Tao, Y.,
Chen, Z.,
Griffis, C.L.,
Chick feather pattern recognition,
VISP(151), No. 5, October 2004, pp. 337-344.
IEEE Abstract.
0501
BibRef
Song, D.,
Xu, Y.,
A Low False Negative Filter for Detecting Rare Bird Species From Short
Video Segments Using a Probable Observation Data Set-Based EKF Method,
IP(19), No. 9, September 2010, pp. 2321-2331.
IEEE DOI
1008
BibRef
Huang, C.[Chao],
Meng, F.M.[Fan-Man],
Luo, W.[Wang],
Zhu, S.Y.[Shu-Yuan],
Bird breed classification and annotation using saliency based
graphical model,
JVCIR(25), No. 6, 2014, pp. 1299-1307.
Elsevier DOI
1407
Graphical model
BibRef
Gavves, E.[Efstratios],
Fernando, B.[Basura],
Snoek, C.G.M.[Cees G.M.],
Smeulders, A.W.M.[Arnold W.M.],
Tuytelaars, T.[Tinne],
Local Alignments for Fine-Grained Categorization,
IJCV(111), No. 2, January 2015, pp. 191-212.
Springer DOI
1502
BibRef
Earlier:
Fine-Grained Categorization by Alignments,
ICCV13(1713-1720)
IEEE DOI
1403
fine-grained categorization. Locate distinctive details by alignment
to general models. Apply to birds and dogs.
BibRef
Zhang, X.P.[Xiao-Peng],
Xiong, H.K.[Hong-Kai],
Zhou, W.G.[Wen-Gang],
Tian, Q.[Qi],
Fused One-vs-All Features With Semantic Alignments for Fine-Grained
Visual Categorization,
IP(25), No. 2, February 2016, pp. 878-892.
IEEE DOI
1601
Birds
BibRef
Zhang, X.P.[Xiao-Peng],
Xiong, H.K.[Hong-Kai],
Zhou, W.G.[Wen-Gang],
Lin, W.Y.[Wei-Yao],
Tian, Q.[Qi],
Picking Neural Activations for Fine-Grained Recognition,
MultMed(19), No. 12, December 2017, pp. 2736-2750.
IEEE DOI
1712
BibRef
Earlier:
Picking Deep Filter Responses for Fine-Grained Image Recognition,
CVPR16(1134-1142)
IEEE DOI
1612
Automobiles, Birds, Detectors, Dogs, Neurons, Testing, Training,
Fine-grained recognition,
weakly supervised part discovery
BibRef
Zhang, L.,
Yang, Y.,
Wang, M.,
Hong, R.,
Nie, L.,
Li, X.,
Detecting Densely Distributed Graph Patterns for Fine-Grained Image
Categorization,
IP(25), No. 2, February 2016, pp. 553-565.
IEEE DOI
1601
Birds
BibRef
Atanbori, J.[John],
Duan, W.T.[Wen-Ting],
Murray, J.[John],
Appiah, K.[Kofi],
Dickinson, P.[Patrick],
Automatic classification of flying bird species using computer vision
techniques,
PRL(81), No. 1, 2016, pp. 53-62.
Elsevier DOI
1609
Fine-grained classification
BibRef
Scholz, N.[Nikolas],
Moll, J.[Jochen],
Mälzer, M.[Moritz],
Nagovitsyn, K.[Konstantin],
Krozer, V.[Viktor],
Random bounce algorithm:
Real-time image processing for the detection of bats and birds,
SIViP(10), No. 8, November 2016, pp. 1449-1456.
Springer DOI
1610
BibRef
Wei, X.S.[Xiu-Shen],
Xie, C.W.[Chen-Wei],
Wu, J.X.[Jian-Xin],
Shen, C.H.[Chun-Hua],
Mask-CNN: Localizing parts and selecting descriptors for fine-grained
bird species categorization,
PR(76), No. 1, 2018, pp. 704-714.
Elsevier DOI
1801
Fine-grained image recognition
BibRef
Peng, Y.X.[Yu-Xin],
He, X.T.[Xiang-Teng],
Zhao, J.J.[Jun-Jie],
Object-Part Attention Model for Fine-Grained Image Classification,
IP(27), No. 3, March 2018, pp. 1487-1500.
IEEE DOI
1801
Automobiles, Birds, Feature extraction, Image classification,
Noise measurement, Redundancy, Visualization,
weakly supervised learning
BibRef
Xiao, T.J.[Tian-Jun],
Xu, Y.C.[Yi-Chong],
Yang, K.Y.[Kui-Yuan],
Zhang, J.X.[Jia-Xing],
Peng, Y.X.[Yu-Xin],
Zhang, Z.[Zheng],
The application of two-level attention models in deep convolutional
neural network for fine-grained image classification,
CVPR15(842-850)
IEEE DOI
1510
BibRef
Zhao, J.J.[Jun-Jie],
Peng, Y.X.[Yu-Xin],
Cost-Sensitive Deep Metric Learning for Fine-Grained Image
Classification,
MMMod18(I:130-141).
Springer DOI
1802
BibRef
Tian, S.,
Cao, X.,
Li, Y.,
Zhen, X.,
Zhang, B.,
Glance and Stare: Trapping Flying Birds in Aerial Videos by Adaptive
Deep Spatio-Temporal Features,
CirSysVideo(29), No. 9, September 2019, pp. 2748-2759.
IEEE DOI
1909
Birds, Proposals, Videos, Feature extraction, Object detection,
Flying bird detection, glance-and-stare detection,
joint localization and classification
BibRef
Richter, R.[Ronny],
Heim, A.[Arend],
Heim, W.[Wieland],
Kamp, J.[Johannes],
Vohland, M.[Michael],
Combining Multiband Remote Sensing and Hierarchical Distance Sampling
to Establish Drivers of Bird Abundance,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Simon, M.[Marcel],
Rodner, E.[Erik],
Darrell, T.J.[Trevor J.],
Denzler, J.[Joachim],
The Whole Is More Than Its Parts? From Explicit to Implicit Pose
Normalization,
PAMI(42), No. 3, March 2020, pp. 749-763.
IEEE DOI
2002
Task analysis, Detectors, Analytical models, Visualization, Encoding,
Proposals, Birds, Fine-grained classification, object recognition, convolutional neural networks
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Darrell, T.J.[Trevor J.],
Denzler, J.[Joachim],
Exemplar-Specific Patch Features for Fine-Grained Recognition,
GCPR14(144-156).
Springer DOI
1411
BibRef
He, X.,
Peng, Y.,
Fine-Grained Visual-Textual Representation Learning,
CirSysVideo(30), No. 2, February 2020, pp. 520-531.
IEEE DOI
2002
Visualization, Detectors, Feature extraction, Birds, Beak, Data mining,
Proposals, Fine-grained visual categorization,
visual-textual representation learning
BibRef
Kranstauber, B.[Bart],
Bouten, W.[Willem],
Leijnse, H.[Hidde],
Wijers, B.C.[Berend-Christiaan],
Verlinden, L.[Liesbeth],
Shamoun-Baranes, J.[Judy],
Dokter, A.M.[Adriaan M.],
High-Resolution Spatial Distribution of Bird Movements Estimated from
a Weather Radar Network,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Francis, R.J.[Roxane J.],
Lyons, M.B.[Mitchell B.],
Kingsford, R.T.[Richard T.],
Brandis, K.J.[Kate J.],
Counting Mixed Breeding Aggregations of Animal Species Using Drones:
Lessons from Waterbirds on Semi-Automation,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Jalil, N.[Nauman],
Smith, S.C.[Scott C.],
Green, R.[Roger],
Performance optimization of rotation-tolerant Viola-Jones-based
blackbird detection,
RealTimeIP(17), No. 3, June 2020, pp. 471-478.
Springer DOI
2006
BibRef
Bowler, E.[Ellen],
Fretwell, P.T.[Peter T.],
French, G.[Geoffrey],
Mackiewicz, M.[Michal],
Using Deep Learning to Count Albatrosses from Space: Assessing
Results in Light of Ground Truth Uncertainty,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Regos, A.[Adrián],
Gómez-Rodríguez, P.[Pablo],
Arenas-Castro, S.[Salvador],
Tapia, L.[Luis],
Vidal, M.[María],
Domínguez, J.[Jesús],
Model-Assisted Bird Monitoring Based on Remotely Sensed Ecosystem
Functioning and Atlas Data,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Clipp, H.L.[Hannah L.],
Cohen, E.B.[Emily B.],
Smolinsky, J.A.[Jaclyn A.],
Horton, K.G.[Kyle G.],
Farnsworth, A.[Andrew],
Buler, J.J.[Jeffrey J.],
Broad-Scale Weather Patterns Encountered during Flight Influence
Landbird Stopover Distributions,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Nussbaumer, R.[Raphaël],
Schmid, B.[Baptiste],
Bauer, S.[Silke],
Liechti, F.[Felix],
Technical a Gaussian Mixture Model to Separate Birds and Insects in
Single-Polarization Weather Radar Data,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Moreira, F.S.[Francisco S.],
Regos, A.[Adrián],
Gonçalves, J.F.[João F.],
Rodrigues, T.M.[Tiago M.],
Verde, A.[André],
Pagès, M.[Marc],
Pérez, J.A.[José A.],
Meunier, B.[Bruno],
Lepetit, J.P.[Jean-Pierre],
Honrado, J.P.[João P.],
Gonçalves, D.[David],
Combining Citizen Science Data and Satellite Descriptors of Ecosystem
Functioning to Monitor the Abundance of a Migratory Bird during the
Non-Breeding Season,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wu, E.[Entao],
Wang, H.C.[Hong-Chang],
Lu, H.X.[Hua-Xiang],
Zhu, W.Q.[Wen-Qi],
Jia, Y.F.[Yi-Fei],
Wen, L.[Li],
Choi, C.Y.[Chi-Yeung],
Guo, H.M.[Hui-Min],
Li, B.[Bin],
Sun, L.[Lili],
Lei, G.C.[Guang-Chun],
Lei, J.L.[Jia-Lin],
Jian, H.F.[Hai-Fang],
Unlocking the Potential of Deep Learning for Migratory Waterbirds
Monitoring Using Surveillance Video,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chen, X.L.[Xiao-Long],
Zhang, H.[Hai],
Song, J.[Jie],
Guan, J.[Jian],
Li, J.F.[Jie-Fang],
He, Z.[Ziwen],
Micro-Motion Classification of Flying Bird and Rotor Drones via Data
Augmentation and Modified Multi-Scale CNN,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Weisshaupt, N.[Nadja],
Leskinen, M.[Matti],
Moisseev, D.N.[Dmitri N.],
Koistinen, J.[Jarmo],
Anthropogenic Illumination as Guiding Light for Nocturnal Bird
Migrants Identified by Remote Sensing,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Dai, T.[Ting],
Xu, S.[Shiyou],
Tian, B.[Biao],
Hu, J.[Jun],
Zhang, Y.[Yue],
Chen, Z.P.[Zeng-Ping],
Extraction of Micro-Doppler Feature Using LMD Algorithm Combined
Supplement Feature for UAVs and Birds Classification,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Washburn, B.E.[Brian E.],
Maher, D.[David],
Beckerman, S.F.[Scott F.],
Majumdar, S.[Siddhartha],
Pullins, C.K.[Craig K.],
Guerrant, T.L.[Travis L.],
Monitoring Raptor Movements with Satellite Telemetry and Avian Radar
Systems: An Evaluation for Synchronicity,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Shi, Q.Q.[Qian-Qian],
Fan, J.S.[Jun-Song],
Wang, Z.[Zuoren],
Zhang, Z.X.[Zhao-Xiang],
Multimodal channel-wise attention transformer inspired by
multisensory integration mechanisms of the brain,
PR(130), 2022, pp. 108837.
Elsevier DOI
2206
Multisensory integration, Top-down attention,
Multimodal transformer, Fine-grained bird recognition, Emotion recognition
BibRef
Arroyo, G.M.[Gonzalo Muñoz],
Mateos-Rodríguez, M.[María],
Do Seabirds Control Wind Drift during Their Migration across the
Strait of Gibraltar? A Study Using Remote Tracking by Radar,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Campbell, L.P.[Lindsay P.],
Guralnick, R.P.[Robert P.],
Giordano, B.V.[Bryan V.],
Sallam, M.F.[Mohamed F.],
Bauer, A.M.[Amely M.],
Tavares, Y.[Yasmin],
Allen, J.M.[Julie M.],
Efstathion, C.[Caroline],
Bartlett, S.[Suzanne],
Wishard, R.[Randy],
Xue, R.D.[Rui-De],
Allen, B.[Benjamin],
Tressler, M.[Miranda],
Qualls, W.[Whitney],
Burkett-Cadena, N.D.[Nathan D.],
Spatiotemporal Modeling of Zoonotic Arbovirus Transmission in
Northeastern Florida Using Sentinel Chicken Surveillance and Earth
Observation Data,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Abuaiadah, D.[Diab],
Switzer, A.[Alexander],
Bosu, M.[Michael],
Liu, Y.[Yun],
Automatic counting of chickens in confined area using the LCFCN
algorithm,
ISCV22(1-7)
IEEE DOI
2208
Measurement, Location awareness, Deep learning,
Manuals, Prediction algorithms, Pins, deep learning, LCFCN
BibRef
Alsubai, S.[Shtwai],
Hamdi, M.[Monia],
Abdel-Khalek, S.[Sayed],
Alqahtani, A.[Abdullah],
Binbusayyis, A.[Adel],
Mansour, R.F.[Romany F.],
Bald eagle search optimization with deep transfer learning enabled
age-invariant face recognition model,
IVC(126), 2022, pp. 104545.
Elsevier DOI
2209
Age invariant face recognition, Facial image analysis,
Age progression, Deep transfer learning, Hyperparameter tuning
BibRef
Yi, K.P.[Kun-Peng],
Zhang, J.J.[Jun-Jian],
Batbayar, N.[Nyambayar],
Higuchi, H.[Hiroyoshi],
Natsagdorj, T.[Tseveenmyadag],
Bysykatova, I.P.[Inga P.],
Using Tracking Data to Identify Gaps in Knowledge and Conservation of
the Critically Endangered Siberian Crane (Leucogeranus leucogeranus),
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Merchant, D.[Daniel],
Lathrop, R.G.[Richard G.],
Santos, C.D.[Carlos David],
Paludo, D.[Danielle],
Niles, L.[Larry],
Smith, J.A.M.[Joseph A. M.],
Feigin, S.[Stephanie],
Dey, A.[Amanda],
Distribution Modeling and Gap Analysis of Shorebird Conservation in
Northern Brazil,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Kobayashi, S.[Shoko],
Fujita, M.S.[Motoko S.],
Omura, Y.[Yoshiharu],
Haryadi, D.S.[Dendy S.],
Muhammad, A.[Ahmad],
Irham, M.[Mohammad],
Shiodera, S.[Satomi],
Evaluating Threatened Bird Occurrence in the Tropics by Using L-Band
SAR Remote Sensing Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Lawrence, B.[Brett],
de Lemmus, E.[Emerson],
Cho, H.[Hyuk],
UAS-Based Real-Time Detection of Red-Cockaded Woodpecker Cavities in
Heterogeneous Landscapes Using YOLO Object Detection Algorithms,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wu, J.[Jiahui],
Xu, W.[Wen],
He, J.F.[Jian-Feng],
Lan, M.[Musheng],
YOLO for Penguin Detection and Counting Based on Remote Sensing
Images,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Chalmers, C.[Carl],
Fergus, P.[Paul],
Wich, S.[Serge],
Longmore, S.N.[Steven N.],
Walsh, N.D.[Naomi Davies],
Stephens, P.A.[Philip A.],
Sutherland, C.[Chris],
Matthews, N.[Naomi],
Mudde, J.[Jens],
Nuseibeh, A.[Amira],
Removing Human Bottlenecks in Bird Classification Using Camera Trap
Images and Deep Learning,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Chang, D.L.[Dong-Liang],
Pang, K.Y.[Kai-Yue],
Du, R.[Ruoyi],
Tong, Y.J.[Yu-Jun],
Song, Y.Z.[Yi-Zhe],
Ma, Z.Y.[Zhan-Yu],
Guo, J.[Jun],
Making a Bird AI Expert Work for You and Me,
PAMI(45), No. 10, October 2023, pp. 12068-12084.
IEEE DOI
2310
BibRef
Moreno, E.[Eduardo],
Gonzalez, E.[Encarnación],
Alvarez, R.[Reinaldo],
Menendez, J.[Julio],
Analysis and Quantification of the Distribution of Marabou
(Dichrostachys cinerea (L.) Wight and Arn.) in Valle de los Ingenios,
Cuba: A Remote Sensing Approach,
RS(16), No. 5, 2024, pp. 752.
DOI Link
2403
BibRef
Merchant, M.A.[Michael Allan],
Battaglia, M.J.[Michael J.],
French, N.[Nancy],
Smith, K.[Kevin],
Singer, H.V.[Howard V.],
Armstrong, L.[Llwellyn],
Harriman, V.B.[Vanessa B.],
Slattery, S.[Stuart],
Species Abundance Modelling of Arctic-Boreal Zone Ducks Informed by
Satellite Remote Sensing,
RS(16), No. 7, 2024, pp. 1175.
DOI Link
2404
BibRef
Jiang, Q.[Qi],
Wang, R.[Rui],
Zhang, W.Y.[Wen-Yuan],
Jiao, L.X.[Long-Xiang],
Li, W.D.[Wei-Dong],
Wu, C.F.[Chun-Feng],
Hu, C.[Cheng],
Monitoring Dynamically Changing Migratory Flocks Using an Algebraic
Graph Theory-Based Clustering Algorithm,
RS(16), No. 7, 2024, pp. 1215.
DOI Link
2404
BibRef
Liu, H.[Hehao],
Li, D.[Dong],
Zhang, M.[Ming],
Wan, J.[Jun],
Liu, S.[Shuang],
Zhu, H.Y.[Han-Ying],
Liu, Q.H.[Qing-Hua],
A Cross-Modal Semantic Alignment and Feature Fusion Method for Bionic
Drone and Bird Recognition,
RS(16), No. 17, 2024, pp. 3121.
DOI Link
2409
BibRef
Rodríguez, A.C.[Andrés C.],
D'Aronco, S.[Stefano],
Daudt, R.C.[Rodrigo Caye],
Wegner, J.D.[Jan D.],
Schindler, K.[Konrad],
Recognition of Unseen Bird Species by Learning from Field Guides,
WACV24(1731-1740)
IEEE DOI Code:
WWW Link.
2404
Visualization, Image recognition, Image coding, Zero-shot learning,
Text recognition, Flowering plants, Algorithms,
Animals / Insects
BibRef
Kondo, Y.[Yuki],
Ukita, N.[Norimichi],
Yamaguchi, T.[Takayuki],
Hou, H.Y.[Hao-Yu],
Shen, M.Y.[Mu-Yi],
Hsu, C.C.[Chia-Chi],
Huang, E.M.[En-Ming],
Huang, Y.C.[Yu-Chen],
Xia, Y.C.[Yu-Cheng],
Wang, C.Y.[Chien-Yao],
Lee, C.Y.[Chun-Yi],
Huo, D.[Da],
Kastner, M.A.[Marc A.],
Liu, T.W.[Ting-Wei],
Kawanishi, Y.[Yasutomo],
Hirayama, T.[Takatsugu],
Komamizu, T.[Takahiro],
Ide, I.[Ichiro],
Shinya, Y.[Yosuke],
Liu, X.Y.[Xin-Yao],
Liang, G.[Guang],
Yasui, S.[Syusuke],
MVA2023 Small Object Detection Challenge for Spotting Birds: Dataset,
Methods, and Results,
MVA23(1-11)
DOI Link
2403
Machine vision, Process control, Object detection, Birds,
Real-time systems, Time factors, Proposals
BibRef
Huo, D.[Da],
Kastner, M.A.[Marc A.],
Liu, T.W.[Ting-Wei],
Kawanishi, Y.[Yasutomo],
Hirayama, T.[Takatsugu],
Komamizu, T.[Takahiro],
Ide, I.[Ichiro],
Small Object Detection for Birds with Swin Transformer,
MVA23(1-5)
DOI Link
2403
Training, Pedestrians, Machine vision, Object detection,
Transformers, Birds, Magnetic heads
BibRef
Yuan, X.X.[Xiao-Xi],
Fine-Grained Image Recognition Method Based on Input Perception Joint
Probability Prediction,
CVIDL23(62-69)
IEEE DOI
2403
Image recognition, Uncertainty, Heuristic algorithms, Estimation,
Prediction algorithms, Birds, Feature extraction,
Probabilistic prediction
BibRef
Sun, H.Y.[Hong-Yu],
Wang, Y.[Yongcai],
Cai, X.D.[Xu-Dong],
Wang, P.[Peng],
Huang, Z.[Zhe],
Li, D.[Deying],
Shao, Y.[Yu],
Wang, S.[Shuo],
Airbirds: A Large-scale Challenging Dataset for Bird Strike Prevention
in Real-world Airports,
ACCV22(V:409-424).
Springer DOI
2307
BibRef
Coluccia, A.[Angelo],
Fascista, A.[Alessio],
Schumann, A.[Arne],
Sommer, L.[Lars],
Dimou, A.[Anastasios],
Zarpalas, D.[Dimitrios],
Sharma, N.[Nabin],
Nalamati, M.[Mrunalini],
Eryuksel, O.[Ogulcan],
Ozfuttu, K.A.[Kamil Anil],
Akyon, F.C.[Fatih Cagatay],
Sahin, K.[Kadir],
Buyukborekci, E.[Efe],
Cavusoglu, D.[Devrim],
Altinuc, S.[Sinan],
Xing, D.[Daitao],
Unlu, H.U.[Halil Utku],
Evangeliou, N.[Nikolaos],
Tzes, A.[Anthony],
Nayak, A.[Abhijeet],
Bouazizi, M.[Mondher],
Ahmad, T.[Tasweer],
Gonçalves, A.[Artur],
Rigault, B.[Bastien],
Jain, R.[Raghvendra],
Matsuo, Y.[Yutaka],
Prendinger, H.[Helmut],
Jajaga, E.[Edmond],
Rushiti, V.[Veton],
Ramadani, B.[Blerant],
Pavleski, D.[Daniel],
Drone-vs-Bird Detection Challenge at ICIAP 2021,
WOSDETC22(410-421).
Springer DOI
2208
BibRef
Lotfian, M.,
Ingensand, J.,
Using Geo Geo-Tagged Flickr Images to Explore the Correlation Between
Land Cover Classes and the Location of Bird Observations,
ISPRS21(B4-2021: 189-194).
DOI Link
2201
BibRef
Ju, S.[Shengtai],
Erasmus, M.A.[Marisa A.],
Zhu, F.Q.[Feng-Qing],
Reibman, A.R.[Amy R.],
Turkey Behavior Identification Using Video Analytics and Object
Tracking,
ICIP21(1219-1223)
IEEE DOI
2201
Legged locomotion, Head, Shape, Visual analytics, Production,
Object tracking, Object recognition, Video Analytics, Animal Welfare
BibRef
Shim, K.[Kyuwon],
Barczak, A.[Andre],
Reyes, N.[Napoleon],
Ahmed, N.[Nasim],
Small mammals and bird detection using IoT devices,
IVCNZ21(1-6)
IEEE DOI
2201
component, formatting, style, styling, insert
BibRef
Zhang, Y.L.[Yun-Long],
Hotta, S.[Seiji],
Chicken Detection in Occlusion Scenes with Modified Single Shot
MultiBox Detector,
ISVC21(I:561-572).
Springer DOI
2112
BibRef
Wang, Y.F.[Yu-Fu],
Kolotouros, N.[Nikos],
Daniilidis, K.[Kostas],
Badger, M.[Marc],
Birds of a Feather: Capturing Avian Shape Models from Images,
CVPR21(14734-14744)
IEEE DOI
2111
Deformable models, Training, Solid modeling,
Shape, Birds, Phylogeny
BibRef
Brust, C.A.[Clemens-Alexander],
Barz, B.[Björn],
Denzler, J.[Joachim],
Making Every Label Count:
Handling Semantic Imprecision by Integrating Domain Knowledge,
ICPR21(6866-6873)
IEEE DOI
2105
Training, Annotations, Snow, Semantics, Training data,
Benchmark testing, Birds
BibRef
Belko, A.[Alina],
Dobratulin, K.[Konstantin],
Kunznetsov, A.[Andrey],
Two-stage Classification Model for Feather Images Identification,
IMTA20(172-181).
Springer DOI
2103
BibRef
Kennelly, S.,
Green, R.,
Classifying Bird Feeder Photos,
IVCNZ20(1-6)
IEEE DOI
2012
Databases, Training data, Birds, Agriculture, Data models,
Convolutional neural networks, Testing
BibRef
Chakraborti, T.,
McCane, B.,
Mills, S.,
Pal, U.,
CoCoNet: A Collaborative Convolutional Network applied to
fine-grained bird species classification,
IVCNZ20(1-6)
IEEE DOI
2012
Training, Visualization, Image recognition, Collaboration,
Birds, Task analysis,
deep transfer learniing
BibRef
Chakraborti, T.,
McCane, B.,
Mills, S.,
Pal, U.,
PProCRC: Probabilistic Collaboration of Image Patches for
Fine-grained Classification,
IVCNZ20(1-5)
IEEE DOI
2012
Visualization, Image recognition, Collaboration,
Probabilistic logic, Cost function, Birds, Task analysis,
species recognition
BibRef
Nawaz, S.,
Calefati, A.,
Caraffini, M.,
Landro, N.,
Gallo, I.,
Are These Birds Similar: Learning Branched Networks for Fine-grained
Representations,
IVCNZ19(1-5)
IEEE DOI
2004
graph theory, image classification, image representation,
learning (artificial intelligence), object recognition,
Fine-grained image classification
BibRef
Ali, A.A.,
Idris, N.H.,
Ishak, M.H.I.,
The Influence of Land-use Land-cover Changes On Urban Bird Communities,
GGT19(93-100).
DOI Link
1912
BibRef
Jørgensen, A.[Anders],
Dueholm, J.V.[Jacob V.],
Fagertun, J.[Jens],
Moeslund, T.B.[Thomas B.],
Weight Estimation of Broilers in Images Using 3D Prior Knowledge,
SCIA19(221-232).
Springer DOI
1906
BibRef
Serrano, S.A.[Sergio A.],
Benítez-Jimenez, R.[Ricardo],
Nuñez-Rosas, L.[Laura],
del Coro Arizmendi, M.[Ma],
Greeney, H.[Harold],
Reyes-Meza, V.[Veronica],
Morales, E.[Eduardo],
Escalante, H.J.[Hugo Jair],
Automated Detection of Hummingbirds in Images: A Deep Learning Approach,
MCPR18(155-166).
Springer DOI
1807
BibRef
Coluccia, A.,
Ghenescu, M.,
Piatrik, T.,
de Cubber, G.,
Schumann, A.,
Sommer, L.,
Klatte, J.,
Schuchert, T.,
Beyerer, J.,
Farhadi, M.,
Amandi, R.,
Aker, C.,
Kalkan, S.,
Saqib, M.,
Sharma, N.,
Daud, S.,
Makkah, K.,
Blumenstein, M.,
Drone-vs-Bird detection challenge at IEEE AVSS2017,
AVSS17(1-6)
IEEE DOI
1806
military aircraft, terrorism, European Commission,
Horizon 2020 program, IEEE AVSS2017, SafeShore project,
Video sequences
BibRef
Bender, M.,
Yang, X.,
Chen, H.,
Kurdila, A.,
Müller, R.,
Gaussian process dynamic modeling of bat flapping flight,
ICIP17(4542-4546)
IEEE DOI
1803
Cameras, Data models, Dimensionality reduction, Kinematics,
Manifolds, Mathematical model, Trajectory,
Motion Capture
BibRef
Pang, C.,
Li, H.,
Cherian, A.,
Yao, H.,
Part-based fine-grained bird image retrieval respecting species
correlation,
ICIP17(2896-2900)
IEEE DOI
1803
Binary codes, Birds, Correlation, Image coding, Image recognition,
Image retrieval, Task analysis,
part detection
BibRef
Srinivas, M.,
Lin, Y.Y.,
Liao, H.Y.M.,
Deep dictionary learning for fine-grained image classification,
ICIP17(835-839)
IEEE DOI
1803
Birds, Dictionaries, Feature extraction, Machine learning,
Task analysis, Training, Training data, Sparse representation,
on-line dictionary learning
BibRef
Dash, A.[Amanda],
Albu, A.B.[Alexandra Branzan],
Counting Large Flocks of Birds Using Videos Acquired with Hand-Held
Devices,
ACIVS17(468-478).
Springer DOI
1712
BibRef
Elhoseiny, M.,
Zhu, Y.,
Zhang, H.,
Elgammal, A.,
Link the Head to the 'Beak': Zero Shot Learning from Noisy Text
Description at Part Precision,
CVPR17(6288-6297)
IEEE DOI
1711
Birds, Head, Image recognition, Noise measurement, Training, Visualization
BibRef
Wang, X.,
Zhao, Y.[Yue],
Ji, Q.,
Taxonomy augmented object recognition,
ICPR16(1370-1375)
IEEE DOI
1705
Birds, Measurement, Object recognition, Semantics,
Support vector machines, Taxonomy
BibRef
T'Jampens, R.,
Hernandez, F.,
Vandecasteele, F.,
Verstockt, S.,
Automatic detection, tracking and counting of birds in marine video
content,
IPTA16(1-6)
IEEE DOI
1703
feature extraction
BibRef
Wang, Q.S.[Qiao-Song],
Rasmussen, C.[Christopher],
Song, C.B.[Chun-Bo],
Fast, Deep Detection and Tracking of Birds and Nests,
ISVC16(I: 146-155).
Springer DOI
1701
BibRef
Huang, J.B.,
Caruana, R.,
Farnsworth, A.,
Kelling, S.,
Ahuja, N.,
Detecting Migrating Birds at Night,
CVPR16(2091-2099)
IEEE DOI
1612
BibRef
Mader, S.,
Grenzdörffer, G.J.,
Automatic Sea Bird Detection From High Resolution Aerial Imagery,
ISPRS16(B7: 299-303).
DOI Link
1610
BibRef
Huang, Y.,
Zheng, H.,
Yang, H.,
Improving an object tracker for infrared flying bird tracking,
ICIP16(1699-1703)
IEEE DOI
1610
Decision support systems
BibRef
Takeki, A.,
Trinh, T.T.,
Yoshihashi, R.,
Kawakami, R.,
Iida, M.,
Naemura, T.,
Detection of small birds in large images by combining a deep detector
with semantic segmentation,
ICIP16(3977-3981)
IEEE DOI
1610
Birds
BibRef
Kemper, G.,
Weidauer, A.,
Coppack, T.,
Monitoring Seabirds And Marine Mammals By Georeferenced Aerial
Photography,
ISPRS16(B8: 689-694).
DOI Link
1610
BibRef
Xie, L.X.[Ling-Xi],
Wang, J.D.[Jing-Dong],
Lin, W.Y.[Wei-Yao],
Zhang, B.[Bo],
Tian, Q.[Qi],
RIDE: Reversal Invariant Descriptor Enhancement,
ICCV15(100-108)
IEEE DOI
1602
Birds. Description to eliminate need for including reversals in descriptions.
BibRef
Wilber, M.J.,
Kwak, I.S.,
Kriegman, D.,
Belongie, S.J.,
Learning Concept Embeddings with Combined Human-Machine Expertise,
ICCV15(981-989)
IEEE DOI
1602
Birds
BibRef
Beery, S.[Sara],
van Horn, G.[Grant],
Perona, P.[Pietro],
Recognition in Terra Incognita,
ECCV18(XVI: 472-489).
Springer DOI
1810
Dataset, Animals.
WWW Link.
BibRef
van Horn, G.[Grant],
Branson, S.[Steve],
Farrell, R.[Ryan],
Haber, S.[Scott],
Barry, J.[Jessie],
Ipeirotis, P.[Panos],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection,
CVPR15(595-604)
IEEE DOI
1510
BibRef
Branson, S.[Steve],
van Horn, G.[Grant],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
Improved Bird Species Recognition Using Pose Normalized Deep
Convolutional Nets,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Jørgensen, A.[Anders],
Jensen, E.M.[Eigil Mølvig],
Moeslund, T.B.[Thomas B.],
Detecting Gallbladders in Chicken Livers using Spectral Imaging Anders,
MVAB15(xx-yy).
DOI Link
1601
BibRef
Atanbori, J.[John],
Duan, W.T.[Wen-Ting],
Murray, J.[John],
Appiah, K.[Kofi],
Dickinson, P.[Patrick],
A Computer Vision Approach to Classification of Birds in Flight from
Video Sequences,
MVAB15(xx-yy).
DOI Link
1601
BibRef
Ge, Z.[Zong_Yuan],
McCool, C.[Chris],
Sanderson, C.[Conrad],
Bewley, A.[Alex],
Chen, Z.[Zetao],
Corke, P.[Peter],
Fine-grained bird species recognition via hierarchical subset
learning,
ICIP15(561-565)
IEEE DOI
1512
fine-grained classification; subset clustering
BibRef
Yoshihashi, R.[Ryota],
Kawakami, R.[Rei],
Iida, M.[Makoto],
Naemura, T.[Takeshi],
Construction of a bird image dataset for ecological investigations,
ICIP15(4248-4252)
IEEE DOI
1512
Image recognition
BibRef
Tsukioka, H.[Hiroshi],
Kudo, M.[Mineichi],
Selection of Features in Accord with Population Drift,
ICPR14(1591-1596)
IEEE DOI
1412
Birds
BibRef
Borkar, T.S.[Tejas S.],
Karam, L.J.[Lina J.],
Automated Bird Plumage Coloration Quantification in Digital Images,
ISVC14(II: 220-229).
Springer DOI
1501
BibRef
Goering, C.[Christoph],
Rodner, E.[Erik],
Freytag, A.[Alexander],
Denzler, J.[Joachim],
Nonparametric Part Transfer for Fine-Grained Recognition,
CVPR14(2489-2496)
IEEE DOI
1409
bird classification
BibRef
Berg, T.[Thomas],
Liu, J.X.[Jiong-Xin],
Lee, S.W.[Seung Woo],
Alexander, M.L.[Michelle L.],
Jacobs, D.W.[David W.],
Belhumeur, P.N.[Peter N.],
Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds,
CVPR14(2019-2026)
IEEE DOI
1409
Fine-grained visual categorization
BibRef
Angelova, A.[Anelia],
Long, P.M.[Philip M.],
Benchmarking large-scale Fine-Grained Categorization,
WACV14(532-539)
IEEE DOI
1406
Birds
BibRef
Angelova, A.[Anelia],
Zhu, S.H.[Sheng-Huo],
Efficient Object Detection and Segmentation for Fine-Grained
Recognition,
CVPR13(811-818)
IEEE DOI
1309
Laplacian propagation; fine-grained categorization; image segmentation.
Low level regions into object. Use object for recognition.
BibRef
Angelova, A.[Anelia],
Niculescu-Mizil, A.[Alexandru],
Feature combination with Multi-Kernel Learning for fine-grained
visual classification,
WACV14(241-246)
IEEE DOI
1406
Accuracy; Birds; Dictionaries; Dogs; Feature extraction; Kernel; Manuals
BibRef
Berg, T.[Thomas],
Belhumeur, P.N.[Peter N.],
How Do You Tell a Blackbird from a Crow?,
ICCV13(9-16)
IEEE DOI
1403
field guide; fine-grained recognition; visual similarity
BibRef
Grenzdörffer, G.J.,
UAS-based automatic bird count of a common gull colony,
UAV-g13(169-174).
DOI Link
1311
BibRef
Liu, J.X.[Jiong-Xin],
Belhumeur, P.N.[Peter N.],
Bird Part Localization Using Exemplar-Based Models with Enforced Pose
and Subcategory Consistency,
ICCV13(2520-2527)
IEEE DOI
1403
Fine-grained classification; Part localization
See also Dog Breed Classification Using Part Localization.
BibRef
Yao, B.P.[Bang-Peng],
Bradski, G.R.[Gary R.],
Fei-Fei, L.[Li],
A codebook-free and annotation-free approach for fine-grained image
categorization,
CVPR12(3466-3473).
IEEE DOI
1208
Class is given, detailed classification. (e.g. birds)
BibRef
Farrell, R.[Ryan],
Oza, O.[Om],
Zhang, N.[Ning],
Morariu, V.I.[Vlad I.],
Darrell, T.J.[Trevor J.],
Davis, L.S.[Larry S.],
Birdlets: Subordinate categorization using volumetric primitives and
pose-normalized appearance,
ICCV11(161-168).
IEEE DOI
1201
Differences between part-level characterizations, not just absence of
parts. Bird identification.
BibRef
Qing, C.M.[Chun-Mei],
Dickinson, P.[Patrick],
Lawson, S.[Shaun],
Freeman, R.[Robin],
Automatic nesting seabird detection based on boosted HOG-LBP
descriptors,
ICIP11(3577-3580).
IEEE DOI
1201
BibRef
Zhu, W.X.[Wei-Xing],
Lu, C.F.[Chen-Fang],
Li, X.C.[Xin-Cheng],
Kong, L.W.[Ling-Wu],
Dead Birds Detection in Modern Chicken Farm Based on SVM,
CISP09(1-5).
IEEE DOI
0910
BibRef
Das, M.[Madirakshi],
Manmatha, R.,
Automatic Segmentation and Indexing in a Database of Bird Images,
ICCV01(II: 351-358).
IEEE DOI
0106
Segmentation.
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Bird Sounds, Bird Song, Birds Audio, Identification .