Supanekar, S.D.,
Computer Study of Knots,
CGIP(11), No. 2, October 1979, pp. 150-161.
Elsevier DOI Tait representation of a knot.
BibRef
7910
Danielsson, P.E.[Per-Erik],
A New Shape Factor,
CGIP(7), No. 2, April 1978, pp. 292-299.
Elsevier DOI P^2/A goes to infinity for increasing resolution of some shapes.
Moments of inertia (double integral of position^2),
average distance between pixel and boundary (compactness).
BibRef
7804
Pavlidis, T.,
Comments on 'A New Shape Factor',
CGIP(8), 1978, pp. 310-311.
Elsevier DOI
BibRef
7800
Danielsson, P.E.[Per-Erik],
Reply to 'Comments on A New Shape Factor',
CGIP(8), 1978, pp. 312.
Elsevier DOI
BibRef
7800
Sankar, P.V.,
Krishnamurthy, E.V.,
On the Compactness of Subsets of Digital Pictures,
CGIP(8), 1978, pp. 136-143.
BibRef
7800
Bribiesca, E.[Ernesto],
Arithmetic operations among shapes using shape numbers,
PR(13), No. 2, 1981, pp. 123-137.
Elsevier DOI
0309
BibRef
Bribiesca, E.[Ernesto],
Measuring 2-D Shape Compactness Using the Contact Perimeter,
CompMathApp(33), No. 11, June 1997, pp. 1-9.
9708
See also Digital Elevation Model Data Analysis Using the Contact Surface Area.
BibRef
Bribiesca, E.[Ernesto],
An easy measure of compactness for 2D and 3D shapes,
PR(41), No. 2, February 2008, pp. 543-554.
Elsevier DOI
0711
Measure of compactness; Discrete compactness; Contact perimeter;
Contact surface area; Shape analysis; Shape classification;
Fragmented objects; Porous objects; Brain images
See also Measuring 3-D Shape Similarity Using Progressive Transformations.
BibRef
Bribiesca, E.[Ernesto],
Bribiesca-Contreras, G.[Guadalupe],
2D tree object representation via the slope chain code,
PR(47), No. 10, 2014, pp. 3242-3253.
Elsevier DOI
1406
2D tree objects
BibRef
Wojcik, Z.M.[Zbigniew M.],
Rough Approximation of Shapes in Pattern Recognition,
CVGIP(40), No. 2, November 1987, pp. 228-249.
Elsevier DOI
BibRef
8711
Ghosh, P.K.[Pijush K.],
A Mathematical Model for Shape Description Using Minkowski Operators,
CVGIP(44), No. 3, December 1988, pp. 239-269.
Elsevier DOI
BibRef
8812
Kartikeyan, B.,
Sarkar, A.,
Shape Description by Time Series,
PAMI(11), No. 9, September 1989, pp. 977-984.
IEEE DOI
Representation, Curves. Not so much a matching paper as a representation paper.
BibRef
8909
Csirik, J.,
Bunke, H.,
Formal Methods in 2-Dimensional Shape-Analysis,
AMAI(13), No. 3-4, 1995, pp. U8-U8.
BibRef
9500
Flusser, J.[Jan],
Suk, T.[Tomáš],
Saic, S.[Stanislav],
Image Features Invariant with Respect to Blur,
PR(28), No. 11, November 1995, pp. 1723-1732.
Elsevier DOI
See also Degraded Image-Analysis: An Invariant Approach.
BibRef
9511
Philips, W.,
Fast Coding of Arbitrarily-Shaped Image Segments Using
Weakly Separable Bases,
OptEng(35), No. 1, January 1996, pp. 177-186.
BibRef
9601
Philips, W.,
Fast Orthogonalization Algorithms for Segmented Image-Coding,
SP(61), No. 3, September 1997, pp. 265-274.
9712
BibRef
Banerjee, S.,
Majumdar, D.D.,
A 2D Shape Metric and Its Implementation in Biomedical Imaging,
PRL(17), No. 2, February 8 1996, pp. 141-147.
BibRef
9602
Pal, N.R.[Nikhil R.],
Pal, P.[Pratik],
Basu, A.K.[Anupam K.],
A New Shape Representation Scheme and Its Application to
Shape Discrimination Using a Neural Network,
PR(26), No. 4, April 1993, pp. 543-551.
Elsevier DOI
BibRef
9304
Hung, D.C.D.[D.C. Douglas],
Non-Conventional Algorithm for Representing and Recognizing
Complicated Two-Dimensional Objects,
PR(26), No. 4, April 1993, pp. 495-504.
Elsevier DOI
BibRef
9304
Tchoukanov, I.,
Safaee-Rad, R.,
Smith, K.C.,
Benhabib, B.,
The Angle-of-Sight Signature for Two-Dimensional Shape Analysis of
Manufactured Objects,
PR(25), No. 11, November 1992, pp. 1289-1305.
Elsevier DOI
BibRef
9211
Chang, C.C.,
Hwang, S.M.,
Buehrer, D.J.,
A Shape Recognition Scheme Based on Relative Distances of
Feature Points from the Centroid,
PR(24), No. 11, 1991, pp. 1053-1063.
Elsevier DOI
BibRef
9100
Leavers, V.F.,
Use of the Radon Transform As a Method of Extracting Information
About Shape in Two Dimensions,
IVC(10), No. 2, March 1992, pp. 99-107.
Elsevier DOI
See also Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of Shape for the Characterization of Abrasive Powder Particles.
BibRef
9203
Jagadish, H.V.,
Bruckstein, A.M.,
On Sequential Shape Descriptions,
PR(25), No. 2, February 1992, pp. 165-172.
Elsevier DOI
BibRef
9202
O'Connell, K.J.,
Object-Adaptive Vertex-Based Shape Coding Method,
CirSysVideo(7), No. 1, February 1997, pp. 251-255.
IEEE Top Reference.
9703
BibRef
O'Connell, K.J.[Kevin Joseph],
Tull, D.L.[Damon Lee],
Method and device for compact representation of a
discrete region contour,
US_Patent5,764,808, Jun 9, 1998
WWW Link.
BibRef
9806
Sun, Y.,
Qi, F.,
Shape Normalization Through Visible Region Center and
Unvisible Region Center,
PRL(14), 1993, pp. 407-414.
BibRef
9300
Sarkarin, S.S.,
Harget, A.J.,
Shape Recognition Using the Kohonen Self-Organising Feature Map,
PRL(13), 1992, pp. 189-194.
BibRef
9200
Wojcik, Z.M.,
Rosenfeld, A.,
A Shape Coding Array,
PRL(4), 1986, pp. 57-59.
BibRef
8600
Skliar, O.,
Loew, M.H.,
A New Method for Characterization of Shape,
PRL(3), 1985, pp. 335-341.
BibRef
8500
Chung, K.L.,
Finding Shape Numbers in Parallel,
PRL(16), No. 7, July 1995, pp. 699-702.
BibRef
9507
Braquelaire, J.P.[Jean-Pierre],
Vialard, A.[Anne],
Euclidean Paths: A New Representation of Boundary of Discrete Regions,
GMIP(61), No. 1, January 1999, pp. 16-43.
BibRef
9901
Clementini, E.[Eliseo],
di Felice, P.[Paolino],
A Global Framework for Qualitative Shape Description,
GeoInfo(1), No. 1, April 1997, pp. 11-27.
DOI Link 2-D descriptions.
BibRef
9704
Kimoto, T.[Tadahiko],
Yasuda, Y.[Yasuhiko],
Shape description and representation by ellipsoids,
SP:IC(9), No. 3, March 1997, pp. 275-290.
Elsevier DOI
BibRef
9703
Zhu, S.C.[Song-Chun],
Embedding Gestalt Laws in Markov Random Fields,
PAMI(21), No. 11, November 1999, pp. 1170-1187.
IEEE DOI
9912
Applies medial axis in
See also Stochastic Computation of Medial Axis in Markov Random Fields. for shape modeling.
BibRef
Rosin, P.L.[Paul L.],
Measuring rectangularity,
MVA(11), No. 4, 1999, pp. 191-196.
Springer DOI
0001
See also Measuring Corner Properties.
BibRef
Rosin, P.L.[Paul L.],
Measuring Shape: Ellipticity, Rectangularity, and Triangularity,
MVA(14), No. 3, July 2003, pp. 172-184.
WWW Link.
0308
BibRef
Earlier:
ICPR00(Vol I: 952-955).
IEEE DOI
PS File.
0009
BibRef
Rosin, P.L.[Paul L.],
Measuring Sigmoidality,
PR(37), No. 8, August 2004, pp. 1735-1744.
Elsevier DOI
0407
BibRef
Earlier:
CAIP03(410-417).
Springer DOI
0311
BibRef
Lee, S.H.,
Cho, D.S.,
Cho, Y.S.,
Son, S.H.,
Jang, E.S.,
Shin, J.S.,
Seo, Y.S.,
Binary Shape Coding Using Baseline-Based Method,
CirSysVideo(9), No. 1, February 1999, pp. 44-58.
IEEE Top Reference. or:
PDF File.
BibRef
9902
Earlier:
Binary Shape Coding Using 1-D Distance Values from Baseline,
ICIP97(I: 508-511).
IEEE DOI
BibRef
Melnikov, G.[Gerry],
Schuster, G.M.[Guido M.],
Katsaggelos, A.K.[Aggelos K.],
Shape Coding Using Temporal Correlation and Joint VLC Optimization,
CirSysVideo(10), No. 5, August 2000, pp. 744-754.
IEEE Top Reference.
0008
BibRef
Earlier: A1, A3, A2:
Jointly Optimal Inter-mode Shape Coding and VLC Selection,
ICIP99(II:806-810).
IEEE DOI
BibRef
Earlier:
Simultaneous optimal boundary encoding and variable-length code
selection,
ICIP98(I: 256-260).
IEEE DOI
9810
BibRef
Kondi, L.P.,
Melnikov, G.,
Katsaggelos, A.K.,
Joint Optimal Object Shape Estimation and Encoding,
CirSysVideo(14), No. 4, April 2004, pp. 528-533.
IEEE Abstract.
0407
BibRef
Earlier:
Jointly Optimal Coding of Texture and Shape,
ICIP01(III: 94-97).
IEEE DOI
0108
BibRef
Chuang, J.H.,
Tsai, C.H.,
Tsai, W.H.,
Yang, C.Y.,
Potential Based Modeling of 2-D Regions Using Nonuniform Source
Distributions,
SMC-A(30), No. 2, March 2000, pp. 197-201.
IEEE Top Reference.
0004
BibRef
Melkemi, M.[Mahmoud],
Djebali, M.[Mourad],
Computing the shape of a planar points set,
PR(33), No. 9, September 2000, pp. 1423-1436.
Elsevier DOI
0005
BibRef
Melkemi, M.[Mahmoud],
Djebali, M.[Mourad],
Elliptic Diagrams:
Application to Patterns Detection from a Finite Set of Points,
PRL(22), No. 8, June 2001, pp. 835-844.
Elsevier DOI
0105
BibRef
Idoumghar, L.,
Melkemi, M.[Mahmoud],
Pattern Retrieval from a Cloud of Points Using Geometric Concepts,
ICIAR07(460-468).
Springer DOI
0708
BibRef
Melkemi, M.[Mahmoud],
Djebali, M.[Mourad],
Weighted A-shape: a descriptor of the shape of a point set,
PR(34), No. 6, June 2001, pp. 1159-1170.
Elsevier DOI
0103
BibRef
Melkemi, M.,
Vandorpe, D.,
Fast algorithm for computing the shape of a set of digital points,
ICIP94(I: 705-709).
IEEE DOI
9411
BibRef
Melkemi, M.,
Chen, L.,
Vandorpe, D.,
Shapes of Weighted Points Sets,
ICPR00(Vol II: 1058-1061).
IEEE DOI
0009
BibRef
Kumazawa, I.[Itsuo],
Compact and parametric shape representation by a tree of sigmoid
functions for automatic shape modeling,
PRL(21), No. 6-7, June 2000, pp. 651-660.
0006
See also Target tracking by matching a shape represented by a tree of sigmoid functions.
BibRef
Zhao, H.K.[Hong-Kai],
Osher, S.J.[Stanley J.],
Merriman, B.[Barry],
Kang, M.J.[Myung-Joo],
Implicit and Nonparametric Shape Reconstruction from Unorganized Data
Using a Variational Level Set Method,
CVIU(80), No. 3, December 2000, pp. 295-314.
DOI Link
0012
BibRef
Xu, J.N.[Jian-Ning],
Decomposition of Convex Polygonal Morphological
Structuring Elements into Neighborhood Subsets,
PAMI(13), No. 2, February 1991, pp. 153-162.
IEEE DOI
BibRef
9102
And:
The Optimal Implementation of Morphological Operations on
Neighborhood Connected Array Processors,
CVPR89(166-171).
IEEE DOI
BibRef
Xu, J.N.[Jian-Ning],
Morphological Decomposition of 2-D Binary Shapes into Convex Polygons:
A Heuristic Algorithm,
IP(10), No. 1, January 2001, pp. 61-71.
IEEE DOI
0101
BibRef
Xu, J.N.[Jian-Ning],
Morphological Representation of 2-D Binary Shapes Using Rectangular
Components,
PR(34), No. 2, February 2001, pp. 277-286.
Elsevier DOI
0011
BibRef
Earlier:
ICIP99(II:862-866).
IEEE DOI
BibRef
Xu, J.N.[Jian-Ning],
Efficient morphological shape representation with overlapping disk
components,
IP(10), No. 9, September 2001, pp. 1346-1356.
IEEE DOI
0108
BibRef
Xu, J.N.[Jian-Ning],
Efficient morphological shape representation by varying overlapping
levels among representative disks,
PR(36), No. 2, February 2003, pp. 429-437.
Elsevier DOI
0211
BibRef
Earlier:
Efficient morphological shape representation by varying overlapping
levels between representative disks,
ICIP02(II: 341-344).
IEEE DOI
0210
See also Morphological Decomposition of 2-D Binary Shapes into Conditionally Maximal Convex Polygons.
BibRef
Xu, J.N.[Jian-Ning],
Morphological Decomposition of 2-D Binary Shapes Into Modestly
Overlapped Octagonal and Disk Components,
IP(16), No. 2, February 2007, pp. 337-348.
IEEE DOI
0702
BibRef
Earlier:
Morphological Decomposition of 2-D Binary Shapes into Modestly
Overlapped Disk Components,
ICIP05(II: 470-473).
IEEE DOI
0512
See also Generalized Discrete Morphological Skeleton Transform with Multiple Structuring Elements for the Extraction of Structural Shape Components, A.
BibRef
Xu, J.N.[Jian-Ning],
Shape Matching Using Morphological Structural Shape Components,
ICIP08(2596-2599).
IEEE DOI
0810
decompose into disks.
BibRef
Ziou, D.[Djemel],
Allili, M.[Madjid],
Generating cubical complexes from image data and computation of the
Euler number,
PR(35), No. 12, December 2002, pp. 2833-2839.
Elsevier DOI
0209
BibRef
Vetro, A.,
Wang, Y.[Yao],
Sun, H.F.[Hui-Fang],
Rate-distortion modeling for multiscale binary shape coding based on
markov random fields,
IP(12), No. 3, March 2003, pp. 356-364.
IEEE DOI
0301
BibRef
Vetro, A.[Anthony],
Sun, H.F.[Hui-Fang],
Wang, Y.[Yao],
Guleryuz, O.G.[Onur G.],
Rate-Distortion Modeling of Binary Shape using State Partitioning,
ICIP99(II:802-805).
IEEE DOI
BibRef
9900
Zunic, J.,
Rosin, P.L.,
Rectilinearity measurements for polygons,
PAMI(25), No. 9, September 2003, pp. 1193-1200.
IEEE Abstract.
0309
BibRef
Earlier:
A Rectilinearity Measurement for Polygons,
ECCV02(II: 746 ff.).
Springer DOI
PDF File.
0205
Define the extent that a regular polygon is rectilinear (more than just the
angles are 90deg).
BibRef
Zunic, J.,
Rosin, P.L.,
A New Convexity Measure for Polygons,
PAMI(26), No. 7, July 2004, pp. 923-934.
IEEE Abstract.
0406
BibRef
Earlier:
A Convexity Measurement for Polygons,
BMVC02(173-182).
PDF File.
0208
Planar regions bounded by polygons.
Boundary based measure rather than area based.
Measure between 0 and 1, equal to 1 iff conves, invariant under similariity
transforms.
BibRef
Rosin, P.L.[Paul L.],
Zunic, J.[Jovisa],
Measuring rectilinearity,
CVIU(99), No. 2, August 2005, pp. 175-188.
Elsevier DOI
0506
BibRef
Martinez-Ortiz, C.[Carlos],
Žunic, J.[Joviša],
Curvature weighted gradient based shape orientation,
PR(43), No. 9, September 2010, pp. 3035-3041.
Elsevier DOI
1006
BibRef
Earlier:
Measuring Cubeness of 3D Shapes,
CIARP09(716-723).
Springer DOI
0911
Shape; Orientation; Gradient; Shape boundary; Image normalisation; Early vision
BibRef
Martinez-Ortiz, C.[Carlos],
Žunic, J.[Joviša],
A family of cubeness measures,
MVA(23), No. 4, July 2012, pp. 751-760.
WWW Link.
1206
Expansion of the cubeness computation.
BibRef
Zunic, J.[Jovisa],
Aktas, M.A.[Mehmet Ali],
Martinez-Ortiz, C.[Carlos],
Galton, A.[Antony],
The distance between shape centroids is less than a quarter of the
shape perimeter,
PR(44), No. 9, September 2011, pp. 2161-2169.
Elsevier DOI
1106
Shape; Shape descriptors; Centroid; Shape invariant; Centredness
measure; Image processing
BibRef
Rosin, P.L.[Paul L.],
A two-component rectilinearity measure,
CVIU(109), No. 2, February 2008, pp. 176-185.
Elsevier DOI
0711
Shape measure; Polygon; Rectilinearity; Skew; Parts
BibRef
Žunic, J.[Joviša],
Rosin, P.L.[Paul L.],
Kopanja, L.[Lazar],
On the Orientability of Shapes,
IP(15), No. 11, November 2006, pp. 3478-3487.
IEEE DOI
0610
BibRef
Earlier:
Shape Orientability,
ACCV06(II:11-20).
Springer DOI
0601
BibRef
Rosin, P.L.[Paul L.],
Measuring the Orientability of Shapes,
CAIP07(620-627).
Springer DOI
0708
BibRef
Rosin, P.L.[Paul L.],
Žunic, J.[Joviša],
Orientation and anisotropy of multi-component shapes from boundary
information,
PR(44), No. 9, September 2011, pp. 2147-2160.
Elsevier DOI
1106
BibRef
Earlier: A2, A1:
A Definition for Orientation for Multiple Component Shapes,
CAIP07(677-685).
Springer DOI
0708
Shape; Compound shape; Orientation; Anisotropy; Image processing; Early vision
BibRef
Zunic, J.[Jovisa],
Kopanja, L.[Lazar],
Fieldsend, J.E.[Jonathan E.],
Notes on shape orientation where the standard method does not work,
PR(39), No. 5, May 2006, pp. 856-865.
Elsevier DOI
0604
Orientation; Elongation; Early vision
BibRef
Žunic, J.[Joviša],
Rosin, P.L.[Paul L.],
An Alternative Approach to Computing Shape Orientation with an
Application to Compound Shapes,
IJCV(81), No. 2, February 2009, pp. xx-yy.
Springer DOI
0901
BibRef
Žunic, J.[Joviša],
Boundary Based Orientation of Polygonal Shapes,
PSIVT06(108-117).
Springer DOI
0612
BibRef
Rosin, P.L.[Paul L.],
Žunic, J.[Joviša],
Measuring Squareness and Orientation of Shapes,
JMIV(39), No. 1, January 2011, pp. 13-27.
WWW Link.
1101
BibRef
Stojmenovic, M.[Miloš],
Žunic, J.[Joviša],
Measuring Elongation from Shape Boundary,
JMIV(30), No. 1, January 2008, pp. 73-85.
Springer DOI
0801
BibRef
Earlier:
New Measure for Shape Elongation,
IbPRIA07(II: 572-579).
Springer DOI
0706
BibRef
Zunic, J.[Jovisa],
Stojmenovic, M.[Milos],
Boundary based shape orientation,
PR(41), No. 5, May 2008, pp. 1785-1798.
Elsevier DOI
0711
Shape; Orientation; Image processing; Computer vision
BibRef
Alamri, F.[Faisal],
Žunic, J.[Joviša],
Edge Detection Based on Digital Shape Elongation Measure,
CIARP17(19-27).
Springer DOI
1802
BibRef
Stojmenovic, M.[Milos],
Nayak, A.[Amiya],
Zunic, J.[Jovisa],
Measuring linearity of planar point sets,
PR(41), No. 8, August 2008, pp. 2503-2511.
Elsevier DOI
0805
BibRef
Earlier: A1, A2, Only:
Measuring Linearity of Ordered Point Sets,
PSIVT07(274-288).
Springer DOI
0712
Linearity; Finite point sets; Moments
BibRef
Stojmenovic, M.[Milos],
Nayak, A.[Amiya],
Measuring the Related Properties of Linearity and Elongation of Point
Sets,
CIARP08(102-111).
Springer DOI
0809
BibRef
Huang, C.[Chen],
Han, T.X.[Tony X.],
He, Z.H.[Zhi-Hai],
Multi-scale embedded descriptor for shape classification,
JVCIR(25), No. 7, 2014, pp. 1640-1646.
Elsevier DOI
1410
Shape descriptor
BibRef
Terrades, O.R.[O. Ramos],
Tabbone, S.A.,
Valveny, E.,
A Review of Shape Descriptors for Document Analysis,
ICDAR07(227-231).
IEEE DOI
0709
BibRef
Earlier:
Combination of shape descriptors using an adaptation of boosting,
ICPR06(II: 764-767).
IEEE DOI
0609
BibRef
Caro, A.,
Rodríguez, P.G.,
Antequera, T.,
Palacios, R.,
Feasible Application of Shape-Based Classification,
IbPRIA07(II: 588-595).
Springer DOI
0706
BibRef
Gibbens, M.J.,
Cook, A.C.,
Constructing Visual Taxonomies by Shape,
ICPR06(II: 732-735).
IEEE DOI
0609
BibRef
Liu, S.J.[Shao-Jun],
Li, J.[Jia],
Genus-Zero Shape Classification Using Spherical Normal Image,
ICPR06(II: 126-129).
IEEE DOI
0609
BibRef
Su, H.,
Bouridane, A.,
Crookes, D.,
Scale Adaptive Complexity Measure of 2D Shapes,
ICPR06(II: 134-137).
IEEE DOI
0609
BibRef
Yu, X.Z.[Xiao-Zhou],
Leung, M.K.H.[Maylor K.H.],
Shape Recognition using Curve Segment Hausdorff Distance,
ICPR06(III: 441-444).
IEEE DOI
0609
BibRef
Suesse, H.[Herbert],
Ditrich, F.[Frank],
Robust Determination of Rotation-Angles for Closed Regions Using
Moments,
ICIP05(I: 337-340).
IEEE DOI
0512
See also Robust Fitting of 3D Objects by Affinely Transformed Superellipsoids Using Normalization.
BibRef
Sharma, G.[Gaurav],
Jurie, F.[Frederic],
Learning discriminative spatial representation for image classification,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Jiang, T.T.[Ting-Ting],
Jurie, F.[Frederic],
Schmid, C.[Cordelia],
Learning shape prior models for object matching,
CVPR09(848-855).
IEEE DOI
0906
BibRef
Jurie, F.,
Schmid, C.,
Scale-invariant shape features for recognition of object categories,
CVPR04(II: 90-96).
IEEE DOI
0408
BibRef
Thayananthan, A.,
Stenger, B.,
Torr, P.H.S.,
Cipolla, R.,
Shape context and chamfer matching in cluttered scenes,
CVPR03(I: 127-133).
IEEE DOI
0307
BibRef
Larsen, R.[Rasmus],
Shape Modelling using Minimum/Maximum Autocorrelation Factors,
SCIA01(P-W3A).
0206
BibRef
Liu, T.L.[Tyng-Luh],
A Generalized Shape-axis Model for Planar Shapes,
ICPR00(Vol III: 487-491).
IEEE DOI
0009
BibRef
Melnikov, G.,
Katsaggelos, A.K.,
Shape Approximation Through Recursive Scalable Layer Generation,
ICIP00(Vol II: 915-918).
IEEE DOI
0008
BibRef
Rautkorpi, R.[Rami],
Iivarinen, J.[Jukka],
Shape-Based Co-occurrence Matrices for Defect Classification,
SCIA05(588-597).
Springer DOI
0506
BibRef
And:
Contour Co-occurrence Matrix: A Novel Statistical Shape Descriptor,
CIAP05(253-260).
Springer DOI
0509
BibRef
Earlier:
A Novel Shape Feature for Image Classification and Retrieval,
ICIAR04(I: 753-760).
Springer DOI
0409
BibRef
Peura, M.[Markus],
Iivarinen, J.[Jukka],
Efficiency of Simple Shape Descriptors,
VF97(443-451).
BibRef
9700
Spaan, F.,
Lagendijk, R.L.,
Biemond, J.,
Shape Coding Using Polar Coordinates and the
Discrete Cosine Transform,
ICIP97(I: 516-519).
IEEE DOI
BibRef
9700
Yamaguchi, N.,
Ida, T.,
Watanabe, T.,
A Binary Shape Coding Method Using Modified MMR,
ICIP97(I: 504-507).
IEEE DOI
BibRef
9700
Zhu, P.,
A Nonlinear Algorithm for Shape Representation,
Ph.D.Stevens Institute, 1993.
BibRef
9300
Heikkonen, J.,
Pairwise Representations Of Shape,
ICPR92(I:133-136).
IEEE DOI
BibRef
9200
Glunder, H.,
Kramer, T.,
Description of Planar Patterns by Invariant Features:
An Attempt Towards the Explanation of Visual Pattern Recognition,
ICPR86(1090-1093).
BibRef
8600
Richards, W.,
Jepson, A.D.,
What Makes a Good Feature?,
MIT AI Memo-1356, April 1992.
Perceptual Grouping.
WWW Link.
BibRef
9204
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
MDL, Minimum Description Length for Shape Measure .