Peleg, S.,
Naor, J.,
Hartley, R.L.,
Avnir, D.,
Multiple Resolution Texture Analysis and classification,
PAMI(6), No. 4, July 1984, pp. 518-523.
Refutes the Fractal theory of texture made by Pentland.
BibRef
8407
Geronimo, J.S.[Jeffrey S.],
Hardin, D.P.[Douglas P.], and
Massopust, P.R.[Peter R.],
Fractal Surfaces, Multiresolution Analyses, and Wavelet Transforms,
MDSG94(275)
BibRef
9400
Jin, X.C.,
Ong, S.H.,
Jayasooriah,
A Practical Method for Estimating Fractal Dimension,
PRL(16), 1995, pp. 457-464.
BibRef
9500
Garding, J.,
Properties of Fractal Intensity Surfaces,
PRL(8), December 1988, pp. 319-324.
BibRef
8812
And:
ISRN KTH/NA/P-87/16-SE.
BibRef
Neil, G.,
Curtis, K.M.,
Shape-Recognition Using Fractal Geometry,
PR(30), No. 12, December 1997, pp. 1957-1969.
Elsevier DOI
9805
BibRef
Penn, A.I.,
Loew, M.H.,
Estimating Fractal Dimension with
Fractal Interpolation Function Models,
MedImg(16), No. 6, December 1997, pp. 930-937.
IEEE Top Reference.
9803
BibRef
Biswas, M.K.,
Ghose, T.,
Guha, S.,
Biswas, P.K.,
Fractal Dimension Estimation For Texture Images: A Parallel Approach,
PRL(19), No. 3-4, March 1998, pp. 309-313.
9807
BibRef
Dodd, N.,
Multispectral Texture Synthesis Using Fractal Concepts,
PAMI(9), No. 5, September 1987, pp. 703-707.
Texture Synthesis.
BibRef
8709
Rinaldo, R.,
Zakhor, A.,
Inverse and Approximation Problem for Two-Dimensional Fractal Sets,
IP(3), No. 6, November 1994, pp. 802-820.
IEEE DOI
BibRef
9411
Meisel, L.V.,
Johnson, M.A.,
Convergence of Numerical Box-Counting and Correlation Integral
Multifractal Analysis Techniques,
PR(30), No. 9, September 1997, pp. 1565-1570.
Elsevier DOI
9708
BibRef
Rogers, G.W.[George W.],
Priebe, C.E.[Carey E.],
Solka, J.L.[Jeffrey L.],
Lorey, R.A.[Richard A.],
Julin, E.G.[Erik G.],
System and method for incorporating segmentation boundaries into
the calculation of fractal dimension features for texture
discrimination,
US_Patent5,671,294, Sep 23, 1997
WWW Link.
BibRef
9709
Emerson, C.W.[Charles W.],
Lam, N.S.N.[Nina Siu-Ngan],
Quattrochi, D.A.[Dale A.],
Multi-Scale Fractal Analysis of Image Texture and Patterns,
PhEngRS(65), No. 1, January 1999, pp. 51-62.
How fractal dimension changes with scale
BibRef
9901
Qiu, H.L.[Hong-Lie],
Lam, N.S.N.[Nina Siu-Ngan],
Quattrochi, D.A.[Dale A.],
Gamon, J.A.[John A.],
Fractal Characterization of Hyperspectral Imagery,
PhEngRS(65), No. 1, January 1999, pp. 63-72.
BibRef
9901
Asvestas, P.,
Matsopoulos, G.K.,
Nikita, K.S.,
Estimation of fractal dimension of images using a fixed mass approach,
PRL(20), No. 3, March 1999, pp. 347-354.
BibRef
9903
Chen, Y.Q.,
Bi, G.,
On Texture Classification Using Fractal Dimension,
PRAI(13), No. 6, September 1999, pp. 929.
0005
BibRef
Moon, Y.H.,
Kim, H.S.,
Kim, J.H.,
A Fast Fractal Decoding Algorithm Based on the Selection of an Initial
Image,
IP(9), No. 5, May 2000, pp. 941-945.
IEEE DOI
0005
BibRef
Ilow, J.,
Leung, H.,
Self-similar texture modeling using FARIMA processes with applications
to satellite images,
IP(10), No. 5, May 2001, pp. 792-797.
IEEE DOI
0105
BibRef
Tao, Y.[Yu],
Lam, E.C.M.[Ernest C.M.],
Tang, Y.Y.[Yuan Y.],
Feature extraction using wavelet and fractal,
PRL(22), No. 3-4, March 2001, pp. 271-287.
Elsevier DOI
0105
BibRef
Earlier:
Extraction of Fractal Feature for Pattern Recognition,
ICPR00(Vol II: 527-530).
IEEE DOI
0009
BibRef
Tao, Y.[Yu],
Ioerger, T.R.,
Sacchettini, J.C.,
Extracting fractal features for analyzing protein structure,
ICPR02(II: 482-485).
IEEE DOI
0211
BibRef
Tang, Y.Y.[Yuan Y.],
Tao, Y.[Yu],
Lam, E.C.M.[Ernest C.M.],
New method for feature extraction based on fractal behavior,
PR(35), No. 5, May 2002, pp. 1071-1081.
Elsevier DOI
0202
BibRef
Earlier:
The application of fractal analysis to feature extraction,
ICIP99(II:875-879).
IEEE DOI
BibRef
Turiel, A.[Antonio],
Relevance of multifractal textures in static images,
ELCVIA(1), No. 1, 2002, pp. 35-49.
DOI Link
0304
BibRef
Li, J.[Jun],
Nekka, F.[Fahima],
The Hausdorff measure functions: A new way to characterize fractal sets,
PRL(24), No. 15, November 2003, pp. 2723-2730.
Elsevier DOI
0308
Fractal dimension.
BibRef
Drakopoulos, V.,
Nikolaou, N.P.,
Efficient computation of the Hutchinson metric between digitized images,
IP(13), No. 12, December 2004, pp. 1581-1588.
IEEE DOI
0412
Based on shape as projected on the screen.
In Fractal processing.
BibRef
Sun, W.X.[Wan-Xiao],
Three New Implementations of the Triangular Prism Method for Computing
the Fractal Dimension of Remote Sensing Images,
PhEngRS(72), No. 4, April 2006, pp. 373-382.
WWW Link.
0610
BibRef
Levit, M.,
Roy, D.,
Interpretation of Spatial Language in a Map Navigation Task,
SMC-B(37), No. 3, June 2007, pp. 667-679.
IEEE DOI
0706
BibRef
Campisi, P.,
Maiorana, E.,
Neri, A.,
Video Textures Fractal Modeling,
SPLetters(14), No. 6, June 2007, pp. 405-408.
IEEE DOI
0706
BibRef
Xu, Y.[Yong],
Ji, H.[Hui],
Fermüller, C.[Cornelia],
Viewpoint Invariant Texture Description Using Fractal Analysis,
IJCV(83), No. 1, June 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Earlier:
A Projective Invariant for Textures,
CVPR06(II: 1932-1939).
IEEE DOI
0606
Multifractal spectrum to be invariant to projections.
BibRef
Xu, Y.[Yong],
Huang, S.B.[Si-Bin],
Ji, H.[Hui],
Fermüller, C.[Cornelia],
Scale-space texture description on SIFT-like textons,
CVIU(116), No. 9, September 2012, pp. 999-1013.
Elsevier DOI
1208
BibRef
Earlier:
Combining powerful local and global statistics for texture description,
CVPR09(573-580).
IEEE DOI
0906
Texture; Multi-fractal analysis; Image feature; Wavelet tight frame
BibRef
Xu, Y.[Yong],
Huang, S.B.[Si-Bin],
Ji, H.[Hui],
Integrating local feature and global statistics for texture analysis,
ICIP09(1377-1380).
IEEE DOI
0911
BibRef
Jeng, J.H.[Jyh-Horng],
Tseng, C.C.[Chun-Chieh],
Hsieh, J.G.[Jer-Guang],
Study on Huber Fractal Image Compression,
IP(18), No. 5, May 2009, pp. 995-1003.
IEEE DOI
0904
Huber regression embedded in fractal representation.
BibRef
Pi, M.,
Li, H.,
Fractal indexing with the joint statistical properties and its
application in texture image retrieval,
IET-IPR(2), No. 4, August 2008, pp. 218-230.
DOI Link
0905
BibRef
Li, J.[Jian],
Du, Q.[Qian],
Sun, C.X.[Cai-Xin],
An improved box-counting method for image fractal dimension estimation,
PR(42), No. 11, November 2009, pp. 2460-2469.
Elsevier DOI
0907
BibRef
Earlier: A1, A3, A2:
A New Box-Counting Method for Estimation of Image Fractal Dimension,
ICIP06(3029-3032).
IEEE DOI
0610
Fractal dimension; Box-counting dimension; Fractional Brownian motion;
Texture image; Remote sensing image
BibRef
Ebrahimi, M.[Mehran],
A Necessary and Sufficient Contractivity Condition for the Fractal
Transform Operator,
JMIV(33), No. 3, November 2009, pp. xx-yy.
Springer DOI
0909
BibRef
Wang, X.Y.[Xing-Yuan],
Li, F.P.[Fan-Ping],
Wang, S.G.[Shu-Guo],
Fractal image compression based on spatial correlation and hybrid
genetic algorithm,
JVCIR(20), No. 8, November 2009, pp. 505-510.
Elsevier DOI
0911
Fractal image compression; Block coding; PIFS; Spatial correlation;
Hybrid genetic algorithm; Simulated annealing; Neighborhood; Dyadic
mutation operator
BibRef
Backes, A.R.[Andre Ricardo],
Bruno, O.M.[Odemir Martinez],
Shape classification using complex network and Multi-scale Fractal
Dimension,
PRL(31), No. 1, 1 January 2010, pp. 44-51.
Elsevier DOI
1001
BibRef
Earlier:
A New Approach to Estimate Fractal Dimension of Texture Images,
ICISP08(136-143).
Springer DOI
0807
Shape analysis; Shape recognition; Complex network; Multi-scale
Fractal Dimension
BibRef
Backes, A.R.[André Ricardo],
A new approach to estimate lacunarity of texture images,
PRL(34), No. 13, 2013, pp. 1455-1461.
Elsevier DOI
1307
Texture analysis
BibRef
Backes, A.R.[André Ricardo],
Eler, D.M.[Danilo Medeiros],
Minghim, R.[Rosane],
Bruno, O.M.[Odemir Martinez],
Characterizing 3D Shapes Using Fractal Dimension,
CIARP10(14-21).
Springer DOI
1011
BibRef
Zuniga, A.G.[Alvaro Gomez],
Bruno, O.M.[Odemir Martinez],
Enhancing Gabor Wavelets Using Volumetric Fractal Dimension,
CIARP10(362-369).
Springer DOI
1011
BibRef
Falvo, M.[Maurício],
Florindo, J.B.[João Batista],
Bruno, O.M.[Odemir Martinez],
A Method to Generate Artificial 2D Shape Contour Based in Fourier
Transform and Genetic Algorithms,
ACIVS11(207-215).
Springer DOI
1108
BibRef
Florindo, J.B.[João B.],
Backes, A.R.[André R.],
Bruno, O.M.[Odemir M.],
Leaves Shape Classification Using Curvature and Fractal Dimension,
ICISP10(456-462).
Springer DOI
1006
BibRef
Backes, A.R.[André R.],
Florindo, J.B.[João B.],
Bruno, O.M.[Odemir M.],
A Novel Approach to Estimate Fractal Dimension from Closed Curves,
CAIP09(253-260).
Springer DOI
0909
BibRef
Backes, A.R.[André R.],
Bruno, O.M.[Odemir M.],
Shape Skeleton Classification Using Graph and Multi-scale Fractal
Dimension,
ICISP10(448-455).
Springer DOI
1006
BibRef
Earlier:
A Graph-Based Approach for Shape Skeleton Analysis,
CIAP09(731-738).
Springer DOI
0909
See also Medical Image Retrieval Based on Complexity Analysis.
See also Plant Species Identification Using Multi-scale Fractal Dimension Applied to Images of Adaxial Surface Epidermis.
BibRef
Backes, A.R.[André R.],
Bruno, O.M.[Odemir M.],
Plant Leaf Identification Using Color and Multi-scale Fractal Dimension,
ICISP10(463-470).
Springer DOI
1006
BibRef
Earlier:
Plant Leaf Identification Using Multi-scale Fractal Dimension,
CIAP09(143-150).
Springer DOI
0909
BibRef
Backes, A.R.[Andre Ricardo],
Goncalves, W.N.[Wesley Nunes],
Martinez, A.S.[Alexandre Souto],
Bruno, O.M.[Odemir Martinez],
Texture analysis and classification using deterministic tourist walk,
PR(43), No. 3, March 2010, pp. 685-694.
Elsevier DOI
1001
Texture analysis; Texture recognition; Deterministic walk; Complex systems
BibRef
Backes, A.R.[Andre Ricardo],
Martinez, A.S.[Alexandre Souto],
Bruno, O.M.[Odemir Martinez],
Texture analysis based on maximum contrast walker,
PRL(31), No. 12, 1 September 2010, pp. 1701-1707.
Elsevier DOI
1008
Texture analysis; Image analysis; Deterministic walk; Agents; Tourist walk
See also complex network-based approach for boundary shape analysis, A.
BibRef
Backes, A.R.[André Ricardo],
Martinez, A.S.[Alexandre Souto],
Bruno, O.M.[Odemir Martinez],
Texture analysis using graphs generated by deterministic partially
self-avoiding walks,
PR(44), No. 8, August 2011, pp. 1684-1689.
Elsevier DOI
1104
BibRef
Earlier:
Color Texture Analysis and Classification:
An Agent Approach Based on Partially Self-avoiding Deterministic Walks,
CIARP10(6-13).
Springer DOI
1011
Texture analysis; Deterministic partially self-avoiding walk; Graph theory
BibRef
Ribas, L.C.[Lucas C.],
Bruno, O.M.[Odemir M.],
Dynamic Texture Classification Using Deterministic Partially
Self-avoiding Walks on Networks,
CIAP19(I:82-93).
Springer DOI
1909
BibRef
Gonçalves, W.N.[Wesley Nunes],
Bruno, O.M.[Odemir Martinez],
Dynamic texture segmentation based on deterministic partially
self-avoiding walks,
CVIU(117), No. 9, 2013, pp. 1163-1174.
Elsevier DOI
1307
BibRef
Earlier:
Dynamic Texture Analysis and Classification Using Deterministic
Partially Self-avoiding Walks,
ACIVS11(349-359).
Springer DOI
1108
Dynamic texture segmentation
BibRef
Gonçalves, W.N.[Wesley Nunes],
Bruno, O.M.[Odemir Martinez],
Combining fractal and deterministic walkers for texture analysis and
classification,
PR(46), No. 11, November 2013, pp. 2953-2968.
Elsevier DOI
1306
Pattern recognition; Fractal dimension; Texture; Texture
analysis; Deterministic walkers
BibRef
Backes, A.R.[André R.],
Bruno, O.M.[Odemir M.],
Campiteli, M.G.[Mônica G.],
Martinez, A.S.[Alexandre S.],
Deterministic Tourist Walks as an Image Analysis Methodology Based,
CIARP06(784-793).
Springer DOI
0611
Texture characterization based on scan pattern.
BibRef
Chainais, P.[Pierre],
Kœnig, É.[Émilie],
Delouille, V.[Véronique],
Hochedez, J.F.[Jean-François],
Virtual Super Resolution of Scale Invariant Textured Images Using
Multifractal Stochastic Processes,
JMIV(39), No. 1, January 2011, pp. 28-44.
WWW Link.
1101
BibRef
Earlier: A2, A1, Only:
Virtual resolution enhancement of scale invariant textured images using
stochastic processes,
ICIP09(3137-3140).
IEEE DOI
0911
BibRef
And: A2, A1, Only:
Multifractal Analysis on the Sphere,
ICISP08(613-621).
Springer DOI
0807
BibRef
Florindo, J.B.[Joao B.],
Backes, A.R.,
de Castro, M.,
Bruno, O.M.[Odemir M.],
A comparative study on multiscale fractal dimension descriptors,
PRL(33), No. 6, 15 April 2012, pp. 798-806.
Elsevier DOI
1203
Multiscale fractal dimension; Functional Data Analysis; Fractal
descriptors; Pattern recognition
BibRef
Florindo, J.B.[Joao B.],
Bruno, O.M.[Odemir M.],
Local fractal dimension and binary patterns in texture recognition,
PRL(78), No. 1, 2016, pp. 22-27.
Elsevier DOI
1606
Local fractal dimension
BibRef
Zuñiga, A.G.[Alvaro G.],
Florindo, J.B.[Joao B.],
Bruno, O.M.[Odemir M.],
Gabor wavelets combined with volumetric fractal dimension applied to
texture analysis,
PRL(36), No. 1, 2014, pp. 135-143.
Elsevier DOI
1312
Texture analysis
BibRef
Florindo, J.B.[João Batista],
Bruno, O.M.[Odemir Martinez],
Fractal descriptors based on the probability dimension:
A texture analysis and classification approach,
PRL(42), No. 1, 2014, pp. 107-114.
Elsevier DOI
1404
Pattern recognition
BibRef
Florindo, J.B.[João Batista],
Bruno, O.M.[Odemir Martinez],
Texture Classification Based on Lacunarity Descriptors,
ICISP12(513-520).
Springer DOI
1208
BibRef
Earlier:
Fourier Fractal Descriptors for Colored Texture Analysis,
ACIVS11(284-292).
Springer DOI
1108
BibRef
Florindo, J.B.[Joao Batista],
Assirati, L.[Lucas],
Bruno, O.M.[Odemir Martinez],
Locally enhancing fractal descriptors by using the non-additive
entropy,
PRL(70), No. 1, 2016, pp. 32-37.
Elsevier DOI
1602
Non-additive entropy
BibRef
Delahaies, A.[Agnès],
Rousseau, D.[David],
Fasquel, J.B.[Jean-Baptiste],
Chapeau-Blondeau, F.[François],
Local-feature-based similarity measure for stochastic resonance in
visual perception of spatially structured images,
JOSA-A(29), No. 7, July 2012, pp. 1211-1216.
WWW Link.
1208
BibRef
Chauveau, J.[Julien],
Rousseau, D.[David],
Chapeau-Blondeau, F.[François],
Pair Correlation Integral for Fractal Characterization of
Three-Dimensional Histograms from Color Images,
ICISP08(200-208).
Springer DOI
0807
BibRef
Ji, H.,
Yang, X.,
Ling, H.,
Xu, Y.,
Wavelet Domain Multifractal Analysis for Static and Dynamic Texture
Classification,
IP(22), No. 1, January 2013, pp. 286-299.
IEEE DOI
1301
BibRef
Roux, S.G.,
Abry, P.,
Vedel, B.,
Jaffard, S.,
Wendt, H.,
Hyperbolic wavelet leaders for anisotropic multifractal texture
analysis,
ICIP16(3558-3562)
IEEE DOI
1610
Anisotropic magnetoresistance
BibRef
Wendt, H.[Herwig],
Abry, P.[Patrice],
Jaffard, S.[Stephane],
Ji, H.[Hui],
Shen, Z.W.[Zuo-Wei],
Wavelet Leader Multifractal Analysis for Texture Classification,
ICIP09(3829-3832).
IEEE DOI
0911
See also Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution.
BibRef
Ouahabi, A.[Abdeldjalil],
Jaffard, S.[Stephane],
Aouit, D.A.[Djedjiga Ait],
Wavelet based Multifractal Analysis in Fractography,
IPTA08(1-8).
IEEE DOI
0811
BibRef
Huang, X.Q.[Xiao-Qing],
Zhang, Q.[Qin],
Liu, W.B.[Wen-Bo],
A new method for image retrieval based on analyzing fractal coding
characters,
JVCIR(24), No. 1, January 2013, pp. 42-47.
Elsevier DOI
1301
Fractal coding; Kernel density estimation; Image retrieval; Texture
Image; Fractal coding parameters; Orthogonal Fractal Coding;
Statistical Characteristics; Collage Error
BibRef
Quan, Y.H.[Yu-Hui],
Xu, Y.[Yong],
Sun, Y.P.[Yu-Ping],
A distinct and compact texture descriptor,
IVC(32), No. 4, 2014, pp. 250-259.
Elsevier DOI
1404
Texture description
BibRef
Xu, Y.[Yong],
Quan, Y.H.[Yu-Hui],
Zhang, Z.M.[Zhu-Ming],
Ling, H.B.[Hai-Bin],
Ji, H.[Hui],
Classifying dynamic textures via spatiotemporal fractal analysis,
PR(48), No. 10, 2015, pp. 3239-3248.
Elsevier DOI
1507
BibRef
Earlier: A1, A2, A4, A5:
Dynamic texture classification using dynamic fractal analysis,
ICCV11(1219-1226).
IEEE DOI
1201
Dynamic texture
BibRef
Quan, Y.,
Huang, Y.,
Ji, H.,
Dynamic Texture Recognition via Orthogonal Tensor Dictionary Learning,
ICCV15(73-81)
IEEE DOI
1602
Computational modeling
BibRef
Xu, Y.[Yong],
Yang, X.[Xiong],
Ling, H.B.[Hai-Bin],
Ji, H.[Hui],
A new texture descriptor using multifractal analysis in
multi-orientation wavelet pyramid,
CVPR10(161-168).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Liu, Y.[Yu],
Chen, L.Y.[Ling-Yu],
Wang, H.M.[He-Ming],
Jiang, L.L.[Lan-Lan],
Zhang, Y.[Yi],
Zhao, J.F.[Jia-Fei],
Wang, D.Y.[Da-Yong],
Zhao, Y.C.[Yue-Chao],
Song, Y.C.[Yong-Chen],
An improved differential box-counting method to estimate fractal
dimensions of gray-level images,
JVCIR(25), No. 5, 2014, pp. 1102-1111.
Elsevier DOI
1406
Differential box-counting method (DBC)
BibRef
Ribas, L.C.[Lucas Correia],
Gonçalves, D.N.[Diogo Nunes],
Oruê, J.P.M.[Jonatan Patrick Margarido],
Gonçalves, W.N.[Wesley Nunes],
Fractal dimension of maximum response filters applied to texture
analysis,
PRL(65), No. 1, 2015, pp. 116-123.
Elsevier DOI
1511
Fractal dimension
BibRef
Paskaš, M.P.[Milorad P.],
Reljin, B.D.[Branimir D.],
Reljin, I.S.[Irini S.],
Revision of multifractal descriptors for texture classification based
on mathematical morphology,
PRL(83, Part 1), No. 1, 2016, pp. 75-84.
Elsevier DOI
1609
Fractal dimension
BibRef
Paskaš, M.P.[Milorad P.],
Reljin, I.S.[Irini S.],
Reljin, B.D.[Branimir D.],
Novel Fractional-Order Difference Schemes Reducible to Standard
Integer-Order Formulas,
SPLetters(24), No. 6, June 2017, pp. 912-916.
IEEE DOI
1705
Fourier transforms, Image segmentation, Laplace equations,
Mathematical model, Standards, Transfer functions,
Backward fractional differences, Grünwald-Letnikov derivatives,
central fractional differences, fractional calculus, texture, enhancement
BibRef
Chaurasia, V.[Vijayshri],
Chaurasia, V.[Vaishali],
Statistical feature extraction based technique for fast fractal image
compression,
JVCIR(41), No. 1, 2016, pp. 87-95.
Elsevier DOI
1612
Affine transform
BibRef
Backes, A.R.[André Ricardo],
Upper and lower volumetric fractal descriptors for texture
classification,
PRL(92), No. 1, 2017, pp. 9-16.
Elsevier DOI
1705
Texture, recognition
BibRef
So, G.B.[Gun-Baek],
So, H.R.[Hye-Rim],
Jin, G.G.[Gang-Gyoo],
Enhancement of the Box-Counting Algorithm for fractal dimension
estimation,
PRL(98), No. 1, 2017, pp. 53-58.
Elsevier DOI
1710
BC, method
BibRef
Borowska, M.[Marta],
Borys, K.[Kaja],
Szarmach, J.[Janusz],
Oczeretko, E.[Edward],
Fractal dimension in textures analysis of xenotransplants,
SIViP(11), No. 8, November 2017, pp. 1461-1467.
Springer DOI
1710
BibRef
di Martino, G.[Gerardo],
Iodice, A.[Antonio],
Riccio, D.[Daniele],
Ruello, G.[Giuseppe],
Zinno, I.[Ivana],
The Role of Resolution in the Estimation of Fractal Dimension Maps
From SAR Data,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Wendt, H.,
Combrexelle, S.,
Altmann, Y.,
Tourneret, J.Y.,
McLaughlin, S.,
Abry, P.,
Multifractal Analysis of Multivariate Images Using Gamma Markov
Random Field Priors,
SIIMS(11), No. 2, 2018, pp. 1294-1316.
DOI Link
1807
BibRef
Earlier: A2, A1, A3, A4, A5, A6:
Bayesian joint estimation of the multifractality parameter of image
patches using gamma Markov Random Field priors,
ICIP16(4468-4472)
IEEE DOI
1610
BibRef
Earlier: A2, A1, A4, A3, A5, A6:
A Bayesian approach for the multifractal analysis of spatio-temporal
data,
WSSIP16(1-4)
IEEE DOI
1608
Bayes methods.
Markov processes
BibRef
Florindo, J.B.[João Batista],
Martinez Bruno, O.[Odemir],
Fractal Descriptors of Texture Images Based on the Triangular Prism
Dimension,
JMIV(61), No. 1, January 2019, pp. 140-159.
Springer DOI
1901
BibRef
Chen, Z.,
Hu, Y.,
Zhang, Y.,
Effects of Compression on Remote Sensing Image Classification Based
on Fractal Analysis,
GeoRS(57), No. 7, July 2019, pp. 4577-4590.
IEEE DOI
1907
Image coding, Remote sensing, Fractals, Feature extraction,
Distortion, Transform coding, Image reconstruction, Fractal,
remote sensing image
BibRef
Cao, J.[Jian],
Zhang, A.[Aihua],
Shi, L.[Lei],
Orthogonal sparse fractal coding algorithm based on image texture
feature,
IET-IPR(13), No. 11, 19 September 2019, pp. 1872-1879.
DOI Link
1909
BibRef
Li, Y.R.[Yu-Rong],
Fractal Dimension Estimation for Color Texture Images,
JMIV(62), No. 1, January 2020, pp. 37-53.
WWW Link.
2001
BibRef
Yildiz, K.[Kazim],
Yildiz, Z.[Zehra],
Evaluation of nano-filler dispersion quality in polymeric films with
binary feature characteristics and fractal analysis,
IET-IPR(14), No. 10, August 2020, pp. 2006-2012.
DOI Link
2008
BibRef
Krupinski, M.[Michal],
Wawrzaszek, A.[Anna],
Drzewiecki, W.[Wojciech],
Jenerowicz, M.[Malgorzata],
Aleksandrowicz, S.[Sebastian],
What Can Multifractal Analysis Tell Us about Hyperspectral Imagery?,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
White, J.M.[Jacob M.],
Crozier, S.[Stuart],
Chandra, S.S.[Shekhar S.],
Bespoke Fractal Sampling Patterns for Discrete Fourier Space via the
Kaleidoscope Transform,
SPLetters(28), 2021, pp. 2053-2057.
IEEE DOI
2111
Fractals, Magnetic resonance imaging,
Discrete Fourier transforms, Chaos, Transforms, Sensors,
sparse image reconstruction
BibRef
Padhy, R.[Rajalaxmi],
Swain, S.S.[Shashwat Sourav],
Dash, S.K.[Sanjit Kumar],
Mishra, J.[Jibitesh],
Classification of Low-Resolution Satellite Images Using Fractal
Augmented Descriptors,
IJIG(22), No. 1 2022, pp. 2250002.
DOI Link
2202
BibRef
Lan, T.[Tian],
Wu, Z.W.[Zhi-Wei],
Sun, C.Z.[Chen-Zhen],
Cheng, D.L.[Dong-Lin],
Shi, X.[Xing],
Zeng, G.J.[Guang-Jun],
Zhang, H.[Hong],
Peng, Q.[Qian],
Assessing the Suitability of Fractal Dimension for Measuring Graphic
Complexity Change in Schematic Metro Networks,
IJGI(13), No. 2, 2024, pp. 38.
DOI Link
2402
BibRef
Nicolaou, A.[Anguelos],
Christlein, V.[Vincent],
Riba, E.[Edgar],
Shi, J.[Jian],
Vogeler, G.[Georg],
Seuret, M.[Mathias],
TorMentor: Deterministic dynamic-path, data augmentations with
fractals,
ECV22(2706-2710)
IEEE DOI
2210
Image segmentation, Convolution, Graphics processing units,
Transforms, Diamonds, Fractals, Data models
BibRef
Florindo, J.[Joao],
Bruno, O.M.[Odemir Martinez],
Using fractal interpolation over complex network modeling of deep
texture representation,
IPTA22(1-5)
IEEE DOI
2206
Analytical models, Interpolation, Image recognition,
Computational modeling, Neural networks, Complex networks, texture recognition
BibRef
Ribas, L.C.[Lucas C.],
Manzanera, A.[Antoine],
Bruno, O.M.[Odemir M.],
A Fractal-Based Approach to Network Characterization Applied to Texture
Analysis,
CAIP19(I:129-140).
Springer DOI
1909
BibRef
Xu, H.,
Yan, J.,
Persson, N.,
Lin, W.,
Zha, H.,
Fractal Dimension Invariant Filtering and Its CNN-Based
Implementation,
CVPR17(3825-3833)
IEEE DOI
1711
Computational modeling, Convolution, Detectors, Feature extraction,
Filtering, Fractals, Robustness
BibRef
Katunin, A.[Andrzej],
Analysis of 4D Hypercomplex Generalizations of Julia Sets,
ICCVG16(627-635).
Springer DOI
1611
BibRef
Gdawiec, K.[Krzysztof],
Pseudoinversion Fractals,
ICCVG16(29-36).
Springer DOI
1611
BibRef
Frecon, J.[Jordan],
Pustelnik, N.[Nelly],
Wendt, H.[Herwig],
Condat, L.,
Abry, P.[Patrice],
Multifractal-based texture segmentation using variational procedure,
IVMSP16(1-5)
IEEE DOI
1608
Estimation
BibRef
Frecon, J.[Jordan],
Pustelnik, N.[Nelly],
Wendt, H.[Herwig],
Abry, P.[Patrice],
Multivariate optimization for multifractal-based texture segmentation,
ICIP15(4957-4961)
IEEE DOI
1512
Local regularity
BibRef
Pustelnik, N.[Nelly],
Abry, P.[Patrice],
Wendt, H.[Herwig],
Dobigeon, N.[Nicolas],
Inverse problem formulation for regularity estimation in images,
ICIP14(6081-6085)
IEEE DOI
1502
Estimation
BibRef
Oudjemia, S.,
Girault, J.,
Haddab, S.,
Ouahabi, A.,
Ameur, Z.,
Multifractal analysis based on discrete wavelet for texture
classification: Application to medical magnetic resonance imaging,
IPTA12(247-252)
IEEE DOI
1503
biological tissues
BibRef
Badri, H.[Hicham],
Yahia, H.[Hussein],
Daoudi, K.[Khalid],
Fast and Accurate Texture Recognition with Multilayer Convolution and
Multifractal Analysis,
ECCV14(I: 505-519).
Springer DOI
1408
BibRef
Jacob-da Col, M.A.[Marie-Andrée],
Tellier, P.[Pierre],
Quasi-Linear Transformations, Numeration Systems and Fractals,
DGCI11(187-198).
Springer DOI
1104
BibRef
Nappi, M.[Michele],
Riccio, D.[Daniel],
de Marsico, M.[Maria],
Fine: Fractal indexing based on neighborhood estimation,
ICIP09(245-248).
IEEE DOI
0911
BibRef
Ivanovici, M.[Mihai],
Richard, N.[Noel],
The lacunarity of colour fractal images,
ICIP09(453-456).
IEEE DOI
0911
BibRef
Yoshida, H.[Hiromi],
Tanaka, N.[Naoki],
A Binarization Method for a Scenery Image with the Fractal Dimension,
CIARP09(29-36).
Springer DOI
0911
BibRef
Dolez, B.[Benoit],
Vincent, N.[Nicole],
Sample Selection in Textured Images,
ICIP07(II: 221-224).
IEEE DOI
0709
Texture learning based on fractals.
BibRef
Varma, M.[Manik],
Garg, R.[Rahul],
Locally Invariant Fractal Features for Statistical Texture
Classification,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Cao, G.T.[Gui-Tao],
Shi, P.F.[Peng-Fei],
Hu, B.[Bing],
Texture Classification Based on the Fractal Performance of the Moment
Feature Images,
ICIAR05(762-769).
Springer DOI
0509
BibRef
Grazzini, J.,
Turiel, A.,
Yahia, H.,
Presegmentation of High-Resolution Satellite Images with a Multifractal
Reconstruction Scheme Based on an Entropy Criterium,
ICIP05(I: 649-652).
IEEE DOI
0512
BibRef
Pi, M.H.[Ming Hong],
Basu, A.,
Mandal, M.K.,
Li, H.[Hua],
A comparison of non-orthogonal and orthogonal fractal decoding,
ICIP04(I: 505-508).
IEEE DOI
0505
BibRef
Zhang, P.,
Bui, T.D.,
Suen, C.Y.,
Recognition of similar objects using 2-D wavelet-fractal feature
extraction,
ICPR02(II: 316-319).
IEEE DOI
0211
BibRef
Valdés, J.J.[Julio J.],
Molina, L.C.[Luis C.],
Espinosa, S.[Sergio],
Behavior Analysis of Fractal Features for Texture Description in
Digital Images: an Experimental Study,
ICPR00(Vol III: 905-908).
IEEE DOI
0009
BibRef
Deguy, S.,
Debain, C.,
Benassi, A.,
Classification of Texture Images using Multi-scale Statistical
Estimators of Fractal Parameters,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Anh, V.V.,
Maeda, J.,
Tieng, Q.M.,
Tsui, H.T.,
Multifractal Texture Analysis and Classification,
ICIP99(IV:445-449).
IEEE DOI
BibRef
9900
Anh, V.V.[Vo V.],
Maeda, J.J.[Jun-Ji],
Ishizaka, T.[Tohru],
Suzuki, Y.[Yukinori],
Tieng, Q.M.[Quang M.],
Two-dimensional fractal segmentation of natural images,
CIAP97(I: 287-294).
Springer DOI
9709
BibRef
Betti, A.,
Barni, M.,
Mecocci, A.,
Using a wavelet-based fractal feature to improve texture discrimination
on SAR images,
ICIP97(I: 251-254).
IEEE DOI
9710
BibRef
Fioravanti, S.[Stefano],
Giusto, D.D.[Daniele D.],
Texture recognition by the q-th order fractal analysis,
CAIP93(283-290).
Springer DOI
9309
BibRef
Boulecane, H.,
Vincent, N.,
Ruffier, M.,
Emptoz, H.,
Control of composite material strucrure by fractal methods,
CAIP93(726-731).
Springer DOI
9309
BibRef
Levy Vehel, J.,
Mignot, P.,
Berroir, J.P.,
Multifractals, texture, and image analysis,
CVPR92(661-664).
IEEE DOI
0403
BibRef
Levy Vehel, J.,
Fractal probability functions-an application to image analysis,
CVPR91(378-383).
IEEE DOI
0403
BibRef
Albregtsen, F.,
Nielsen, B.,
Yogesan, K.,
Fractal dimension, only a fraction of the truth?,
ICPR92(III:733-736).
IEEE DOI
9208
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Autoregressive Texture Models, AR Models .