7.2.1.3 Shape Measures

Chapter Contents (Back)
Geometric Features. Features, Geometric. Shape, 2D.

Supanekar, S.D.,
Computer Study of Knots,
CGIP(11), No. 2, October 1979, pp. 150-161.
Elsevier DOI Tait representation of a knot. BibRef 7910

Danielsson, P.E.[Per-Erik],
A New Shape Factor,
CGIP(7), No. 2, April 1978, pp. 292-299.
Elsevier DOI P^2/A goes to infinity for increasing resolution of some shapes. Moments of inertia (double integral of position^2), average distance between pixel and boundary (compactness). BibRef 7804

Pavlidis, T.,
Comments on 'A New Shape Factor',
CGIP(8), 1978, pp. 310-311.
Elsevier DOI BibRef 7800

Danielsson, P.E.[Per-Erik],
Reply to 'Comments on A New Shape Factor',
CGIP(8), 1978, pp. 312.
Elsevier DOI BibRef 7800

Sankar, P.V., Krishnamurthy, E.V.,
On the Compactness of Subsets of Digital Pictures,
CGIP(8), 1978, pp. 136-143. BibRef 7800

Bribiesca, E.[Ernesto],
Arithmetic operations among shapes using shape numbers,
PR(13), No. 2, 1981, pp. 123-137.
Elsevier DOI 0309
BibRef

Bribiesca, E.[Ernesto],
Measuring 2-D Shape Compactness Using the Contact Perimeter,
CompMathApp(33), No. 11, June 1997, pp. 1-9. 9708

See also Digital Elevation Model Data Analysis Using the Contact Surface Area. BibRef

Bribiesca, E.[Ernesto],
An easy measure of compactness for 2D and 3D shapes,
PR(41), No. 2, February 2008, pp. 543-554.
Elsevier DOI 0711
Measure of compactness; Discrete compactness; Contact perimeter; Contact surface area; Shape analysis; Shape classification; Fragmented objects; Porous objects; Brain images
See also Measuring 3-D Shape Similarity Using Progressive Transformations. BibRef

Bribiesca, E.[Ernesto], Bribiesca-Contreras, G.[Guadalupe],
2D tree object representation via the slope chain code,
PR(47), No. 10, 2014, pp. 3242-3253.
Elsevier DOI 1406
2D tree objects BibRef

Wojcik, Z.M.[Zbigniew M.],
Rough Approximation of Shapes in Pattern Recognition,
CVGIP(40), No. 2, November 1987, pp. 228-249.
Elsevier DOI BibRef 8711

Ghosh, P.K.[Pijush K.],
A Mathematical Model for Shape Description Using Minkowski Operators,
CVGIP(44), No. 3, December 1988, pp. 239-269.
Elsevier DOI BibRef 8812

Kartikeyan, B., Sarkar, A.,
Shape Description by Time Series,
PAMI(11), No. 9, September 1989, pp. 977-984.
IEEE DOI Representation, Curves. Not so much a matching paper as a representation paper. BibRef 8909

Csirik, J., Bunke, H.,
Formal Methods in 2-Dimensional Shape-Analysis,
AMAI(13), No. 3-4, 1995, pp. U8-U8. BibRef 9500

Flusser, J.[Jan], Suk, T.[Tomáš], Saic, S.[Stanislav],
Image Features Invariant with Respect to Blur,
PR(28), No. 11, November 1995, pp. 1723-1732.
Elsevier DOI
See also Degraded Image-Analysis: An Invariant Approach. BibRef 9511

Philips, W.,
Fast Coding of Arbitrarily-Shaped Image Segments Using Weakly Separable Bases,
OptEng(35), No. 1, January 1996, pp. 177-186. BibRef 9601

Philips, W.,
Fast Orthogonalization Algorithms for Segmented Image-Coding,
SP(61), No. 3, September 1997, pp. 265-274. 9712
BibRef

Banerjee, S., Majumdar, D.D.,
A 2D Shape Metric and Its Implementation in Biomedical Imaging,
PRL(17), No. 2, February 8 1996, pp. 141-147. BibRef 9602

Pal, N.R.[Nikhil R.], Pal, P.[Pratik], Basu, A.K.[Anupam K.],
A New Shape Representation Scheme and Its Application to Shape Discrimination Using a Neural Network,
PR(26), No. 4, April 1993, pp. 543-551.
Elsevier DOI BibRef 9304

Hung, D.C.D.[D.C. Douglas],
Non-Conventional Algorithm for Representing and Recognizing Complicated Two-Dimensional Objects,
PR(26), No. 4, April 1993, pp. 495-504.
Elsevier DOI BibRef 9304

Tchoukanov, I., Safaee-Rad, R., Smith, K.C., Benhabib, B.,
The Angle-of-Sight Signature for Two-Dimensional Shape Analysis of Manufactured Objects,
PR(25), No. 11, November 1992, pp. 1289-1305.
Elsevier DOI BibRef 9211

Chang, C.C., Hwang, S.M., Buehrer, D.J.,
A Shape Recognition Scheme Based on Relative Distances of Feature Points from the Centroid,
PR(24), No. 11, 1991, pp. 1053-1063.
Elsevier DOI BibRef 9100

Leavers, V.F.,
Use of the Radon Transform As a Method of Extracting Information About Shape in Two Dimensions,
IVC(10), No. 2, March 1992, pp. 99-107.
Elsevier DOI
See also Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of Shape for the Characterization of Abrasive Powder Particles. BibRef 9203

Jagadish, H.V., Bruckstein, A.M.,
On Sequential Shape Descriptions,
PR(25), No. 2, February 1992, pp. 165-172.
Elsevier DOI BibRef 9202

O'Connell, K.J.,
Object-Adaptive Vertex-Based Shape Coding Method,
CirSysVideo(7), No. 1, February 1997, pp. 251-255.
IEEE Top Reference. 9703
BibRef

O'Connell, K.J.[Kevin Joseph], Tull, D.L.[Damon Lee],
Method and device for compact representation of a discrete region contour,
US_Patent5,764,808, Jun 9, 1998
WWW Link. BibRef 9806

Sun, Y., Qi, F.,
Shape Normalization Through Visible Region Center and Unvisible Region Center,
PRL(14), 1993, pp. 407-414. BibRef 9300

Sarkarin, S.S., Harget, A.J.,
Shape Recognition Using the Kohonen Self-Organising Feature Map,
PRL(13), 1992, pp. 189-194. BibRef 9200

Wojcik, Z.M., Rosenfeld, A.,
A Shape Coding Array,
PRL(4), 1986, pp. 57-59. BibRef 8600

Skliar, O., Loew, M.H.,
A New Method for Characterization of Shape,
PRL(3), 1985, pp. 335-341. BibRef 8500

Chung, K.L.,
Finding Shape Numbers in Parallel,
PRL(16), No. 7, July 1995, pp. 699-702. BibRef 9507

Braquelaire, J.P.[Jean-Pierre], Vialard, A.[Anne],
Euclidean Paths: A New Representation of Boundary of Discrete Regions,
GMIP(61), No. 1, January 1999, pp. 16-43. BibRef 9901

Clementini, E.[Eliseo], di Felice, P.[Paolino],
A Global Framework for Qualitative Shape Description,
GeoInfo(1), No. 1, April 1997, pp. 11-27.
DOI Link 2-D descriptions. BibRef 9704

Kimoto, T.[Tadahiko], Yasuda, Y.[Yasuhiko],
Shape description and representation by ellipsoids,
SP:IC(9), No. 3, March 1997, pp. 275-290.
Elsevier DOI BibRef 9703

Zhu, S.C.[Song-Chun],
Embedding Gestalt Laws in Markov Random Fields,
PAMI(21), No. 11, November 1999, pp. 1170-1187.
IEEE DOI 9912
Applies medial axis in
See also Stochastic Computation of Medial Axis in Markov Random Fields. for shape modeling. BibRef

Rosin, P.L.[Paul L.],
Measuring rectangularity,
MVA(11), No. 4, 1999, pp. 191-196.
Springer DOI 0001

See also Measuring Corner Properties. BibRef

Rosin, P.L.[Paul L.],
Measuring Shape: Ellipticity, Rectangularity, and Triangularity,
MVA(14), No. 3, July 2003, pp. 172-184.
WWW Link. 0308
BibRef
Earlier: ICPR00(Vol I: 952-955).
IEEE DOI
PS File. 0009
BibRef

Rosin, P.L.[Paul L.],
Measuring Sigmoidality,
PR(37), No. 8, August 2004, pp. 1735-1744.
Elsevier DOI 0407
BibRef
Earlier: CAIP03(410-417).
Springer DOI 0311
BibRef

Lee, S.H., Cho, D.S., Cho, Y.S., Son, S.H., Jang, E.S., Shin, J.S., Seo, Y.S.,
Binary Shape Coding Using Baseline-Based Method,
CirSysVideo(9), No. 1, February 1999, pp. 44-58.
IEEE Top Reference. or:
PDF File. BibRef 9902
Earlier:
Binary Shape Coding Using 1-D Distance Values from Baseline,
ICIP97(I: 508-511).
IEEE DOI BibRef

Melnikov, G.[Gerry], Schuster, G.M.[Guido M.], Katsaggelos, A.K.[Aggelos K.],
Shape Coding Using Temporal Correlation and Joint VLC Optimization,
CirSysVideo(10), No. 5, August 2000, pp. 744-754.
IEEE Top Reference. 0008
BibRef
Earlier: A1, A3, A2:
Jointly Optimal Inter-mode Shape Coding and VLC Selection,
ICIP99(II:806-810).
IEEE DOI BibRef
Earlier:
Simultaneous optimal boundary encoding and variable-length code selection,
ICIP98(I: 256-260).
IEEE DOI 9810
BibRef

Kondi, L.P., Melnikov, G., Katsaggelos, A.K.,
Joint Optimal Object Shape Estimation and Encoding,
CirSysVideo(14), No. 4, April 2004, pp. 528-533.
IEEE Abstract. 0407
BibRef
Earlier:
Jointly Optimal Coding of Texture and Shape,
ICIP01(III: 94-97).
IEEE DOI 0108
BibRef

Chuang, J.H., Tsai, C.H., Tsai, W.H., Yang, C.Y.,
Potential Based Modeling of 2-D Regions Using Nonuniform Source Distributions,
SMC-A(30), No. 2, March 2000, pp. 197-201.
IEEE Top Reference. 0004
BibRef

Melkemi, M.[Mahmoud], Djebali, M.[Mourad],
Computing the shape of a planar points set,
PR(33), No. 9, September 2000, pp. 1423-1436.
Elsevier DOI 0005
BibRef

Melkemi, M.[Mahmoud], Djebali, M.[Mourad],
Elliptic Diagrams: Application to Patterns Detection from a Finite Set of Points,
PRL(22), No. 8, June 2001, pp. 835-844.
Elsevier DOI 0105
BibRef

Idoumghar, L., Melkemi, M.[Mahmoud],
Pattern Retrieval from a Cloud of Points Using Geometric Concepts,
ICIAR07(460-468).
Springer DOI 0708
BibRef

Melkemi, M.[Mahmoud], Djebali, M.[Mourad],
Weighted A-shape: a descriptor of the shape of a point set,
PR(34), No. 6, June 2001, pp. 1159-1170.
Elsevier DOI 0103
BibRef

Melkemi, M., Vandorpe, D.,
Fast algorithm for computing the shape of a set of digital points,
ICIP94(I: 705-709).
IEEE DOI 9411
BibRef

Melkemi, M., Chen, L., Vandorpe, D.,
Shapes of Weighted Points Sets,
ICPR00(Vol II: 1058-1061).
IEEE DOI 0009
BibRef

Kumazawa, I.[Itsuo],
Compact and parametric shape representation by a tree of sigmoid functions for automatic shape modeling,
PRL(21), No. 6-7, June 2000, pp. 651-660. 0006

See also Target tracking by matching a shape represented by a tree of sigmoid functions. BibRef

Zhao, H.K.[Hong-Kai], Osher, S.J.[Stanley J.], Merriman, B.[Barry], Kang, M.J.[Myung-Joo],
Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method,
CVIU(80), No. 3, December 2000, pp. 295-314.
DOI Link 0012
BibRef

Xu, J.N.[Jian-Ning],
Decomposition of Convex Polygonal Morphological Structuring Elements into Neighborhood Subsets,
PAMI(13), No. 2, February 1991, pp. 153-162.
IEEE DOI BibRef 9102
And:
The Optimal Implementation of Morphological Operations on Neighborhood Connected Array Processors,
CVPR89(166-171).
IEEE DOI BibRef

Xu, J.N.[Jian-Ning],
Morphological Decomposition of 2-D Binary Shapes into Convex Polygons: A Heuristic Algorithm,
IP(10), No. 1, January 2001, pp. 61-71.
IEEE DOI 0101
BibRef

Xu, J.N.[Jian-Ning],
Morphological Representation of 2-D Binary Shapes Using Rectangular Components,
PR(34), No. 2, February 2001, pp. 277-286.
Elsevier DOI 0011
BibRef
Earlier: ICIP99(II:862-866).
IEEE DOI BibRef

Xu, J.N.[Jian-Ning],
Efficient morphological shape representation with overlapping disk components,
IP(10), No. 9, September 2001, pp. 1346-1356.
IEEE DOI 0108
BibRef

Xu, J.N.[Jian-Ning],
Efficient morphological shape representation by varying overlapping levels among representative disks,
PR(36), No. 2, February 2003, pp. 429-437.
Elsevier DOI 0211
BibRef
Earlier:
Efficient morphological shape representation by varying overlapping levels between representative disks,
ICIP02(II: 341-344).
IEEE DOI 0210

See also Morphological Decomposition of 2-D Binary Shapes into Conditionally Maximal Convex Polygons. BibRef

Xu, J.N.[Jian-Ning],
Morphological Decomposition of 2-D Binary Shapes Into Modestly Overlapped Octagonal and Disk Components,
IP(16), No. 2, February 2007, pp. 337-348.
IEEE DOI 0702
BibRef
Earlier:
Morphological Decomposition of 2-D Binary Shapes into Modestly Overlapped Disk Components,
ICIP05(II: 470-473).
IEEE DOI 0512

See also Generalized Discrete Morphological Skeleton Transform with Multiple Structuring Elements for the Extraction of Structural Shape Components, A. BibRef

Xu, J.N.[Jian-Ning],
Shape Matching Using Morphological Structural Shape Components,
ICIP08(2596-2599).
IEEE DOI 0810
decompose into disks. BibRef

Ziou, D.[Djemel], Allili, M.[Madjid],
Generating cubical complexes from image data and computation of the Euler number,
PR(35), No. 12, December 2002, pp. 2833-2839.
Elsevier DOI 0209
BibRef

Vetro, A., Wang, Y.[Yao], Sun, H.F.[Hui-Fang],
Rate-distortion modeling for multiscale binary shape coding based on markov random fields,
IP(12), No. 3, March 2003, pp. 356-364.
IEEE DOI 0301
BibRef

Vetro, A.[Anthony], Sun, H.F.[Hui-Fang], Wang, Y.[Yao], Guleryuz, O.G.[Onur G.],
Rate-Distortion Modeling of Binary Shape using State Partitioning,
ICIP99(II:802-805).
IEEE DOI BibRef 9900

Zunic, J., Rosin, P.L.,
Rectilinearity measurements for polygons,
PAMI(25), No. 9, September 2003, pp. 1193-1200.
IEEE Abstract. 0309
BibRef
Earlier:
A Rectilinearity Measurement for Polygons,
ECCV02(II: 746 ff.).
Springer DOI
PDF File. 0205
Define the extent that a regular polygon is rectilinear (more than just the angles are 90deg). BibRef

Zunic, J., Rosin, P.L.,
A New Convexity Measure for Polygons,
PAMI(26), No. 7, July 2004, pp. 923-934.
IEEE Abstract. 0406
BibRef
Earlier:
A Convexity Measurement for Polygons,
BMVC02(173-182).
PDF File. 0208
Planar regions bounded by polygons. Boundary based measure rather than area based. Measure between 0 and 1, equal to 1 iff conves, invariant under similariity transforms. BibRef

Rosin, P.L.[Paul L.], Zunic, J.[Jovisa],
Measuring rectilinearity,
CVIU(99), No. 2, August 2005, pp. 175-188.
Elsevier DOI 0506
BibRef

Martinez-Ortiz, C.[Carlos], Žunic, J.[Joviša],
Curvature weighted gradient based shape orientation,
PR(43), No. 9, September 2010, pp. 3035-3041.
Elsevier DOI 1006
BibRef
Earlier:
Measuring Cubeness of 3D Shapes,
CIARP09(716-723).
Springer DOI 0911
Shape; Orientation; Gradient; Shape boundary; Image normalisation; Early vision BibRef

Martinez-Ortiz, C.[Carlos], Žunic, J.[Joviša],
A family of cubeness measures,
MVA(23), No. 4, July 2012, pp. 751-760.
WWW Link. 1206
Expansion of the cubeness computation. BibRef

Zunic, J.[Jovisa], Aktas, M.A.[Mehmet Ali], Martinez-Ortiz, C.[Carlos], Galton, A.[Antony],
The distance between shape centroids is less than a quarter of the shape perimeter,
PR(44), No. 9, September 2011, pp. 2161-2169.
Elsevier DOI 1106
Shape; Shape descriptors; Centroid; Shape invariant; Centredness measure; Image processing BibRef

Rosin, P.L.[Paul L.],
A two-component rectilinearity measure,
CVIU(109), No. 2, February 2008, pp. 176-185.
Elsevier DOI 0711
Shape measure; Polygon; Rectilinearity; Skew; Parts BibRef

Žunic, J.[Joviša], Rosin, P.L.[Paul L.], Kopanja, L.[Lazar],
On the Orientability of Shapes,
IP(15), No. 11, November 2006, pp. 3478-3487.
IEEE DOI 0610
BibRef
Earlier:
Shape Orientability,
ACCV06(II:11-20).
Springer DOI 0601
BibRef

Rosin, P.L.[Paul L.],
Measuring the Orientability of Shapes,
CAIP07(620-627).
Springer DOI 0708
BibRef

Rosin, P.L.[Paul L.], Žunic, J.[Joviša],
Orientation and anisotropy of multi-component shapes from boundary information,
PR(44), No. 9, September 2011, pp. 2147-2160.
Elsevier DOI 1106
BibRef
Earlier: A2, A1:
A Definition for Orientation for Multiple Component Shapes,
CAIP07(677-685).
Springer DOI 0708
Shape; Compound shape; Orientation; Anisotropy; Image processing; Early vision BibRef

Zunic, J.[Jovisa], Kopanja, L.[Lazar], Fieldsend, J.E.[Jonathan E.],
Notes on shape orientation where the standard method does not work,
PR(39), No. 5, May 2006, pp. 856-865.
Elsevier DOI 0604
Orientation; Elongation; Early vision BibRef

Žunic, J.[Joviša], Rosin, P.L.[Paul L.],
An Alternative Approach to Computing Shape Orientation with an Application to Compound Shapes,
IJCV(81), No. 2, February 2009, pp. xx-yy.
Springer DOI 0901
BibRef

Žunic, J.[Joviša],
Boundary Based Orientation of Polygonal Shapes,
PSIVT06(108-117).
Springer DOI 0612
BibRef

Rosin, P.L.[Paul L.], Žunic, J.[Joviša],
Measuring Squareness and Orientation of Shapes,
JMIV(39), No. 1, January 2011, pp. 13-27.
WWW Link. 1101
BibRef

Stojmenovic, M.[Miloš], Žunic, J.[Joviša],
Measuring Elongation from Shape Boundary,
JMIV(30), No. 1, January 2008, pp. 73-85.
Springer DOI 0801
BibRef
Earlier:
New Measure for Shape Elongation,
IbPRIA07(II: 572-579).
Springer DOI 0706
BibRef

Zunic, J.[Jovisa], Stojmenovic, M.[Milos],
Boundary based shape orientation,
PR(41), No. 5, May 2008, pp. 1785-1798.
Elsevier DOI 0711
Shape; Orientation; Image processing; Computer vision BibRef

Alamri, F.[Faisal], Žunic, J.[Joviša],
Edge Detection Based on Digital Shape Elongation Measure,
CIARP17(19-27).
Springer DOI 1802
BibRef

Stojmenovic, M.[Milos], Nayak, A.[Amiya], Zunic, J.[Jovisa],
Measuring linearity of planar point sets,
PR(41), No. 8, August 2008, pp. 2503-2511.
Elsevier DOI 0805
BibRef
Earlier: A1, A2, Only:
Measuring Linearity of Ordered Point Sets,
PSIVT07(274-288).
Springer DOI 0712
Linearity; Finite point sets; Moments BibRef

Stojmenovic, M.[Milos], Nayak, A.[Amiya],
Measuring the Related Properties of Linearity and Elongation of Point Sets,
CIARP08(102-111).
Springer DOI 0809
BibRef

Huang, C.[Chen], Han, T.X.[Tony X.], He, Z.H.[Zhi-Hai],
Multi-scale embedded descriptor for shape classification,
JVCIR(25), No. 7, 2014, pp. 1640-1646.
Elsevier DOI 1410
Shape descriptor BibRef


Jakóbczak, D.[Dariusz],
Shape Representation and Shape Coefficients via Method of Hurwitz-Radon Matrices,
ICCVG10(I: 411-419).
Springer DOI 1009
BibRef

Terrades, O.R.[O. Ramos], Tabbone, S.A., Valveny, E.,
A Review of Shape Descriptors for Document Analysis,
ICDAR07(227-231).
IEEE DOI 0709
BibRef
Earlier:
Combination of shape descriptors using an adaptation of boosting,
ICPR06(II: 764-767).
IEEE DOI 0609
BibRef

Caro, A., Rodríguez, P.G., Antequera, T., Palacios, R.,
Feasible Application of Shape-Based Classification,
IbPRIA07(II: 588-595).
Springer DOI 0706
BibRef

Gibbens, M.J., Cook, A.C.,
Constructing Visual Taxonomies by Shape,
ICPR06(II: 732-735).
IEEE DOI 0609
BibRef

Liu, S.J.[Shao-Jun], Li, J.[Jia],
Genus-Zero Shape Classification Using Spherical Normal Image,
ICPR06(II: 126-129).
IEEE DOI 0609
BibRef

Su, H., Bouridane, A., Crookes, D.,
Scale Adaptive Complexity Measure of 2D Shapes,
ICPR06(II: 134-137).
IEEE DOI 0609
BibRef

Yu, X.Z.[Xiao-Zhou], Leung, M.K.H.[Maylor K.H.],
Shape Recognition using Curve Segment Hausdorff Distance,
ICPR06(III: 441-444).
IEEE DOI 0609
BibRef

Suesse, H.[Herbert], Ditrich, F.[Frank],
Robust Determination of Rotation-Angles for Closed Regions Using Moments,
ICIP05(I: 337-340).
IEEE DOI 0512

See also Robust Fitting of 3D Objects by Affinely Transformed Superellipsoids Using Normalization. BibRef

Sharma, G.[Gaurav], Jurie, F.[Frederic],
Learning discriminative spatial representation for image classification,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Jiang, T.T.[Ting-Ting], Jurie, F.[Frederic], Schmid, C.[Cordelia],
Learning shape prior models for object matching,
CVPR09(848-855).
IEEE DOI 0906
BibRef

Jurie, F., Schmid, C.,
Scale-invariant shape features for recognition of object categories,
CVPR04(II: 90-96).
IEEE DOI 0408
BibRef

Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.,
Shape context and chamfer matching in cluttered scenes,
CVPR03(I: 127-133).
IEEE DOI 0307
BibRef

Larsen, R.[Rasmus],
Shape Modelling using Minimum/Maximum Autocorrelation Factors,
SCIA01(P-W3A). 0206
BibRef

Liu, T.L.[Tyng-Luh],
A Generalized Shape-axis Model for Planar Shapes,
ICPR00(Vol III: 487-491).
IEEE DOI 0009
BibRef

Melnikov, G., Katsaggelos, A.K.,
Shape Approximation Through Recursive Scalable Layer Generation,
ICIP00(Vol II: 915-918).
IEEE DOI 0008
BibRef

Rautkorpi, R.[Rami], Iivarinen, J.[Jukka],
Shape-Based Co-occurrence Matrices for Defect Classification,
SCIA05(588-597).
Springer DOI 0506
BibRef
And:
Contour Co-occurrence Matrix: A Novel Statistical Shape Descriptor,
CIAP05(253-260).
Springer DOI 0509
BibRef
Earlier:
A Novel Shape Feature for Image Classification and Retrieval,
ICIAR04(I: 753-760).
Springer DOI 0409
BibRef

Peura, M.[Markus], Iivarinen, J.[Jukka],
Efficiency of Simple Shape Descriptors,
VF97(443-451). BibRef 9700

Spaan, F., Lagendijk, R.L., Biemond, J.,
Shape Coding Using Polar Coordinates and the Discrete Cosine Transform,
ICIP97(I: 516-519).
IEEE DOI BibRef 9700

Yamaguchi, N., Ida, T., Watanabe, T.,
A Binary Shape Coding Method Using Modified MMR,
ICIP97(I: 504-507).
IEEE DOI BibRef 9700

Zhu, P.,
A Nonlinear Algorithm for Shape Representation,
Ph.D.Stevens Institute, 1993. BibRef 9300

Heikkonen, J.,
Pairwise Representations Of Shape,
ICPR92(I:133-136).
IEEE DOI BibRef 9200

Glunder, H., Kramer, T.,
Description of Planar Patterns by Invariant Features: An Attempt Towards the Explanation of Visual Pattern Recognition,
ICPR86(1090-1093). BibRef 8600

Richards, W., Jepson, A.D.,
What Makes a Good Feature?,
MIT AI Memo-1356, April 1992. Perceptual Grouping.
WWW Link. BibRef 9204

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
MDL, Minimum Description Length for Shape Measure .


Last update:Nov 26, 2024 at 16:40:19