24.4.13.5.4 Biomass Measurements, Forest, Terrestial Laser Techniques, TLS

Chapter Contents (Back)
Biomass Measurement. TLS. Terrestrial Laser Scanner. LIDAR. The general methods.
See also Trees, Forest, Stem Volume, Aboveground Biomass Measurements.

Liang, X.L.[Xin-Lian], Kankare, V., Yu, X.W.[Xiao-Wei], Hyyppa, J., Holopainen, M.,
Automated Stem Curve Measurement Using Terrestrial Laser Scanning,
GeoRS(52), No. 3, March 2014, pp. 1739-1748.
IEEE DOI 1403
calibration BibRef

Liang, X.L.[Xin-Lian], Litkey, P.[Paula], Hyyppä, J.[Juha], Kaartinen, H.[Harri], Vastaranta, M.[Mikko], Holopainen, M.[Markus],
Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning,
GeoRS(50), No. 2, February 2012, pp. 661-670.
IEEE DOI 1201

See also Accuracy in Estimation of Timber Assortments and Stem Distribution: A Comparison of Airborne and Terrestrial Laser Scanning Techniques. BibRef

Hyyppä, E.[Eric], Kukko, A.[Antero], Kaijaluoto, R.[Risto], White, J.C.[Joanne C.], Wulder, M.A.[Michael A.], Pyörälä, J.[Jiri], Liang, X.[Xinlian], Yu, X.W.[Xiao-Wei], Wang, Y.S.[Yun-Sheng], Kaartinen, H.[Harri], Virtanen, J.P.[Juho-Pekka], Hyyppä, J.[Juha],
Accurate derivation of stem curve and volume using backpack mobile laser scanning,
PandRS(161), 2020, pp. 246-262.
Elsevier DOI 2002
Mobile laser scanning, Stem curve, Stem volume, Tree volume, Mobile, SLAM BibRef

Liang, X.L.[Xin-Lian], Hyyppä, J., Kaartinen, H., Holopainen, M., Melkas, T.,
Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data,
IJGI(1), No. 3, 2012, pp. 242-255.
DOI Link 1211
BibRef

Kaasalainen, S.[Sanna], Krooks, A.[Anssi], Liski, J.[Jari], Raumonen, P.[Pasi], Kaartinen, H.[Harri], Kaasalainen, M.[Mikko], Puttonen, E.[Eetu], Anttila, K.[Kati], Mäkipää, R.[Raisa],
Change Detection of Tree Biomass with Terrestrial Laser Scanning and Quantitative Structure Modelling,
RS(6), No. 5, 2014, pp. 3906-3922.
DOI Link 1407
BibRef

Puttonen, E., Lehtomäki, M., Kaartinen, H., Zhu, L., Kukko, A., Jaakkola, A.,
Improved Sampling for Terrestrial and Mobile Laser Scanner Point Cloud Data,
RS(5), No. 4, April 2013, pp. 1754-1773.
DOI Link 1305
BibRef

Raumonen, P.[Pasi], Kaasalainen, M.[Mikko], Åkerblom, M., Kaasalainen, S.[Sanna], Kaartinen, H.[Harri], Vastaranta, M., Holopainen, M., Disney, M.I., Lewis, P.E.,
Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data,
RS(5), No. 2, February 2013, pp. 491-520.
DOI Link 1303

See also Algorithm for Automatic Road Asphalt Edge Delineation from Mobile Laser Scanner Data Using the Line Clouds Concept, An. BibRef

Raumonen, P.[Pasi], Kaasalainen, S.[Sanna], Kaasalainen, M.[Mikko], Kaartinen, H.[Harri],
Approximation of Volume and Branch Size Distribution of Trees from Laser Scanner Data,
Laser11(xx-yy).
DOI Link 1109
BibRef

Pueschel, P.[Pyare], Newnham, G.[Glenn], Rock, G.[Gilles], Udelhoven, T.[Thomas], Werner, W.[Willy], Hill, J.[Joachim],
The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans,
PandRS(77), No. 1, March 2013, pp. 44-56.
Elsevier DOI 1303
Terrestrial laser scanning (TLS); Forest inventory; Stem detection; Stem diameter; Stem volume BibRef

Pueschel, P.[Pyare],
The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 terrestrial laser scans,
PandRS(78), No. 1, April 2013, pp. 58-68.
Elsevier DOI 1304
Phase-shift scanner; Forest inventory; Stem detection; Stem diameter; Stem volume BibRef

Olsoy, P.J.[Peter J.], Glenn, N.F.[Nancy F.], Clark, P.E.[Patrick E.], Derryberry, D.R.[DeWayne R.],
Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning,
PandRS(88), No. 1, 2014, pp. 166-173.
Elsevier DOI 1402
Terrestrial LiDAR BibRef

Wang, D.[Di], Hollaus, M.[Markus], Puttonen, E.[Eetu], Pfeifer, N.[Norbert],
Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests,
RS(8), No. 12, 2016, pp. 974.
DOI Link 1612
BibRef
Earlier:
Fast And Robust Stem Reconstruction In Complex Environments Using Terrestrial Laser Scanning,
ISPRS16(B3: 411-417).
DOI Link 1610
BibRef

Aijazi, A.K.[Ahmad K.], Checchin, P.[Paul], Malaterre, L.[Laurent], Trassoudaine, L.[Laurent],
Automatic Detection and Parameter Estimation of Trees for Forest Inventory Applications Using 3D Terrestrial LiDAR,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711

See also Automatic Removal of Imperfections and Change Detection for Accurate 3D Urban Cartography by Classification and Incremental Updating. BibRef

Marchi, N.[Niccolò], Pirotti, F.[Francesco], Lingua, E.[Emanuele],
Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Putman, E.B., Popescu, S.C.,
Automated Estimation of Standing Dead Tree Volume Using Voxelized Terrestrial Lidar Data,
GeoRS(56), No. 11, November 2018, pp. 6484-6503.
IEEE DOI 1811
Vegetation, Volume measurement, Mathematical model, Forestry, Carbon, Solid modeling, Biomass, voxel BibRef

Pitkänen, T.P.[Timo P.], Raumonen, P.[Pasi], Kangas, A.[Annika],
Measuring stem diameters with TLS in boreal forests by complementary fitting procedure,
PandRS(147), 2019, pp. 294-306.
Elsevier DOI 1901
Terrestrial laser scanning, Stem extraction, Cylinder fitting, Circle fitting, Taper curve BibRef

Yrttimaa, T.[Tuomas], Saarinen, N.[Ninni], Luoma, V.[Ville], Tanhuanpää, T.[Topi], Kankare, V.[Ville], Liang, X.[Xinlian], Hyyppä, J.[Juha], Holopainen, M.[Markus], Vastaranta, M.[Mikko],
Detecting and characterizing downed dead wood using terrestrial laser scanning,
PandRS(151), 2019, pp. 76-90.
Elsevier DOI 1904
TLS, Biodiversity, Point cloud, Coarse woody debris, CWD, Ground-based LiDAR BibRef

Gollob, C.[Christoph], Ritter, T.[Tim], Nothdurft, A.[Arne],
Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Guerriero, L., Martín, F., Mollfulleda, A., Paloscia, S., Pierdicca, N., Santi, E., Floury, N.,
Ground-Based Remote Sensing of Forests Exploiting GNSS Signals,
GeoRS(58), No. 10, October 2020, pp. 6844-6860.
IEEE DOI 2009
Biomass, Antenna measurements, Global navigation satellite system, Vegetation mapping, Forestry, vegetation BibRef

Shao, J., Zhang, W., Mellado, N., Jin, S., Cai, S., Luo, L., Yang, L., Yan, G., Zhou, G.,
Single Scanner BLS System for Forest Plot Mapping,
GeoRS(59), No. 2, February 2021, pp. 1675-1685.
IEEE DOI 2101
Forestry, Simultaneous localization and mapping, Feature extraction, Vegetation, Measurement by laser beam, and mapping (SLAM) BibRef

Levick, S.R.[Shaun R.], Whiteside, T.[Tim], Loewensteiner, D.A.[David A.], Rudge, M.[Mitchel], Bartolo, R.[Renee],
Leveraging TLS as a Calibration and Validation Tool for MLS and ULS Mapping of Savanna Structure and Biomass at Landscape-Scales,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Pérez-Cruzado, C.[César], Kleinn, C.[Christoph], Magdon, P.[Paul], Álvarez-González, J.G.[Juan Gabriel], Magnussen, S.[Steen], Fehrmann, L.[Lutz], Nölke, N.[Nils],
The Horizontal Distribution of Branch Biomass in European Beech: A Model Based on Measurements and TLS Based Proxies,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Gollob, C.[Christoph], Ritter, T.[Tim], Kraßnitzer, R.[Ralf], Tockner, A.[Andreas], Nothdurft, A.[Arne],
Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Hambrecht, L.[Leonard], Lucieer, A.[Arko], Malenovský, Z.[Zbynek], Melville, B.[Bethany], Ruiz-Beltran, A.P.[Ana Patricia], Phinn, S.[Stuart],
Considerations for Assessing Functional Forest Diversity in High-Dimensional Trait Space Derived from Drone-Based Lidar,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Singh, A.[Arunima], Kushwaha, S.K.P.[Sunni Kanta Prasad], Nandy, S.[Subrata], Padalia, H.[Hitendra], Ghosh, S.[Surajit], Srivastava, A.[Ankur], Kumari, N.[Nikul],
Aboveground Forest Biomass Estimation by the Integration of TLS and ALOS PALSAR Data Using Machine Learning,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Zhou, T.[Tian], Ravi, R.[Radhika], Lin, Y.C.[Yi-Chun], Manish, R.[Raja], Fei, S.[Songlin], Habib, A.[Ayman],
In Situ Calibration and Trajectory Enhancement of UAV and Backpack LiDAR Systems for Fine-Resolution Forest Inventory,
RS(15), No. 11, 2023, pp. 2799.
DOI Link 2306
BibRef


Chudá, J., Huncaga, M., Tucek, J., Mokroš, M.,
The Handheld Mobile Laser Scanners As A Tool for Accurate Positioning Under Forest Canopy,
ISPRS20(B1:211-218).
DOI Link 2012
BibRef

Bienert, A., Hess, C., Maas, H.G., von Oheimb, G.,
A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data,
CloseRange14(101-106).
DOI Link 1411
BibRef

Fritz, A., Kattenborn, T., Koch, B.,
UAV-Based Photogrammetric Point Clouds: Tree Stem Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point Clouds,
UAV-g13(141-146).
DOI Link 1311
BibRef

Vonderach, C., Voegtle, T., Adler, P.,
Voxel-based Approach For Estimating Urban Tree Volume From Terrestrial Laser Scanning Data,
ISPRS12(XXXIX-B8:451-456).
DOI Link 1209
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Biomass Measurements, Forest, TanDEM-X, SAR, Radar Measurements .


Last update:Apr 18, 2024 at 11:38:49