fast, Nondestructive and Precise Biomass Measurements Are Possible
Using Lidar-Based Convex Hull and Voxelization Algorithms,
RS(16), No. 12, 2024, pp. 2191.
DOI Link
2406
BibRef
Zhou, X.[Xinshao],
Ma, K.[Kaisen],
Sun, H.[Hua],
Li, C.K.[Chao-Kui],
Wang, Y.H.[Yong-Hong],
Estimation of Forest Stand Volume in Coniferous Plantation from
Individual Tree Segmentation Aspect Using UAV-LiDAR,
RS(16), No. 15, 2024, pp. 2736.
DOI Link
2408
BibRef
Lee, T.Y.[Tae-Yoon],
Vatandaslar, C.[Can],
Merry, K.[Krista],
Bettinger, P.[Pete],
Peduzzi, A.[Alicia],
Stober, J.[Jonathan],
Estimating Forest Inventory Information for the Talladega National
Forest Using Airborne Laser Scanning Systems,
RS(16), No. 16, 2024, pp. 2933.
DOI Link
2408
BibRef
Büyüksalih, I.,
Bayburt, S.,
Schardt, M.,
Büyüksalih, G.,
Forest Stem Volume Calculation Using Airborne Lidar Data,
Hannover17(265-270).
DOI Link
1805
BibRef
Yilmaz, V.,
Serifoglu, C.,
Gungor, O.,
Determining Stand Parameters From Uas-based Point Clouds,
ISPRS16(B1: 413-416).
DOI Link
1610
BibRef
Hadas, E.,
Borkowski, A.,
Estornell, J.,
Algorithm For The Automatic Estimation Of Agricultural Tree Geometric
Parameters Using Airborne Laser Scanning Data,
ISPRS16(B8: 629-632).
DOI Link
1610
BibRef
Chen, G.[Gang],
Hay, G.[Geoffrey],
Using support vector regression and segmentation to estimate forest
height, biomass and volume from LiDAR transects and Quickbird imagery,
CGC10(112).
PDF File.
1006
BibRef
Andersen, H.E.,
Breidenbach, J.,
Statistical Properties of Mean Stand Biomass Estimators in a
Lidar-Based Double Sampling Forest Survey Design,
Laser07(8).
PDF File.
0709
BibRef
Breidenbach, J.,
McGaughey, R.,
Andersen, H.E.,
Kändler, G.,
Reutebuch, S.,
A Mixed Effects Model to Estimate Stand Volume by Means of Small
Footprint Airborne Lidar Data for an American and German Study Site,
Laser07(77).
PDF File.
0709
BibRef
Stephens, P.R.,
Watt, P.J.,
Loubser, D.,
Haywood, A.,
Kimberley, M.O.,
Estimation of Carbon Stocks in New Zealand Planted Forests Using
Airborne Scanning Lidar,
Laser07(389).
PDF File.
0709
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Biomass Measurements, Forest, Terrestial Laser Techniques, TLS .