Fischler, M.A.,
Barrett, P.,
An Iconic Transform for Sketch Completion and Shape Abstraction,
CGIP(13), No. 4, August 1980, pp. 334-360.
Elsevier DOI Introduce the labeled distance transform and apply to generation of
skeletons, closest surrounding region, etc. It uses a four-pass Euclidean
distance transform.
BibRef
8008
Yokoi, S.,
Toriwaki, J.I.,
Fukumura, T.,
Properties of Fusion Distance Transformation and Skeleton for
Processing of Gray Pictures,
IECE(61-D), September 1978, pp. 613-xx.
BibRef
7809
Toriwaki, J.,
Saitoh, T.,
Okada, M.,
Distance Transformation and Skeleton for Shape Feature Analysis,
VF91(547-563).
BibRef
9100
Toriwaki, J.I.,
Yokoi, S.,
Distance Transformations and Skeletons of Digitized Pictures with
Applications,
PPR82(187-264).
BibRef
8200
Meyer, F.,
Skeletons and Perceptual Graphs,
SP(16), 1989, pp. 335-363.
BibRef
8900
Meyer, F.,
Digital Euclidean Skeletons,
SPIE(1360), 1990, pp. 251-262.
BibRef
9000
Forsgren, P.O.,
Seidman, P.,
An Interobject Distance
Measure Based on Medial Axes Retrieved from Discrete Distance Maps,
PAMI(12), No. 4, April 1990, pp. 390-397.
IEEE DOI Use of the MAT between 2 objects.
BibRef
9004
Preteux, F.,
Watershed and Skeleton by Influence Zones: A Distance-Based Approach,
JMIV(1), 1992, pp. 239-255.
BibRef
9200
Shih, F.Y.[Frank Y.],
Pu, C.C.[Christopher C.],
A Skeletonization Algorithm by Maxima Tracking on
Euclidean Distance Transform,
PR(28), No. 3, March 1995, pp. 331-341.
Elsevier DOI
BibRef
9503
Earlier:
Medial axis transformation with single-pixel and connectivity
preservation using Euclidean distance computation,
ICPR90(I: 723-725).
IEEE DOI
9006
BibRef
Wright, M.W.[Mark W.],
Cipolla, R.[Roberto],
Giblin, P.J.[Peter J.],
Skeletonization Using an Extended Euclidean Distance Transform,
IVC(13), No. 5, June 1995, pp. 367-375.
Elsevier DOI
BibRef
9506
And:
BMVC94(559-568).
PDF File.
HTML Version.
9409
BibRef
Kimmel, R.,
Shaked, D.,
Kiryati, N., and
Bruckstein, A.M.,
Skeletonization via Distance Maps and Level Sets,
CVIU(62), No. 3, November 1995, pp. 382-391.
DOI Link Segment the boundary first (maximal curvature),
then compute a distance map from these points. The skeleton is
computed from the distance map.
BibRef
9511
Kimmel, R.,
Bruckstein, A.M.,
Shape offsets via level sets,
CAD(25), No. 3, March 1993, pp. 154-162.
BibRef
9303
Kimmel, R.,
Kiryati, N.,
Bruckstein, A.M.,
Sub-Pixel Distance Maps and Weighted Distance Transforms,
JMIV(6), No. 2-3, June 1996, pp. 223-233.
9608
BibRef
Earlier: A1 and A3 only:
SPIE(2031), 1993, pp. 259-268.
BibRef
Niblack, C.W.[C. Wayne],
Gibbons, P.B.[Phillip B.],
Capson, D.W.[David W.],
Generating Skeletons and Centerlines from the Distance Transform,
GMIP(54), No. 5, September 1992, pp. 420-437.
BibRef
9209
And:
Generating Connected Skeletons for Exact
and Approximate Reconstruction,
CVPR92(826-828).
IEEE DOI
BibRef
Earlier: A1, A3, A2:
Generating Skeletons and Centerlines from the Medial Axis Transform,
ICPR90(I: 881-885).
IEEE DOI Different levels of representation for different
quality of reconstruction.
BibRef
Gibbons, P.B.,
Niblack, C.W.,
A Width-Independent Parallel Thinning Algorithm,
ICPR92(III:708-711).
IEEE DOI
BibRef
9200
Nacken, P.F.M.,
Chamfer Metrics, the Medial Axis and Mathematical Morphology,
JMIV(6), No. 2-3, June 1996, pp. 235-248.
9608
BibRef
Nacken, P.F.M.,
Chamfer Metrics in Mathematical Morphology,
JMIV(4), 1994, pp. 233-253.
BibRef
9400
Sanniti di Baja, G.[Gabriella],
Thiel, E.[Edouard],
Skeletonization Algorithm Running on Path-Based Distance Maps,
IVC(14), No. 1, February 1996, pp. 47-57.
Elsevier DOI
9608
BibRef
And:
The Path-Based Distance Skeleton:
A Flexible Tool to Analyse Silhouette Shape,
ICPR94(B:570-572).
IEEE DOI
BibRef
And:
A multiresolution shape description algorithm,
CAIP93(208-215).
Springer DOI
9309
See also 3,4)-Weighted Skeleton Decomposition for Pattern Representation and Description.
BibRef
Borgefors, G.[Gunilla],
Sanniti di Baja, G.[Gabriella],
Skeletonizing the Distance Transform on the Hexagonal Grid,
ICPR88(I: 504-507).
IEEE DOI
BibRef
8800
Ge, Y.R.[Yao-Rong],
Fitzpatrick, J.M.[J. Michael],
On the Generation of Skeletons from Discrete Euclidean Distance Maps,
PAMI(18), No. 11, November 1996, pp. 1055-1066.
IEEE DOI
9612
BibRef
And:
Extraction of Maximal Inscribed Disks from Discrete
Euclidean Distance Maps,
CVPR96(556-561).
IEEE DOI
BibRef
Qian, K.,
Cao, S.,
Bhattacharya, P.,
Gray Image Skeletonization with Hollow Preprocessing Using Distance
Transformation,
PRAI(13), No. 6, September 1999, pp. 881-892i.
0005
BibRef
da Fontoura Costa, L.[Luciano],
Robust Skeletonization through Exact Euclidean Distance Transform and
its Application to Neuromorphometry,
RealTimeImg(6), No. 6, December 2000, pp. 415-431.
0101
BibRef
Luppe, M.[Maximiliam],
da Fontoura Costa, L.[Luciano],
Roda, V.O.[Valentin Obac],
Parallel implementation of exact dilations and multi-scale
skeletonization,
RealTimeImg(9), No. 3, June 2003, pp. 163-169.
Elsevier DOI
0310
Hardware implementation.
BibRef
da Fontoura Costa, L.[Luciano],
Enhanced multiscale skeletons,
RealTimeImg(9), No. 5, October 2003, pp. 314-318.
Elsevier DOI
0311
Enhance accuracy
BibRef
Zou, J.J.[Ju Jia],
Chang, H.H.[Hung-Hsin],
Yan, H.[Hong],
Shape skeletonization by identifying discrete local symmetries,
PR(34), No. 10, October 2001, pp. 1895-1905.
Elsevier DOI
0108
Delaunay triangulation to isolated, end, normal and junction triangles.
BibRef
Choi, S.W.[Sung Woo],
Seidel, H.P.[Hans-Peter],
Hyperbolic Hausdorff Distance for Medial Axis Transform,
GM(63), No. 5, September 2001, pp. 369-384.
DOI Link
0203
BibRef
Breuß, M.[Michael],
Zimmer, H.[Henning],
Weickert, J.[Joachim],
Can Variational Models for Correspondence Problems Benefit from Upwind
Discretisations?,
JMIV(39), No. 3, March 2011, pp. 230-244.
WWW Link.
1103
BibRef
Zimmer, H.[Henning],
Breuß, M.[Michael],
Weickert, J.[Joachim],
Seidel, H.P.[Hans-Peter],
Hyperbolic Numerics for Variational Approaches to Correspondence
Problems,
SSVM09(636-647).
Springer DOI
0906
BibRef
Choi, S.W.,
Lee, S.W.,
Stability Analysis of Medial Axis Transform Under Relative Hausdorff
Distance,
ICPR00(Vol III: 135-138).
IEEE DOI
0009
BibRef
Choi, W.P.[Wai-Pak],
Lam, K.M.[Kin-Man],
Siu, W.C.[Wan-Chi],
An Efficient and Accurate Algorithm for Extracting a Skeleton,
ICPR00(Vol III: 742-745).
IEEE DOI
0009
BibRef
Pizer, S.M.[Stephen M.],
Siddiqi, K.[Kaleem],
Székely, G.[Gabor],
Damon, J.N.[James N.],
Zucker, S.W.[Steven W.],
Multiscale Medial Loci and Their Properties,
IJCV(55), No. 2-3, November-December 2003, pp. 155-179.
DOI Link
0310
BibRef
Han, Q.O.[Qi-Ong],
Pizer, S.M.[Stephen M.],
Damon, J.N.[James N.],
Interpolation in Discrete Single Figure Medial Objects,
MMBIA06(85).
IEEE DOI
0609
BibRef
Xu, J.N.[Jian-Ning],
A Generalized Discrete Morphological Skeleton Transform with Multiple
Structuring Elements for the Extraction of Structural Shape Components,
IP(12), No. 12, December 2003, pp. 1677-1686.
IEEE DOI
0402
BibRef
Earlier:
A Generalized Morphological Skeleton Transform and Extraction of
Structural Shape Components,
ICIP03(I: 325-328).
IEEE DOI
0312
BibRef
Earlier:
Morphological skeleton and shape decomposition,
ICPR90(I: 876-880).
IEEE DOI
9006
See also Morphological Decomposition of 2-D Binary Shapes into Conditionally Maximal Convex Polygons.
See also Hierarchical Representation of 2-D Shapes Using Convex Polygons: A Morphological Approach.
See also Morphological Decomposition of 2-D Binary Shapes Into Modestly Overlapped Octagonal and Disk Components.
BibRef
Xu, J.N.[Jian-Ning],
A generalized morphological skeleton transform using both internal
and external skeleton points,
PR(47), No. 8, 2014, pp. 2607-2620.
Elsevier DOI
1405
Mathematical morphology
BibRef
Liu, X.B.[Xia-Bi],
Jia, Y.D.[Yun-De],
A bottom-up algorithm for finding principal curves with applications to
image skeletonization,
PR(38), No. 7, July 2005, pp. 1079-1085.
Elsevier DOI
0505
BibRef
Wang, L.W.[Li-Wei],
Zhang, Y.[Yan],
Feng, J.F.[Ju-Fu],
On the Euclidean Distance of Images,
PAMI(27), No. 8, August 2005, pp. 1334-1339.
IEEE Abstract.
0506
Image ED take into account spatial relations of pixels.
BibRef
Baudrier, E.[Etienne],
Nicolier, F.[Frederic],
Millon, G.[Gilles],
Ruan, S.[Su],
Binary-image comparison with local-dissimilarity quantification,
PR(41), No. 5, May 2008, pp. 1461-1478.
Elsevier DOI
0711
BibRef
Earlier: A1, A3, A2, A4:
A fast binary-image comparison method with local-dissimilarity
quantification,
ICPR06(III: 216-219).
IEEE DOI
0609
BibRef
Earlier: A1, A3, A2, A4:
A new similarity measure using Hausdorff distance map,
ICIP04(I: 669-672).
IEEE DOI
0505
Binary images; Hausdorff distance; Similarity measures;
Spatial dissimilarity layout; Local analysis
BibRef
Shapira, L.[Lior],
Shamir, A.[Ariel],
Cohen-Or, D.[Daniel],
Consistent mesh partitioning and skeletonisation using the shape
diameter function,
VC(24), No. 4, April 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Gustavson, S.[Stefan],
Strand, R.[Robin],
Anti-aliased Euclidean distance transform,
PRL(32), No. 2, 15 January 2011, pp. 252-257.
Elsevier DOI
1101
Distance transform; Vector propagation; Euclidean metric; Sub-pixel accuracy
BibRef
Linnér, E.[Elisabeth],
Strand, R.[Robin],
A Graph-Based Implementation of the Anti-aliased Euclidean Distance
Transform,
ICPR14(1025-1030)
IEEE DOI
1412
BibRef
Earlier:
Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices,
DGCI14(88-98).
Springer DOI
1410
Algorithm design and analysis
BibRef
Strand, R.[Robin],
Sparse Object Representations by Digital Distance Functions,
DGCI11(211-222).
Springer DOI
1104
BibRef
Wang, J.[Jun],
Tan, Y.[Ying],
Efficient Euclidean distance transform algorithm of binary images in
arbitrary dimensions,
PR(46), No. 1, January 2013, pp. 230-242.
Elsevier DOI
1209
BibRef
Earlier:
Efficient Euclidean distance transform using perpendicular bisector
segmentation,
CVPR11(1625-1632).
IEEE DOI
1106
Euclidean distance transform; Arbitrary dimensions; Independent scan;
Linear time algorithm; Binary image
BibRef
Gavet, Y.[Yann],
Pinoli, J.C.[Jean-Charles],
Human visual perception and dissimilarity,
SPIE(Newsroom), November 15, 2013.
DOI Link
1311
Mathematics classically uses distance functions to make comparisons,
whereas the notion of dissimilarity is more adapted to the human
visual perception system.
BibRef
Sironi, A.[Amos],
Türetken, E.[Engin],
Lepetit, V.[Vincent],
Fua, P.[Pascal],
Multiscale Centerline Detection,
PAMI(38), No. 7, July 2016, pp. 1327-1341.
IEEE DOI
1606
BibRef
Earlier: A1, A3, A4, Only:
Multiscale Centerline Detection by Learning a Scale-Space Distance
Transform,
CVPR14(2697-2704)
IEEE DOI
1409
Accuracy.
BibRef
Mille, J.[Julien],
Leborgne, A.[Aurélie],
Tougne, L.[Laure],
Euclidean Distance-Based Skeletons:
A Few Notes on Average Outward Flux and Ridgeness,
JMIV(61), No. 3, March 2019, pp. 310-330.
WWW Link.
1903
BibRef
Jiang, Z.[Zheheng],
Rahmani, H.[Hossein],
Angelov, P.[Plamen],
Vyas, R.[Ritesh],
Zhou, H.Y.[Hui-Yu],
Black, S.[Sue],
Williams, B.[Bryan],
Deep orientated distance-transform network for geometric-aware
centerline detection,
PR(146), 2024, pp. 110028.
Elsevier DOI
2311
Centerline detection, Geometric properties,
Graph representation, Graph refinement
BibRef
Kushnir, O.[Olesia],
Seredin, O.[Oleg],
Parametric Description of Skeleton Radial Function by Legendre
Polynomials for Binary Images Comparison,
ICISP14(520-530).
Springer DOI
1406
BibRef
Hulin, J.[Jérôme],
Thiel, É.[Édouard],
Farey Sequences and the Planar Euclidean Medial Axis Test Mask,
IWCIA09(82-95).
Springer DOI
0911
BibRef
And:
Appearance Radii in Medial Axis Test Mask for Small Planar Chamfer
Norms,
DGCI09(434-445).
Springer DOI
0909
BibRef
Bailey, D.G.[Donald G.],
An Efficient Euclidean Distance Transform,
IWCIA04(394-408).
Springer DOI
0505
BibRef
Makada, Y.,
Toriwaki, J.,
Anchor point thinning using a skeleton based on the Euclidean distance
transformation,
ICPR02(III: 923-926).
IEEE DOI
0211
BibRef
Jang, J.H.[Jeong-Hun],
Hong, K.S.[Ki-Sang],
A Pseudo-Distance Map for the
Segmentation-Free Skeletonization of Gray-Scale Images,
ICCV01(II: 18-23).
IEEE DOI
0106
Skeleton directly with image data.
BibRef
Li, H.[Hong],
Vossepoel, A.M.[Albert M.],
Generation of the Euclidean Skeleton from the Vector Distance Map
by a Bisector Decision Rule,
CVPR98(66-71).
IEEE DOI
BibRef
9800
Chehadeh, Y.,
Coquin, D.,
Bolon, P.,
A Skeletonization Algorithm Using Chamfer Distance Transformation
Adapted to Rectangular Grids,
ICPR96(II: 131-135).
IEEE DOI
9608
(Universite de Savoie, F)
BibRef
Talbot, H.,
Vincent, L.,
Euclidean Skeletons and Conditional Bisectors,
SPIE(1818), Visual Comm. and Image Pricessing, 1992, pp. 862-876.
BibRef
9200
Vincent, L.,
Exact Euclidean Distance Function by Chain Propagation,
CVPR91(520-525).
IEEE DOI
BibRef
9100
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Use of Skeletons for Recognition and Representation .