Fei-Fei, L.[Li],
Fergus, R.[Rob],
Perona, P.[Pietro],
Learning Generative Visual Models from Few Training Examples:
An Incremental Bayesian Approach Tested on 101 Object Categories,
CVIU(106), No. 1, April 2007, pp. 59-70.
Elsevier DOI
0704
BibRef
Earlier:
GenModel04(178).
IEEE DOI
0406
Object recognition; Categorization; Generative model; Incremental learning;
Bayesian model
BibRef
Fei-Fei, L.[Li],
Perona, P.[Pietro],
A Bayesian Hierarchical Model for Learning Natural Scene Categories,
CVPR05(II: 524-531).
IEEE DOI
0507
BibRef
Rodner, E.[Erik],
Denzler, J.[Joachim],
Learning with few examples for binary and multiclass classification
using regularization of randomized trees,
PRL(32), No. 2, 15 January 2011, pp. 244-251.
Elsevier DOI
1101
BibRef
Earlier:
One-Shot Learning of Object Categories Using Dependent Gaussian
Processes,
DAGM10(232-241).
Springer DOI
1009
BibRef
Earlier:
Randomized Probabilistic Latent Semantic Analysis for Scene Recognition,
CIARP09(945-953).
Springer DOI
0911
BibRef
Earlier:
Learning with Few Examples by Transferring Feature Relevance,
DAGM09(252-261).
Springer DOI
0909
Feature relevance from related tasks. Use as prior distribution.
Object categorization; Randomized trees; Few examples; Interclass
transfer; Transfer learning
BibRef
Haase, D.[Daniel],
Rodner, E.[Erid],
Denzler, J.[Joachim],
Instance-Weighted Transfer Learning of Active Appearance Models,
CVPR14(1426-1433)
IEEE DOI
1409
active appearance models
BibRef
Rahman, S.[Shafin],
Khan, S.[Salman],
Porikli, F.M.[Fatih M.],
A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot,
and Few-Shot Learning,
IP(27), No. 11, November 2018, pp. 5652-5667.
IEEE DOI
1809
Semantics, Visualization, Cats, Rats, Seals, Measurement, Task analysis,
Zero-shot learning, few-shot learning,
class adaptive principal direction
BibRef
Rahman, S.[Shafin],
Khan, S.[Salman],
Porikli, F.M.[Fatih M.],
Zero-Shot Object Detection: Learning to Simultaneously Recognize and
Localize Novel Concepts,
ACCV18(I:547-563).
Springer DOI
1906
BibRef
Zheng, Y.[Yan],
Wang, R.G.[Rong-Gui],
Yang, J.[Juan],
Xue, L.X.[Li-Xia],
Hu, M.[Min],
Principal characteristic networks for few-shot learning,
JVCIR(59), 2019, pp. 563-573.
Elsevier DOI
1903
Few-shot learning, Principal characteristic,
Mixture loss function, Embedding network, Fine-tuning
BibRef
Liu, B.[Bing],
Yu, X.C.[Xu-Chu],
Yu, A.Z.[An-Zhu],
Zhang, P.Q.[Peng-Qiang],
Wan, G.[Gang],
Wang, R.R.[Rui-Rui],
Deep Few-Shot Learning for Hyperspectral Image Classification,
GeoRS(57), No. 4, April 2019, pp. 2290-2304.
IEEE DOI
1904
convolutional neural nets, geophysical image processing,
hyperspectral imaging, image classification,
residual learning
BibRef
Liu, B.[Bing],
Yu, A.Z.[An-Zhu],
Yu, X.C.[Xu-Chu],
Wang, R.R.[Rui-Rui],
Gao, K.L.[Kui-Liang],
Guo, W.Y.[Wen-Yue],
Deep Multiview Learning for Hyperspectral Image Classification,
GeoRS(59), No. 9, September 2021, pp. 7758-7772.
IEEE DOI
2109
Training, Support vector machines, Radio frequency, Deep learning,
Task analysis, Unsupervised learning, Residual neural networks,
small samples
BibRef
Gao, K.L.[Kui-Liang],
Liu, B.[Bing],
Yu, X.C.[Xu-Chu],
Qin, J.C.[Jin-Chun],
Zhang, P.Q.[Peng-Qiang],
Tan, X.[Xiong],
Deep Relation Network for Hyperspectral Image Few-Shot Classification,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Mai, S.[Sijie],
Hu, H.F.[Hai-Feng],
Xu, J.[Jia],
Attentive matching network for few-shot learning,
CVIU(187), 2019, pp. 102781.
Elsevier DOI
1909
Few-shot learning, Metric learning, Feature attention, Complementary Cosine loss
BibRef
Ding, Y.M.[Yue-Ming],
Tian, X.[Xia],
Yin, L.R.[Li-Rong],
Chen, X.B.[Xia-Bing],
Liu, S.[Shan],
Yang, B.[Bo],
Zheng, W.F.[Wen-Feng],
Multi-scale Relation Network for Few-shot Learning Based on
Meta-learning,
CVS19(343-352).
Springer DOI
1912
BibRef
Chen, X.,
Wang, Y.,
Liu, J.,
Qiao, Y.,
DID: Disentangling-Imprinting-Distilling for Continuous Low-Shot
Detection,
IP(29), 2020, pp. 7765-7778.
IEEE DOI
2007
Object detection, low-shot learning, continuous learning,
deep learning, transfer learning
BibRef
Zhang, C.J.[Chun-Jie],
Li, C.H.[Cheng-Hua],
Cheng, J.[Jian],
Few-Shot Visual Classification Using Image Pairs With Binary
Transformation,
CirSysVideo(30), No. 9, September 2020, pp. 2867-2871.
IEEE DOI
2009
Training, Visualization, Testing, Correlation, Image representation,
Automation, Convolutional neural networks,
object categorization
BibRef
Ji, Z.[Zhong],
Chai, X.L.[Xing-Liang],
Yu, Y.L.[Yun-Long],
Pang, Y.W.[Yan-Wei],
Zhang, Z.F.[Zhong-Fei],
Improved prototypical networks for few-Shot learning,
PRL(140), 2020, pp. 81-87.
Elsevier DOI
2012
Image classification, Attention network, Few-Shot learning, Metric learning
BibRef
Qin, Y.,
Zhang, W.,
Wang, Z.,
Zhao, C.,
Shi, J.,
Layer-Wise Adaptive Updating for Few-Shot Image Classification,
SPLetters(27), 2020, pp. 2044-2048.
IEEE DOI
2012
Deep learning, few-shot image classification,
layer-wise adaptive updating, meta-learning
BibRef
Zhang, P.[Pei],
Bai, Y.P.[Yun-Peng],
Wang, D.[Dong],
Bai, B.[Bendu],
Li, Y.[Ying],
Few-Shot Classification of Aerial Scene Images via Meta-Learning,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zhu, W.[Wei],
Li, W.B.[Wen-Bin],
Liao, H.[Haofu],
Luo, J.B.[Jie-Bo],
Temperature network for few-shot learning with distribution-aware
large-margin metric,
PR(112), 2021, pp. 107797.
Elsevier DOI
2102
Few-shot learning, Metric learning, Skin lesion classification, Temperature function
BibRef
Song, Y.[Yu],
Chen, C.S.[Chang-Sheng],
MPPCANet: A Feedforward Learning Strategy for Few-Shot Image
Classification,
PR(113), 2021, pp. 107792.
Elsevier DOI
2103
Feedforward learning, PCANet,
Mixtures of probabilistic principal component analysis
BibRef
Zhu, Y.H.[Yao-Hui],
Min, W.Q.[Wei-Qing],
Jiang, S.Q.[Shu-Qiang],
Attribute-Guided Feature Learning for Few-Shot Image Recognition,
MultMed(23), 2021, pp. 1200-1209.
IEEE DOI
2105
Image recognition, Training, Task analysis, Semantics, Standards,
Measurement, Visualization, Attribute learning, few-shot learning,
image recognition
BibRef
Xu, H.[Hui],
Wang, J.X.[Jia-Xing],
Li, H.[Hao],
Ouyang, D.Q.[De-Qiang],
Shao, J.[Jie],
Unsupervised meta-learning for few-shot learning,
PR(116), 2021, pp. 107951.
Elsevier DOI
2106
Unsupervised learning, Meta-learning, Few-shot learning
BibRef
Huang, H.X.[Hua-Xi],
Zhang, J.J.[Jun-Jie],
Zhang, J.[Jian],
Xu, J.S.[Jing-Song],
Wu, Q.[Qiang],
Low-Rank Pairwise Alignment Bilinear Network For Few-Shot
Fine-Grained Image Classification,
MultMed(23), 2021, pp. 1666-1680.
IEEE DOI
2106
Feature extraction, Task analysis, Data models, Dogs,
Covariance matrices, Neural networks, Training, Bilinear pooling,
pairwise
BibRef
Liu, G.[Ge],
Zhao, L.[Linglan],
Fang, X.Z.[Xiang-Zhong],
PDA: Proxy-based domain adaptation for few-shot image recognition,
IVC(110), 2021, pp. 104164.
Elsevier DOI
2106
Few-shot image recognition, Domain adaptation,
Few-shot learning, Transfer learning
BibRef
Huang, H.W.[Hong-Wei],
Wu, Z.[Zhangkai],
Li, W.B.[Wen-Bin],
Huo, J.[Jing],
Gao, Y.[Yang],
Local descriptor-based multi-prototype network for few-shot Learning,
PR(116), 2021, pp. 107935.
Elsevier DOI
2106
Few-shot learning, Image classification, Local descriptors,
Multiple prototypes, End-to-end learning
BibRef
Ye, H.J.[Han-Jia],
Hum, H.X.[He-Xiang],
Zhan, D.C.[De-Chuan],
Learning Adaptive Classifiers Synthesis for Generalized Few-Shot
Learning,
IJCV(129), No. 6, June 2021, pp. 1930-1953.
Springer DOI
2106
BibRef
Zhang, B.Q.[Bao-Quan],
Leung, K.C.[Ka-Cheong],
Li, X.T.[Xu-Tao],
Ye, Y.M.[Yun-Ming],
Learn to abstract via concept graph for weakly-supervised few-shot
learning,
PR(117), 2021, pp. 107946.
Elsevier DOI
2106
Few-shot learning, Weakly-supervised learning, Meta-learning, Concept graph
BibRef
Kim, J.[Joseph],
Chi, M.M.[Ming-Min],
SAFFNet: Self-Attention-Based Feature Fusion Network for Remote
Sensing Few-Shot Scene Classification,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Zhang, H.J.[Hong-Jing],
Zhan, T.Y.[Tian-Yang],
Davidson, I.[Ian],
A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot
Learning and Clustering,
PRL(148), 2021, pp. 75-81.
Elsevier DOI
2107
Deep Learning, Unsupervised Representation Learning,
Unsupervised Few-shot Learning, Clustering
BibRef
Zeng, Q.J.[Qing-Jie],
Geng, J.[Jie],
Huang, K.[Kai],
Jiang, W.[Wen],
Guo, J.[Jun],
Prototype Calibration with Feature Generation for Few-Shot Remote
Sensing Image Scene Classification,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Jiang, N.[Nan],
Shi, H.[Haowen],
Geng, J.[Jie],
Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing
Image Scene Classification,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zeng, Q.J.[Qing-Jie],
Geng, J.[Jie],
Task-specific contrastive learning for few-shot remote sensing image
scene classification,
PandRS(191), 2022, pp. 143-154.
Elsevier DOI
2208
Remote sensing image, Few-shot learning, Scene classification,
Contrastive learning
BibRef
Li, Y.[Yong],
Shao, Z.F.[Zhen-Feng],
Huang, X.[Xiao],
Cai, B.[Bowen],
Peng, S.[Song],
Meta-FSEO: A Meta-Learning Fast Adaptation with Self-Supervised
Embedding Optimization for Few-Shot Remote Sensing Scene
Classification,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Li, H.F.[Hai-Feng],
Cui, Z.Q.[Zhen-Qi],
Zhu, Z.Q.[Zhi-Qiang],
Chen, L.[Li],
Zhu, J.W.[Jia-Wei],
Huang, H.Z.[Hao-Zhe],
Tao, C.[Chao],
RS-MetaNet: Deep Metametric Learning for Few-Shot Remote Sensing
Scene Classification,
GeoRS(59), No. 8, August 2021, pp. 6983-6994.
IEEE DOI
2108
Task analysis, Remote sensing, Measurement, Training,
Neural networks, Feature extraction, Data models, remote sensing classification
BibRef
Doveh, S.[Sivan],
Schwartz, E.[Eli],
Xue, C.[Chao],
Feris, R.[Rogerio],
Bronstein, A.M.[Alex M.],
Giryes, R.[Raja],
Karlinsky, L.[Leonid],
MetAdapt: Meta-learned task-adaptive architecture for few-shot
classification,
PRL(149), 2021, pp. 130-136.
Elsevier DOI
2108
BibRef
Chen, X.Y.[Xiang-Yu],
Wang, G.H.[Guang-Hui],
Few-Shot Learning by Integrating Spatial and Frequency Representation,
CRV21(49-56)
IEEE DOI
2108
Machine learning algorithms, Frequency-domain analysis,
Machine learning, Classification algorithms,
frequency information
BibRef
Singh, R.[Rishav],
Bharti, V.[Vandana],
Purohit, V.[Vishal],
Kumar, A.[Abhinav],
Singh, A.K.[Amit Kumar],
Singh, S.K.[Sanjay Kumar],
MetaMed:
Few-shot medical image classification using gradient-based meta-learning,
PR(120), 2021, pp. 108111.
Elsevier DOI
2109
Few-shot learning, Meta-learning, Multi-shot learning,
Medical image classification, Image augmentation,
Histopathological image classification
BibRef
Li, X.Z.[Xin-Zhe],
Huang, J.Q.[Jian-Qiang],
Liu, Y.Y.[Yao-Yao],
Zhou, Q.[Qin],
Zheng, S.[Shibao],
Schiele, B.[Bernt],
Sun, Q.R.[Qian-Ru],
Learning to teach and learn for semi-supervised few-shot image
classification,
CVIU(212), 2021, pp. 103270.
Elsevier DOI
2110
Few-shot learning, Meta-learning, Semi-supervised learning
BibRef
Gong, H.Y.[Hui-Yun],
Wang, S.[Shuo],
Zhao, X.W.[Xiao-Wei],
Yan, Y.F.[Yi-Fan],
Ma, Y.Q.[Yu-Qing],
Liu, W.[Wei],
Liu, X.L.[Xiang-Long],
Few-shot learning with relation propagation and constraint,
IET-CV(15), No. 8, 2021, pp. 608-617.
DOI Link
2110
correlation methods, graph theory, image recognition
BibRef
Hu, Z.P.[Zheng-Ping],
Li, Z.J.[Zi-Jun],
Wang, X.[Xueyu],
Zheng, S.[Saiyue],
Unsupervised descriptor selection based meta-learning networks for
few-shot classification,
PR(122), 2022, pp. 108304.
Elsevier DOI
2112
Meta-learning, Few-shot classification,
Unsupervised localization, Descriptor selection
BibRef
Hu, Y.F.[Yu-Fan],
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Learning Dual-Pooling Graph Neural Networks for Few-Shot Video
Classification,
MultMed(23), 2021, pp. 4285-4296.
IEEE DOI
2112
Task analysis, Feature extraction, Training, Testing, Streaming media,
Data models, Semantics, Few-shot learning, video classification
BibRef
Feng, Y.B.[Yang-Bo],
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Learning Dual-Routing Capsule Graph Neural Network for Few-Shot Video
Classification,
MultMed(25), 2023, pp. 3204-3216.
IEEE DOI
2309
BibRef
Cui, Y.W.[Ya-Wen],
Liao, Q.[Qing],
Hu, D.[Dewen],
An, W.[Wei],
Liu, L.[Li],
Coarse-to-fine pseudo supervision guided meta-task optimization for
few-shot object classification,
PR(122), 2022, pp. 108296.
Elsevier DOI
2112
Unsupervised few-shot learning, Meta-learning, Clustering, Object classification
BibRef
Lin, C.C.[Chia-Ching],
Chu, H.L.[Hsin-Li],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Lei, C.L.[Chin-Laung],
Joint Feature Disentanglement and Hallucination for Few-Shot Image
Classification,
IP(30), 2021, pp. 9245-9258.
IEEE DOI
2112
Task analysis, Feature extraction, Visualization, Training,
Data models, Data mining, Birds, Few-shot learning (FSL),
feature disentanglement
BibRef
Zhang, L.[Lei],
Zuo, L.Y.[Li-Yun],
Du, Y.J.[Ying-Jun],
Zhen, X.T.[Xian-Tong],
Learning to Adapt With Memory for Probabilistic Few-Shot Learning,
CirSysVideo(31), No. 11, November 2021, pp. 4283-4292.
IEEE DOI
2112
Task analysis, Adaptation models, Probabilistic logic,
Optimization, Neural networks, Prototypes, Predictive models,
variational inference
BibRef
Zhang, P.[Pei],
Fan, G.L.[Guo-Liang],
Wu, C.[Chanyue],
Wang, D.[Dong],
Li, Y.[Ying],
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for
Few-Shot Remote Sensing Scene Classification,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Label Independent Memory for Semi-Supervised Few-Shot Video
Classification,
PAMI(44), No. 1, January 2022, pp. 273-285.
IEEE DOI
2112
BibRef
Earlier:
Compound Memory Networks for Few-Shot Video Classification,
ECCV18(VII: 782-797).
Springer DOI
1810
Training, Feature extraction, Task analysis, Compounds, Dynamics,
Data models, Prototypes, Few-shot video classification,
compound memory networks
BibRef
Fu, K.[Kun],
Zhang, T.F.[Teng-Fei],
Zhang, Y.[Yue],
Wang, Z.R.[Zhi-Rui],
Sun, X.[Xian],
Few-Shot SAR Target Classification via Metalearning,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Task analysis, Synthetic aperture radar, Training,
Target recognition, Adaptation models, Analytical models,
synthetic aperture radar (SAR)
BibRef
Zhang, L.[Lamei],
Zhang, S.[Siyu],
Zou, B.[Bin],
Dong, H.W.[Hong-Wei],
Unsupervised Deep Representation Learning and Few-Shot Classification
of PolSAR Images,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Training, Task analysis, Optical imaging, Annotations,
Optical sensors, Neural networks, Training data,
unsupervised representation learning
BibRef
Huang, W.D.[Wen-Dong],
Yuan, Z.W.[Zheng-Wu],
Yang, A.X.[Ai-Xia],
Tang, C.[Chan],
Luo, X.B.[Xiao-Bo],
TAE-Net: Task-Adaptive Embedding Network for Few-Shot Remote Sensing
Scene Classification,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Yuan, Z.W.[Zheng-Wu],
Huang, W.D.[Wen-Dong],
Tang, C.[Chan],
Yang, A.[Aixia],
Luo, X.B.[Xiao-Bo],
Graph-Based Embedding Smoothing Network for Few-Shot Scene
Classification of Remote Sensing Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Chen, C.[Cen],
Li, K.L.[Ken-Li],
Wei, W.[Wei],
Zhou, J.T.Y.[Joey Tian-Yi],
Zeng, Z.[Zeng],
Hierarchical Graph Neural Networks for Few-Shot Learning,
CirSysVideo(32), No. 1, January 2022, pp. 240-252.
IEEE DOI
2201
Cognition, Feature extraction, Graph neural networks, Training,
Task analysis, Deep learning, Predictive models, Few-shot learning,
hierarchical structure
BibRef
Li, Y.F.[Yang-Fan],
Chen, C.[Cen],
Yan, W.Q.[Wei-Quan],
Cheng, Z.Y.[Zhong-Yao],
Tan, H.L.[Hui Li],
Zhang, W.J.[Wen-Jie],
Cascade Graph Neural Networks for Few-Shot Learning on Point Clouds,
ITS(24), No. 8, August 2023, pp. 8788-8798.
IEEE DOI
2308
Point cloud compression, Training, Task analysis,
Feature extraction, Graph neural networks, Deep learning,
point clouds
BibRef
Cao, C.Q.[Cong-Qi],
Zhang, Y.N.[Yan-Ning],
Learning to Compare Relation:
Semantic Alignment for Few-Shot Learning,
IP(31), 2022, pp. 1462-1474.
IEEE DOI
2202
Measurement, Streaming media, Task analysis, Semantics,
Mutual information, Uncertainty, Feature extraction, semantic alignment
BibRef
Ji, Z.[Zhong],
Hou, Z.S.[Zhi-Shen],
Liu, X.[Xiyao],
Pang, Y.W.[Yan-Wei],
Han, J.G.[Jun-Gong],
Information Symmetry Matters: A Modal-Alternating Propagation Network
for Few-Shot Learning,
IP(31), 2022, pp. 1520-1531.
IEEE DOI
2202
Semantics, Visualization, Task analysis, Training, Correlation, Sun,
Learning systems, Few-shot learning, meta-learning, multi-modal,
graph propagation
BibRef
Wu, S.[Shuang],
Kankanhalli, M.S.[Mohan S.],
Tung, A.K.H.[Anthony K.H.],
Superclass-aware network for few-shot learning,
CVIU(216), 2022, pp. 103349.
Elsevier DOI
2202
Few-shot learning, Contrastive loss, Feature attention
BibRef
Cheng, J.[Jun],
Hao, F.S.[Fu-Sheng],
Liu, L.[Liu],
Tao, D.C.[Da-Cheng],
Imposing Semantic Consistency of Local Descriptors for Few-Shot
Learning,
IP(31), 2022, pp. 1587-1600.
IEEE DOI
2202
Semantics, Training, Training data, Task analysis,
Convolutional neural networks, Adaptation models,
semantic consistency
BibRef
Hao, F.S.[Fu-Sheng],
He, F.X.[Feng-Xiang],
Cheng, J.[Jun],
Tao, D.C.[Da-Cheng],
Global-Local Interplay in Semantic Alignment for Few-Shot Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4351-4363.
IEEE DOI
2207
Semantics, Feature extraction, Measurement, Training,
Learning systems, Visualization, Cats, Few-shot learning,
global-local interplay
BibRef
Hao, F.S.[Fu-Sheng],
He, F.X.[Feng-Xiang],
Cheng, J.[Jun],
Wang, L.,
Cao, J.,
Tao, D.C.[Da-Cheng],
Collect and Select:
Semantic Alignment Metric Learning for Few-Shot Learning,
ICCV19(8459-8468)
IEEE DOI
2004
Code, Metric Learning.
WWW Link. image retrieval, learning (artificial intelligence),
multilayer perceptrons, tensors, 3D tensor,
Task analysis
BibRef
Li, F.[Feimo],
Li, S.B.[Shuai-Bo],
Fan, X.X.[Xin-Xin],
Li, X.[Xiong],
Chang, H.X.[Hong-Xing],
Structural Attention Enhanced Continual Meta-Learning for Graph Edge
Labeling Based Few-Shot Remote Sensing Scene Classification,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhang, B.[Bo],
Ye, H.C.[Han-Cheng],
Yu, G.[Gang],
Wang, B.[Bin],
Wu, Y.[Yike],
Fan, J.Y.[Jia-Yuan],
Chen, T.[Tao],
Sample-Centric Feature Generation for Semi-Supervised Few-Shot
Learning,
IP(31), 2022, pp. 2309-2320.
IEEE DOI
2203
Task analysis, Data models, Measurement, Training, Semantics,
Adaptation models, Benchmark testing, Few-shot learning,
sample-centric
BibRef
Zhang, L.L.[Ling-Ling],
Wang, S.W.[Shao-Wei],
Chang, X.J.[Xiao-Jun],
Liu, J.[Jun],
Ge, Z.Y.[Zong-Yuan],
Zheng, Q.H.[Qing-Hua],
Auto-FSL: Searching the Attribute Consistent Network for Few-Shot
Learning,
CirSysVideo(32), No. 3, March 2022, pp. 1213-1223.
IEEE DOI
2203
Training, Task analysis, Visualization,
Search problems, Neural networks, Network architecture,
DARTS
BibRef
Xu, B.R.[Bing-Rong],
Zeng, Z.G.[Zhi-Gang],
Lian, C.[Cheng],
Ding, Z.M.[Zheng-Ming],
Few-Shot Domain Adaptation via Mixup Optimal Transport,
IP(31), 2022, pp. 2518-2528.
IEEE DOI
2204
Adaptation models, Training, Numerical models, Couplings,
Feature extraction, Deep learning, Automation, Few-shot learning,
data augmentation
BibRef
Liang, M.J.[Ming-Jiang],
Huang, S.L.[Shao-Li],
Pan, S.R.[Shi-Rui],
Gong, M.M.[Ming-Ming],
Liu, W.[Wei],
Learning multi-level weight-centric features for few-shot learning,
PR(128), 2022, pp. 108662.
Elsevier DOI
2205
Fewshot learning, Low-shot learning, Multi-level features, Image classification
BibRef
Fu, W.[Wen],
Zhou, L.[Li],
Chen, J.[Jie],
Bidirectional Matching Prototypical Network for Few-Shot Image
Classification,
SPLetters(29), 2022, pp. 982-986.
IEEE DOI
2205
Prototypes, Training, Feature extraction, Image classification,
Task analysis, Predictive models, Measurement,
metric-based method
BibRef
Huang, J.[Jing],
Wu, B.[Bin],
Li, P.[Peng],
Li, X.[Xiao],
Wang, J.[Jie],
Few-Shot Learning for Radar Emitter Signal Recognition Based on
Improved Prototypical Network,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Huang, J.[Jing],
Li, X.[Xiao],
Wu, B.[Bin],
Wu, X.Y.[Xin-Yu],
Li, P.[Peng],
Few-Shot Radar Emitter Signal Recognition Based on Attention-Balanced
Prototypical Network,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Cai, J.L.[Jin-Lei],
Zhang, Y.T.[Yue-Ting],
Guo, J.Y.[Jia-Yi],
Zhao, X.[Xin],
Lv, J.W.[Jun-Wei],
Hu, Y.X.[Yu-Xin],
ST-PN: A Spatial Transformed Prototypical Network for Few-Shot SAR
Image Classification,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, N.[Na],
Zhou, D.Y.[De-Yun],
Shi, J.[Jiao],
Zheng, X.L.[Xiao-Long],
Wu, T.[Tao],
Yang, Z.[Zhen],
Graph-Based Deep Multitask Few-Shot Learning for Hyperspectral Image
Classification,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhou, Y.[Yuan],
Guo, Y.R.[Yan-Rong],
Hao, S.J.[Shi-Jie],
Hong, R.C.[Ri-Chang],
Hierarchical Prototype Refinement With Progressive Inter-Categorical
Discrimination Maximization for Few-Shot Learning,
IP(31), 2022, pp. 3414-3429.
IEEE DOI
2205
Prototypes, Training, Semantics, Visualization, Task analysis,
Interference, Correlation, Few-shot learning, metric learning,
inter-categorical discrimination
BibRef
Wang, J.Y.[Jia-Yan],
Wang, X.Q.[Xue-Qin],
Xing, L.[Lei],
Liu, B.D.[Bao-Di],
Li, Z.[Zongmin],
Class-Shared SparsePCA for Few-Shot Remote Sensing Scene
Classification,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Luo, J.J.[Jia-Ji],
Si, W.J.[Wei-Jian],
Deng, Z.[Zhian],
Few-Shot Learning for Radar Signal Recognition Based on Tensor
Imprint and Re-Parameterization Multi-Channel Multi-Branch Model,
SPLetters(29), 2022, pp. 1327-1331.
IEEE DOI
2206
Convolution, Radar, Tensors, Training, Time-frequency analysis,
Radar imaging, Kernel, Deep learning, few-shot learning,
structural re-parameterization
BibRef
Wang, Y.N.[Ya-Ning],
Liu, Z.J.[Zi-Jian],
Luo, Y.[Yang],
Luo, C.[Chunbo],
A transductive learning method to leverage graph structure for
few-shot learning,
PRL(159), 2022, pp. 189-195.
Elsevier DOI
2206
few-shot learning, clustering, semi-supervised learning, graph neural networks
BibRef
Chen, H.X.[Hao-Xing],
Li, H.X.[Hua-Xiong],
Li, Y.[Yaohui],
Chen, C.L.[Chun-Lin],
Shaping Visual Representations With Attributes for Few-Shot
Recognition,
SPLetters(29), 2022, pp. 1397-1401.
IEEE DOI
2207
Visualization, Training, Semantics, Prototypes, Task analysis, Sun,
Representation learning, Attribute-shaped learning,
attribute-visual attention
BibRef
Guo, Y.R.[Yu-Rong],
Du, R.[Ruoyi],
Li, X.X.[Xiao-Xu],
Xie, J.Y.[Ji-Yang],
Ma, Z.Y.[Zhan-Yu],
Dong, Y.[Yuan],
Learning Calibrated Class Centers for Few-Shot Classification by
Pair-Wise Similarity,
IP(31), 2022, pp. 4543-4555.
IEEE DOI
2207
Semantics, Measurement, Feature extraction, Correlation, Training,
Strain, Learning systems, Few-shot image classification,
query-guided mask
BibRef
Chi, Z.Q.[Zi-Qiu],
Wang, Z.[Zhe],
Yang, M.P.[Meng-Ping],
Li, D.D.[Dong-Dong],
Du, W.L.[Wen-Li],
Learning to Capture the Query Distribution for Few-Shot Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4163-4173.
IEEE DOI
2207
Prototypes, Measurement, Task analysis, Cognition, Training,
Adaptation models, Standards, Few-shot learning,
deep learning
BibRef
Schwartz, E.[Eli],
Karlinsky, L.[Leonid],
Feris, R.[Rogerio],
Giryes, R.[Raja],
Bronstein, A.[Alex],
Baby steps towards few-shot learning with multiple semantics,
PRL(160), 2022, pp. 142-147.
Elsevier DOI
2208
BibRef
Zhu, P.F.[Peng-Fei],
Zhu, Z.L.[Zhi-Lin],
Wang, Y.[Yu],
Zhang, J.L.[Jing-Lin],
Zhao, S.[Shuai],
Multi-granularity episodic contrastive learning for few-shot learning,
PR(131), 2022, pp. 108820.
Elsevier DOI
2208
Multi-granularity computing, Episodic contrastive learning,
Few-shot learning, Deep learning
BibRef
Xi, B.[Bobo],
Li, J.J.[Jiao-Jiao],
Li, Y.S.[Yun-Song],
Song, R.[Rui],
Hong, D.F.[Dan-Feng],
Chanussot, J.[Jocelyn],
Few-Shot Learning With Class-Covariance Metric for Hyperspectral
Image Classification,
IP(31), 2022, pp. 5079-5092.
IEEE DOI
2208
Measurement, Training, Task analysis, Euclidean distance,
Feature extraction, Iron, Hyperspectral imaging, Few-shot learning,
HSI classification
BibRef
Shao, S.[Shuai],
Xing, L.[Lei],
Xu, R.[Rui],
Liu, W.F.[Wei-Feng],
Wang, Y.J.[Yan-Jiang],
Liu, B.D.[Bao-Di],
MDFM: Multi-Decision Fusing Model for Few-Shot Learning,
CirSysVideo(32), No. 8, August 2022, pp. 5151-5162.
IEEE DOI
2208
Feature extraction, Finite element analysis, Fuses, Dogs,
Data models, Birds, Adaptation models, Few-shot learning (FSL),
multi-decision fusing model (MDFM)
BibRef
Wu, J.Y.[Jia-Ying],
Hu, J.L.[Jing-Lu],
Redefining prior feature space via finetuning a triplet network for
few-shot learning,
IET-CV(16), No. 6, 2022, pp. 514-524.
DOI Link
2208
contrastive learning, few-shot learning, maximum a posteriori,
pretrained feature extractor, triplet network
BibRef
Wang, Y.K.[Yi-Kai],
Zhang, L.[Li],
Yao, Y.[Yuan],
Fu, Y.W.[Yan-Wei],
How to Trust Unlabeled Data? Instance Credibility Inference for
Few-Shot Learning,
PAMI(44), No. 10, October 2022, pp. 6240-6253.
IEEE DOI
2209
Training, Data models, Noise measurement, Task analysis,
Feature extraction, Visualization, Standards, Few-shot learning,
self-taught learning
BibRef
Wang, Y.K.[Yi-Kai],
Xu, C.M.[Cheng-Ming],
Liu, C.[Chen],
Zhang, L.[Li],
Fu, Y.W.[Yan-Wei],
Instance Credibility Inference for Few-Shot Learning,
CVPR20(12833-12842)
IEEE DOI
2008
Training, Data models, Feature extraction, Prediction algorithms,
Training data, Linear regression, Semisupervised learning
BibRef
Gao, F.[Fei],
Xu, J.M.[Jing-Ming],
Lang, R.L.[Rong-Ling],
Wang, J.[Jun],
Hussain, A.[Amir],
Zhou, H.Y.[Hui-Yu],
A Few-Shot Learning Method for SAR Images Based on Weighted Distance
and Feature Fusion,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, J.[Jing],
Zhang, X.Z.[Xin-Zhou],
Wang, Z.[Zhe],
Task Encoding With Distribution Calibration for Few-Shot Learning,
CirSysVideo(32), No. 9, September 2022, pp. 6240-6252.
IEEE DOI
2209
Task analysis, Feature extraction, Adaptation models, Calibration,
Encoding, Computational modeling, Training, Few-shot learning,
image classification
BibRef
Zhou, F.[Fei],
Zhang, L.[Lei],
Wei, W.[Wei],
Meta-Generating Deep Attentive Metric for Few-Shot Classification,
CirSysVideo(32), No. 10, October 2022, pp. 6863-6873.
IEEE DOI
2210
Measurement, Task analysis, Training, Gaussian distribution,
Optimization, Standards, Feature extraction, Few-shot learning, meta-learning
BibRef
Li, Z.J.[Zi-Jun],
Hu, Z.P.[Zheng-Ping],
Luo, W.W.[Wei-Wei],
Hu, X.[Xiao],
SaberNet: Self-attention based effective relation network for
few-shot learning,
PR(133), 2023, pp. 109024.
Elsevier DOI
2210
Few-shot learning, Feature representation, Task analysis, Transformers
BibRef
Yang, S.[Sai],
Liu, F.[Fan],
Chen, Z.[Zhiyu],
Feature hallucination in hypersphere space for few-shot
classification,
IET-IPR(16), No. 13, 2022, pp. 3603-3616.
DOI Link
2210
BibRef
Yang, S.[Shuo],
Wu, S.H.[Song-Hua],
Liu, T.L.[Tong-Liang],
Xu, M.[Min],
Bridging the Gap Between Few-Shot and Many-Shot Learning via
Distribution Calibration,
PAMI(44), No. 12, December 2022, pp. 9830-9843.
IEEE DOI
2212
Data models, Task analysis, Training, Mathematical models,
Calibration, Adaptation models, Gaussian distribution,
generalization error
BibRef
Dai, Z.Y.[Zhi-Yong],
Yi, J.J.[Jian-Jun],
Yan, L.[Lei],
Xu, Q.W.[Qing-Wen],
Hu, L.[Liang],
Zhang, Q.[Qi],
Li, J.H.[Jia-Hui],
Wang, G.Q.[Guo-Qiang],
PFEMed: Few-shot medical image classification using prior guided
feature enhancement,
PR(134), 2023, pp. 109108.
Elsevier DOI
2212
Deep learning, Domain adaption, Few-shot learning,
Medical image classification, Variational autoencoder
BibRef
Chen, Y.D.[Ya-Dang],
Yan, H.[Hui],
Yang, Z.X.[Zhi-Xin],
Wu, E.[Enhua],
Meta-transfer-adjustment learning for few-shot learning,
JVCIR(89), 2022, pp. 103678.
Elsevier DOI
2212
Few-shot learning, Deep neural networks, Feature adjustment, Task adjustment
BibRef
Huang, X.L.[Xi-Lang],
Choi, S.H.[Seon Han],
SAPENet: Self-Attention based Prototype Enhancement Network for
Few-shot Learning,
PR(135), 2023, pp. 109170.
Elsevier DOI
2212
Few-shot learning, Multi-head self-attention mechanism,
Image classification, -Nearest neighbor
BibRef
Xu, R.[Rui],
Xing, L.[Lei],
Shao, S.[Shuai],
Zhao, L.F.[Li-Fei],
Liu, B.[Baodi],
Liu, W.F.[Wei-Feng],
Zhou, Y.C.[Yi-Cong],
GCT: Graph Co-Training for Semi-Supervised Few-Shot Learning,
CirSysVideo(32), No. 12, December 2022, pp. 8674-8687.
IEEE DOI
2212
Feature extraction, Data mining, Finite element analysis,
Training data, Semi-supervised learning, Few-shot learning,
graph co-training (GCT)
BibRef
Cui, Z.[Zhiyan],
Lu, N.[Na],
Wang, W.F.[Wei-Feng],
Guo, G.S.[Guang-Shuai],
Dual global-aware propagation for few-shot learning,
IVC(128), 2022, pp. 104574.
Elsevier DOI
2212
Few-shot learning, Label propagation, Global-aware features, Feature fusion
BibRef
Jiang, S.Q.[Shu-Qiang],
Zhu, Y.[Yaohui],
Liu, C.L.[Chen-Long],
Song, X.H.[Xin-Hang],
Li, X.Y.[Xiang-Yang],
Min, W.Q.[Wei-Qing],
Dataset Bias in Few-Shot Image Recognition,
PAMI(45), No. 1, January 2023, pp. 229-246.
IEEE DOI
2212
Task analysis, Visualization, Learning systems, Adaptation models,
Image recognition, Training, Complexity theory, Dataset bias, meta-learning
BibRef
Wu, J.Y.[Jia-Ying],
Hu, J.L.[Jing-Lu],
Learning a Latent Space with Triplet Network for Few-Shot Image
Classification,
ICPR22(5038-5044)
IEEE DOI
2212
Training data, Benchmark testing, Feature extraction,
Task analysis, Image classification
BibRef
Wang, R.Q.[Run-Qi],
Liu, Z.[Zhen],
Zhang, B.C.[Bao-Chang],
Guo, G.D.[Guo-Dong],
Doermann, D.[David],
Few-Shot Learning with Complex-Valued Neural Networks and Dependable
Learning,
IJCV(131), No. 1, January 2023, pp. 385-404.
Springer DOI
2301
BibRef
Xu, J.[Jian],
Liu, B.[Bo],
Xiao, Y.[Yanshan],
A Variational Inference Method for Few-Shot Learning,
CirSysVideo(33), No. 1, January 2023, pp. 269-282.
IEEE DOI
2301
Task analysis, Power capacitors, Estimation, Image synthesis,
Feature extraction, Training, Neural networks,
variational autoencoder (VAE)
BibRef
Zhang, L.[Lei],
Zhou, F.[Fei],
Wei, W.[Wei],
Zhang, Y.N.[Yan-Ning],
Meta-hallucinating prototype for few-shot learning promotion,
PR(136), 2023, pp. 109235.
Elsevier DOI
2301
Few-shot learning, Prototype hallucination, Meta-learning
BibRef
Cheng, J.[Jun],
Hao, F.[Fusheng],
He, F.X.[Feng-Xiang],
Liu, L.[Liu],
Zhang, Q.[Qieshi],
Mixer-Based Semantic Spread for Few-Shot Learning,
MultMed(25), 2023, pp. 191-202.
IEEE DOI
2301
Semantics, Feature extraction, Training, Mixers, Task analysis,
Visualization, Few-shot learning, metric learning-based meta-learning
BibRef
Ye, H.J.[Han-Jia],
Han, L.[Lu],
Zhan, D.C.[De-Chuan],
Revisiting Unsupervised Meta-Learning via the Characteristics of
Few-Shot Tasks,
PAMI(45), No. 3, March 2023, pp. 3721-3737.
IEEE DOI
2302
Task analysis, Unified modeling language, Training,
Feature extraction, Semantics, Labeling, Visualization,
self-supervised learning
BibRef
Chen, Y.Q.[Yan-Qiao],
Li, Y.Y.[Yang-Yang],
Mao, H.[Heting],
Chai, X.H.[Xing-Hua],
Jiao, L.C.[Li-Cheng],
A Novel Deep Nearest Neighbor Neural Network for Few-Shot Remote
Sensing Image Scene Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, J.W.[Jun-Wen],
Gao, Y.B.[Yong-Bin],
Fang, Z.J.[Zhi-Jun],
An angular shrinkage BERT model for few-shot relation extraction with
none-of-the-above detection,
PRL(166), 2023, pp. 151-158.
Elsevier DOI
2302
Few-shot learning, Relation extraction, None-of-the-above detection
BibRef
Liu, X.Y.[Xin-Yue],
Liu, L.G.[Li-Gang],
Liu, H.[Han],
Zhang, X.T.[Xiao-Tong],
Capturing the few-shot class distribution:
Transductive distribution optimization,
PR(138), 2023, pp. 109371.
Elsevier DOI
2303
Few-shot learning, Transductive learning, Distribution estimation
BibRef
Liu, F.[Fan],
Li, F.F.[Fei-Fan],
Yang, S.[Sai],
Few-shot classification using Gaussianisation prototypical classifier,
IET-CV(17), No. 1, 2023, pp. 62-75.
DOI Link
2303
few-shot classification, maximum a posteriori, reliable prototype
BibRef
Zhang, C.[Chi],
Cai, Y.J.[Yu-Jun],
Lin, G.S.[Guo-Sheng],
Shen, C.H.[Chun-Hua],
DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning,
PAMI(45), No. 5, May 2023, pp. 5632-5648.
IEEE DOI
2304
BibRef
Earlier:
DeepEMD: Few-Shot Image Classification With Differentiable Earth
Mover's Distance and Structured Classifiers,
CVPR20(12200-12210)
IEEE DOI
2008
Task analysis, Earth, Training, Optimal matching, Optimization,
Neural networks, Costs, Few-shot classification, meta learning, metric learning.
Optimal matching, Earth, Training, Measurement,
Image representation networks
BibRef
Li, W.B.[Wen-Bin],
Wang, L.[Lei],
Zhang, X.X.[Xing-Xing],
Qi, L.[Lei],
Huo, J.[Jing],
Gao, Y.[Yang],
Luo, J.B.[Jie-Bo],
Defensive Few-Shot Learning,
PAMI(45), No. 5, May 2023, pp. 5649-5667.
IEEE DOI
2304
Training, Task analysis, Image classification, Robustness,
Convolutional neural networks, Learning systems,
episodic training
BibRef
Qiang, W.W.[Wen-Wen],
Li, J.M.[Jiang-Meng],
Su, B.[Bing],
Fu, J.L.[Jian-Long],
Xiong, H.[Hui],
Wen, J.R.[Ji-Rong],
Meta Attention-Generation Network for Cross-Granularity Few-Shot
Learning,
IJCV(131), No. 5, May 2023, pp. 1211-1233.
Springer DOI
2305
BibRef
Tabealhojeh, H.[Hadi],
Adibi, P.[Peyman],
Karshenas, H.[Hossein],
Roy, S.K.[Soumava Kumar],
Harandi, M.[Mehrtash],
RMAML: Riemannian meta-learning with orthogonality constraints,
PR(140), 2023, pp. 109563.
Elsevier DOI
2305
Meta-learning, Geometry-aware optimization,
Riemannian manifolds, Few-shot image classification
BibRef
Zhao, Y.Q.[Yun-Qing],
Cheung, N.M.[Ngai-Man],
FS-BAN: Born-Again Networks for Domain Generalization Few-Shot
Classification,
IP(32), 2023, pp. 2252-2266.
IEEE DOI
2305
Training, Power capacitors, Task analysis, Data models,
Knowledge engineering, Adaptation models, Training data, meta-learning
BibRef
Vu, A.K.N.[Anh-Khoa Nguyen],
Do, T.T.[Thanh-Toan],
Nguyen, N.D.[Nhat-Duy],
Nguyen, V.T.[Vinh-Tiep],
Ngo, T.D.[Thanh Duc],
Nguyen, T.V.[Tam V.],
Instance-Level Few-Shot Learning With Class Hierarchy Mining,
IP(32), 2023, pp. 2374-2385.
IEEE DOI
2305
Feature extraction, Training, Data mining, Training data,
Task analysis, Proposals, Object detection, Few-shot learning,
hierarchical information
BibRef
Shao, S.[Shuai],
Xing, L.[Lei],
Wang, Y.J.[Yan-Jiang],
Liu, B.[Baodi],
Liu, W.F.[Wei-Feng],
Zhou, Y.C.[Yi-Cong],
Attention-Based Multi-View Feature Collaboration for Decoupled
Few-Shot Learning,
CirSysVideo(33), No. 5, May 2023, pp. 2357-2369.
IEEE DOI
2305
Collaboration, Feature extraction, Finite element analysis,
Task analysis, Training, Learning systems, Data models, self-attention block
BibRef
Xu, C.M.[Cheng-Ming],
Liu, C.[Chen],
Sun, X.W.[Xin-Wei],
Yang, S.[Siqian],
Wang, Y.[Yabiao],
Wang, C.J.[Cheng-Jie],
Fu, Y.W.[Yan-Wei],
PatchMix Augmentation to Identify Causal Features in Few-Shot
Learning,
PAMI(45), No. 6, June 2023, pp. 7639-7653.
IEEE DOI
2305
Correlation, Training, Dogs, Data models, Task analysis,
Image reconstruction, Training data, Few-shot learning,
intra-variance regularization
BibRef
Pan, M.H.[Mei-Hong],
Xin, H.Y.[Hong-Yi],
Xia, C.Q.[Chun-Qiu],
Shen, H.B.[Hong-Bin],
Few-shot classification with task-adaptive semantic feature learning,
PR(141), 2023, pp. 109594.
Elsevier DOI
2306
Few-shot learning, Multi-modality, Task-adaptive training,
Semantic feature learner
BibRef
Zhong, X.[Xian],
Gu, C.[Cheng],
Ye, M.[Mang],
Huang, W.X.[Wen-Xin],
Lin, C.W.[Chia-Wen],
Graph Complemented Latent Representation for Few-Shot Image
Classification,
MultMed(25), 2023, pp. 1979-1990.
IEEE DOI
2306
Task analysis, Training, Feature extraction, Image classification,
Probabilistic logic, Image reconstruction, Deep learning,
variational inference
BibRef
Zhong, X.[Xian],
Gu, C.[Cheng],
Huang, W.X.[Wen-Xin],
Li, L.[Lin],
Chen, S.Q.[Shu-Qin],
Lin, C.W.[Chia-Wen],
Complementing Representation Deficiency in Few-shot Image
Classification: A Meta-Learning Approach,
ICPR21(2677-2684)
IEEE DOI
2105
Training, Feature extraction, Probabilistic logic,
Pattern recognition, Task analysis, Standards,
Variational inference
BibRef
Zhang, H.G.[Hong-Guang],
Li, H.D.[Hong-Dong],
Koniusz, P.[Piotr],
Multi-Level Second-Order Few-Shot Learning,
MultMed(25), 2023, pp. 2111-2126.
IEEE DOI
2306
BibRef
Earlier: A1, A3, Only:
Power Normalizing Second-Order Similarity Network for Few-Shot
Learning,
WACV19(1185-1193)
IEEE DOI
1904
Task analysis, Pipelines, Image recognition, Visualization,
Feature extraction, Training, Streaming media, Few-shot learning,
action recognition.
higher order statistics, image capture,
learning (artificial intelligence), protocols
BibRef
Zhang, B.Q.[Bao-Quan],
Jiang, H.[Hao],
Li, X.[Xutao],
Feng, S.S.[Shan-Shan],
Ye, Y.M.[Yun-Ming],
Luo, C.[Chen],
Ye, R.[Rui],
MetaDT: Meta Decision Tree With Class Hierarchy for Interpretable
Few-Shot Learning,
CirSysVideo(33), No. 6, June 2023, pp. 2826-2838.
IEEE DOI
2306
Decision trees, Visualization, Dogs, Task analysis, Semantics,
Neural networks, Heating systems, Few-shot learning, meta-learning,
class hierarchy
BibRef
Tan, Q.[Qi],
Wu, Z.[Zongze],
Lai, J.[Jialun],
Liang, Z.X.[Ze-Xiao],
Ren, Z.G.[Zhi-Gang],
HDGN: Heat diffusion graph network for few-shot learning,
PRL(171), 2023, pp. 61-68.
Elsevier DOI
2306
Few-shot learning, Graph convolution network, Low-pass filter,
Heat diffusion, Gait recognition, Image entropy, Multi-view recognition
BibRef
Shi, B.[Boyao],
Li, W.B.[Wen-Bin],
Huo, J.[Jing],
Zhu, P.F.[Peng-Fei],
Wang, L.[Lei],
Gao, Y.[Yang],
Global- and local-aware feature augmentation with semantic
orthogonality for few-shot image classification,
PR(142), 2023, pp. 109702.
Elsevier DOI
2307
Few-shot image classification, Transfer learning,
Feature augmentation, Semantic orthogonal learning
BibRef
Zhang, M.[Min],
Huang, S.[Siteng],
Li, W.B.[Wen-Bin],
Wang, D.L.[Dong-Lin],
Tree Structure-Aware Few-Shot Image Classification via Hierarchical
Aggregation,
ECCV22(XX:453-470).
Springer DOI
2211
BibRef
Chen, H.[Hao],
Li, L.Y.[Lin-Yan],
Hu, F.Y.[Fu-Yuan],
Lyu, F.[Fan],
Zhao, L.Q.[Liu-Qing],
Huang, K.Z.[Kai-Zhu],
Feng, W.[Wei],
Xia, Z.P.[Zhen-Ping],
Multi-semantic hypergraph neural network for effective few-shot
learning,
PR(142), 2023, pp. 109677.
Elsevier DOI
2307
Hypergraph, Few-shot learning, Multi-semantic learning, Orthogonal training
BibRef
Chen, J.J.[Jing-Jing],
Zhuo, L.H.[Lin-Hai],
Wei, Z.P.[Zhi-Peng],
Zhang, H.[Hao],
Fu, H.Z.[Hua-Zhu],
Jiang, Y.G.[Yu-Gang],
Knowledge driven weights estimation for large-scale few-shot image
recognition,
PR(142), 2023, pp. 109668.
Elsevier DOI
2307
Few-shot image, Recognition, Knowledge transfer
BibRef
Shao, Y.J.[Yuan-Jie],
Wu, W.X.[Wen-Xiao],
You, X.G.[Xin-Ge],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Improving the Generalization of MAML in Few-Shot Classification via
Bi-Level Constraint,
CirSysVideo(33), No. 7, July 2023, pp. 3284-3295.
IEEE DOI
2307
Adaptation models, Task analysis, Optimization, Measurement, Power capacitors,
Feature extraction, Data models, MAML, cross-task metric loss
BibRef
Fu, W.[Wen],
Zhou, L.[Li],
Chen, J.[Jie],
Query-Specific Embedding Co-Adaptation Improve Few-Shot Image
Classification,
SPLetters(30), 2023, pp. 783-787.
IEEE DOI
2307
Task analysis, Prototypes, Feature extraction, Training,
Adaptation models, Standards, Image classification, Deep learning,
embedding adaptation
BibRef
Peng, D.[Danni],
Pan, S.J.L.[Sinno Jia-Lin],
Clustered Task-Aware Meta-Learning by Learning from Learning Paths,
PAMI(45), No. 8, August 2023, pp. 9426-9438.
IEEE DOI
2307
WWW Link. Task analysis, Training, Feature extraction, Modulation, Trajectory,
Optimization, Knowledge engineering, Task clustering,
task-aware meta-learning
BibRef
Zha, Z.[Zican],
Tang, H.[Hao],
Sun, Y.[Yunlian],
Tang, J.H.[Jin-Hui],
Boosting Few-Shot Fine-Grained Recognition With Background
Suppression and Foreground Alignment,
CirSysVideo(33), No. 8, August 2023, pp. 3947-3961.
IEEE DOI
2308
Task analysis, Measurement, Feature extraction, Birds, Annotations,
Training, Sun, Few-shot learning, fine-grained recognition,
foreground alignment
BibRef
Wang, S.M.[Shuang-Mei],
Ma, R.[Rui],
Wu, T.[Tieru],
Cao, Y.[Yang],
P3DC-shot: Prior-driven discrete data calibration for
nearest-neighbor few-shot classification,
IVC(136), 2023, pp. 104736.
Elsevier DOI
2308
Few-shot learning, Image classification, Prototype, Calibration
BibRef
Hu, Z.X.[Zi-Xuan],
Shen, L.[Li],
Lai, S.[Shenqi],
Yuan, C.[Chun],
Task-Adaptive Feature Disentanglement and Hallucination for Few-Shot
Classification,
CirSysVideo(33), No. 8, August 2023, pp. 3638-3648.
IEEE DOI
2308
Task analysis, Bayes methods, Frequency division multiplexing,
Correlation, Uncertainty, Prototypes, Semantics,
Bayesian inference
BibRef
Dang, Z.H.[Zhuo-Hang],
Luo, M.[Minnan],
Jia, C.Y.[Cheng-You],
Yan, C.X.[Cai-Xia],
Chang, X.J.[Xiao-Jun],
Zheng, Q.H.[Qing-Hua],
Counterfactual Generation Framework for Few-Shot Learning,
CirSysVideo(33), No. 8, August 2023, pp. 3747-3758.
IEEE DOI
2308
Feature extraction, Data models, Task analysis, Prototypes,
Data mining, Semantics, Generators, Few-shot learning,
prototype learning
BibRef
Song, Y.S.[Yi-Sheng],
Wang, T.[Ting],
Cai, P.[Puyu],
Mondal, S.K.[Subrota K.],
Sahoo, J.P.[Jyoti Prakash],
A Comprehensive Survey of Few-Shot Learning:
Evolution, Applications, Challenges, and Opportunities,
Surveys(55), No. 13s, July 2023, pp. xx-yy.
DOI Link
2309
Survey, Few-Shot Learning. prior knowledge, meta-learning, low-shot learning,
zero-shot learning, one-shot learning, Few-shot learning
BibRef
Cao, J.Z.[Jiang-Zhong],
Yao, Z.J.[Zi-Jie],
Yu, L.G.[Liang-Geng],
Ling, B.W.K.[Bingo Wing-Kuen],
WPE: Weighted prototype estimation for few-shot learning,
IVC(137), 2023, pp. 104757.
Elsevier DOI
2309
Few-shot learning, Knowledge transfer, Data augmentation,
Prototype estimation, Image classification
BibRef
Wu, Y.Q.[Ya-Qiang],
Li, Y.F.[Yi-Fei],
Zhao, T.Z.[Tian-Zhe],
Zhang, L.L.[Ling-Ling],
Wei, B.[Bifan],
Liu, J.[Jun],
Zheng, Q.H.[Qing-Hua],
Improved prototypical network for active few-shot learning,
PRL(172), 2023, pp. 188-194.
Elsevier DOI
2309
Few-shot learning, Active learning, Prototypical network,
Loss prediction, Image recognition
BibRef
Song, K.[Kun],
Wu, Y.C.[Yu-Chen],
Chen, J.S.[Jian-Sheng],
Hu, T.Y.[Tian-Yu],
Ma, H.M.[Hui-Min],
Gestalt-guided Image Understanding for Few-shot Learning,
ACCV22(II:409-424).
Springer DOI
2307
BibRef
Sendera, M.[Marcin],
Przewiezlikowski, M.[Marcin],
Karanowski, K.[Konrad],
Zieba, M.[Maciej],
Tabor, J.[Jacek],
Spurek, P.[Przemyslaw],
HyperShot: Few-Shot Learning by Kernel HyperNetworks,
WACV23(2468-2477)
IEEE DOI
2302
Training, Adaptation models, Computational modeling, Switches,
Predictive models, Planning, and algorithms (including transfer)
BibRef
He, J.[Ju],
Kortylewski, A.[Adam],
Yuille, A.L.[Alan L.],
CORL: Compositional Representation Learning for Few-Shot
Classification,
WACV23(3879-3888)
IEEE DOI
2302
Training, Representation learning, Dictionaries, Image recognition,
Knowledge based systems, Neural networks,
and algorithms (including transfer)
BibRef
Subramanyam, R.[Rakshith],
Heimann, M.[Mark],
Jayram, T.S.,
Anirudh, R.[Rushil],
Thiagarajan, J.J.[Jayaraman J.],
Contrastive Knowledge-Augmented Meta-Learning for Few-Shot
Classification,
WACV23(2478-2486)
IEEE DOI
2302
Aggregates, Semantics, Prototypes, Modulation, Benchmark testing,
Encoding, Algorithms: Machine learning architectures, visual reasoning
BibRef
He, X.[Xi],
Li, F.Z.[Fan-Zhang],
Task-adaptive Few-shot Learning on Sphere Manifold,
ICPR22(2949-2956)
IEEE DOI
2212
Manifolds, Learning systems, Technological innovation,
Euclidean distance, Benchmark testing, Pattern recognition
BibRef
Ma, Y.X.[Yi-Xiao],
Li, F.Z.[Fan-Zhang],
Self-Challenging Mask for Cross-Domain Few-Shot Classification,
ICPR22(4456-4453)
IEEE DOI
2212
Measurement, Visualization, Analytical models, Feature extraction,
Robustness, Power capacitors
BibRef
Lu, Y.N.[Yu-Ning],
Wen, L.J.[Liang-Jian],
Liu, J.Z.[Jian-Zhuang],
Liu, Y.J.[Ya-Jing],
Tian, X.[Xinmei],
Self-Supervision Can Be a Good Few-Shot Learner,
ECCV22(XIX:740-758).
Springer DOI
2211
BibRef
Zhang, T.[Tao],
Huang, W.[Wu],
Kernel Relative-prototype Spectral Filtering for Few-Shot Learning,
ECCV22(XX:541-557).
Springer DOI
2211
BibRef
Nguyen, K.D.[Khoi D.],
Tran, Q.H.[Quoc-Huy],
Nguyen, K.[Khoi],
Hua, B.S.[Binh-Son],
Nguyen, R.[Rang],
Inductive and Transductive Few-Shot Video Classification via Appearance
and Temporal Alignments,
ECCV22(XX:471-487).
Springer DOI
2211
BibRef
Chen, W.T.[Wen-Tao],
Zhang, Z.[Zhang],
Wang, W.[Wei],
Wang, L.[Liang],
Wang, Z.[Zilei],
Tan, T.N.[Tie-Niu],
Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and
Aligned Representations,
ECCV22(XX:383-399).
Springer DOI
2211
BibRef
Dong, B.[Bowen],
Zhou, P.[Pan],
Yan, S.C.[Shui-Cheng],
Zuo, W.M.[Wang-Meng],
Self-Promoted Supervision for Few-Shot Transformer,
ECCV22(XX:329-347).
Springer DOI
2211
BibRef
Yang, Z.Y.[Zhan-Yuan],
Wang, J.H.[Jing-Hua],
Zhu, Y.Y.[Ying-Ying],
Few-Shot Classification with Contrastive Learning,
ECCV22(XX:293-309).
Springer DOI
2211
BibRef
Li, H.Q.[Hao-Quan],
Zhang, L.[Laoming],
Zhang, D.[Daoan],
Fu, L.[Lang],
Yang, P.[Peng],
Zhang, J.G.[Jian-Guo],
TransVLAD: Focusing on Locally Aggregated Descriptors for Few-Shot
Learning,
ECCV22(XX:524-540).
Springer DOI
2211
BibRef
Xiang, X.[Xiang],
Tan, Y.[Yuwen],
Wan, Q.[Qian],
Ma, J.[Jing],
Yuille, A.L.[Alan L.],
Hager, G.D.[Gregory D.],
Coarse-To-Fine Incremental Few-Shot Learning,
ECCV22(XXXI:205-222).
Springer DOI
2211
BibRef
Li, S.[Shuo],
Liu, F.[Fang],
Hao, Z.[Zehua],
Zhao, K.[Kaibo],
Jiao, L.C.[Li-Cheng],
Unsupervised Few-Shot Image Classification by Learning Features into
Clustering Space,
ECCV22(XXXI:420-436).
Springer DOI
2211
BibRef
Zhang, R.[Renrui],
Zhang, W.[Wei],
Fang, R.[Rongyao],
Gao, P.[Peng],
Li, K.C.[Kun-Chang],
Dai, J.F.[Ji-Feng],
Qiao, Y.[Yu],
Li, H.S.[Hong-Sheng],
Tip-Adapter: Training-Free Adaption of CLIP for Few-Shot Classification,
ECCV22(XXXV:493-510).
Springer DOI
2211
BibRef
Rhee, H.C.[Ho-Chang],
Cho, N.I.[Nam Ik],
Episode Difficulty Based Sampling Method for Few-Shot Classification,
ICIP22(296-300)
IEEE DOI
2211
Training, Codes, Benchmark testing, Sampling methods,
Few-shot Learning, Episodic Training
BibRef
Zarei, M.R.[Mohammad Reza],
Komeili, M.[Majid],
Interpretable Concept-Based Prototypical Networks for Few-Shot
Learning,
ICIP22(4078-4082)
IEEE DOI
2211
Annotations, Machine learning, Extraterrestrial measurements,
Multitasking, Birds, Task analysis, Interpretability, Few-shot, Concept
BibRef
Shirekar, O.K.[Ojas Kishore],
Jamali-Rad, H.[Hadi],
Self-Supervised Class-Cognizant Few-Shot Classification,
ICIP22(976-980)
IEEE DOI
2211
Human intelligence, Dark matter, Benchmark testing,
Iterative methods, Task analysis, Unsupervised learning, contrastive learning
BibRef
Fu, M.H.[Ming-Hao],
Cao, Y.H.[Yun-Hao],
Wu, J.X.[Jian-Xin],
Worst Case Matters for Few-Shot Recognition,
ECCV22(XX:99-115).
Springer DOI
2211
BibRef
Yi, K.[Kai],
Shen, X.Q.[Xiao-Qian],
Gou, Y.H.[Yun-Hao],
Elhoseiny, M.[Mohamed],
Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot
Image Classification,
ECCV22(XX:116-132).
Springer DOI
2211
BibRef
Lai, J.X.[Jin-Xiang],
Yang, S.[Siqian],
Liu, W.L.[Wen-Long],
Zeng, Y.[Yi],
Huang, Z.Y.[Zhong-Yi],
Wu, W.L.[Wen-Long],
Liu, J.[Jun],
Gao, B.B.[Bin-Bin],
Wang, C.J.[Cheng-Jie],
tSF: Transformer-Based Semantic Filter for Few-Shot Learning,
ECCV22(XX:1-19).
Springer DOI
2211
BibRef
Hu, Y.[Yanxu],
Ma, A.J.[Andy J.],
Adversarial Feature Augmentation for Cross-domain Few-Shot
Classification,
ECCV22(XX:20-37).
Springer DOI
2211
BibRef
Ma, R.K.[Rong-Kai],
Fang, P.F.[Peng-Fei],
Avraham, G.[Gil],
Zuo, Y.[Yan],
Zhu, T.Y.[Tian-Yu],
Drummond, T.[Tom],
Harandi, M.[Mehrtash],
Learning Instance and Task-Aware Dynamic Kernels for Few-Shot Learning,
ECCV22(XX:257-274).
Springer DOI
2211
BibRef
Comer, J.F.[Joseph F.],
Jacobson, P.L.[Philip L.],
Hoffmann, H.[Heiko],
Few-Shot Image Classification Along Sparse Graphs,
L3D-IVU22(4186-4194)
IEEE DOI
2210
Target tracking, Limiting, Shape, Training data, Streaming media,
Pattern recognition, Reliability
BibRef
Ye, M.[Meng],
Lin, X.[Xiao],
Burachas, G.[Giedrius],
Divakaran, A.[Ajay],
Yao, Y.[Yi],
Hybrid Consistency Training with Prototype Adaptation for Few-Shot
Learning,
ECV22(2725-2734)
IEEE DOI
2210
Training, Representation learning, Measurement, Interpolation,
Prototypes, Inference algorithms, Pattern recognition
BibRef
Liu, Y.[Yang],
Zhang, W.F.[Wei-Feng],
Xiang, C.[Chao],
Zheng, T.[Tu],
Cai, D.[Deng],
He, X.F.[Xiao-Fei],
Learning to Affiliate: Mutual Centralized Learning for Few-shot
Classification,
CVPR22(14391-14400)
IEEE DOI
2210
Atmospheric measurements, Markov processes,
Particle measurements, Pattern recognition, Task analysis,
Self- semi- meta- unsupervised learning
BibRef
Lee, S.B.[Su-Been],
Moon, W.J.[Won-Jun],
Heo, J.P.[Jae-Pil],
Task Discrepancy Maximization for Fine-grained Few-Shot
Classification,
CVPR22(5321-5330)
IEEE DOI
2210
Quadrature amplitude modulation, Focusing, Benchmark testing,
Time division multiplexing, Encoding, Pattern recognition,
Recognition: detection
BibRef
Chikontwe, P.[Philip],
Kim, S.[Soopil],
Park, S.H.[Sang Hyun],
CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification,
CVPR22(14534-14543)
IEEE DOI
2210
Training, Solid modeling, Head, Transfer learning, Prototypes,
Feature extraction, Self- semi- meta- Recognition: detection,
Representation learning
BibRef
Ling, J.[Jie],
Liao, L.[Lei],
Yang, M.[Meng],
Shuai, J.[Jia],
Semi-Supervised Few-shot Learning via Multi-Factor Clustering,
CVPR22(14544-14553)
IEEE DOI
2210
Manifolds, Learning systems, Codes, Fuses, Collaboration,
Benchmark testing, Self- semi- meta- Recognition: detection, retrieval
BibRef
Kang, D.[Dahyun],
Cho, M.[Minsu],
Integrative Few-Shot Learning for Classification and Segmentation,
CVPR22(9969-9980)
IEEE DOI
2210
Image segmentation, Correlation, Computer network reliability,
Semantics, Benchmark testing, Pattern recognition,
Transfer/low-shot/long-tail learning
BibRef
Xu, J.Y.[Jing-Yi],
Le, H.[Hieu],
Generating Representative Samples for Few-Shot Classification,
CVPR22(8993-9003)
IEEE DOI
2210
Training, Visualization, Codes, Semantics, Pattern recognition,
Transfer/low-shot/long-tail learning, Statistical methods
BibRef
Hu, S.X.[Shell Xu],
Li, D.[Da],
Stühmer, J.[Jan],
Kim, M.Y.[Min-Young],
Hospedales, T.M.[Timothy M.],
Pushing the Limits of Simple Pipelines for Few-Shot Learning:
External Data and Fine-Tuning Make a Difference,
CVPR22(9058-9067)
IEEE DOI
2210
Training, Pipelines, Transfer learning,
Benchmark testing, Transformers,
Self- semi- meta- unsupervised learning
BibRef
Liang, K.J.[Kevin J.],
Rangrej, S.B.[Samrudhdhi B.],
Petrovic, V.[Vladan],
Hassner, T.[Tal],
Few-shot Learning with Noisy Labels,
CVPR22(9079-9088)
IEEE DOI
2210
Training, Computational modeling, Prototypes, Transformers,
Robustness, Pattern recognition, Transfer/low-shot/long-tail learning
BibRef
Xie, J.T.[Jiang-Tao],
Long, F.[Fei],
Lv, J.M.[Jia-Ming],
Wang, Q.L.[Qi-Long],
Li, P.H.[Pei-Hua],
Joint Distribution Matters: Deep Brownian Distance Covariance for
Few-Shot Classification,
CVPR22(7962-7971)
IEEE DOI
2210
Training, Deep learning, Transfer learning, Image representation,
Extraterrestrial measurements, Pattern recognition, Statistical methods
BibRef
San-Emeterio, M.G.[Miguel G.],
A Survey on Few-Shot Techniques in the Context of Computer Vision
Applications Based on Deep Learning,
HBAxSCES22(14-25).
Springer DOI
2208
BibRef
Zhao, R.J.[Rui-Jing],
Zhu, K.[Kai],
Cao, Y.[Yang],
Zha, Z.J.[Zheng-Jun],
AS-Net:
Class-Aware Assistance and Suppression Network for Few-Shot Learning,
MMMod22(II:27-39).
Springer DOI
2203
BibRef
Li, S.[Suichan],
Chen, D.D.[Dong-Dong],
Chen, Y.P.[Yin-Peng],
Yuan, L.[Lu],
Zhang, L.[Lei],
Chu, Q.[Qi],
Liu, B.[Bin],
Yu, N.H.[Neng-Hai],
Improve Unsupervised Pretraining for Few-label Transfer,
ICCV21(10181-10190)
IEEE DOI
2203
Annotations, Computational modeling, Clustering algorithms,
Representation learning, Vision applications and systems
BibRef
Ma, J.W.[Jia-Wei],
Xie, H.C.[Han-Chen],
Han, G.X.[Guang-Xing],
Chang, S.F.[Shih-Fu],
Galstyan, A.[Aram],
Abd-Almageed, W.[Wael],
Partner-Assisted Learning for Few-Shot Image Classification,
ICCV21(10553-10562)
IEEE DOI
2203
Training, Learning systems, Visualization, Annotations, Prototypes,
Benchmark testing, Representation learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Massiceti, D.[Daniela],
Zintgraf, L.[Luisa],
Bronskill, J.[John],
Theodorou, L.[Lida],
Harris, M.T.[Matthew Tobias],
Cutrell, E.[Edward],
Morrison, C.[Cecily],
Hofmann, K.[Katja],
Stumpf, S.[Simone],
ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition,
ICCV21(10798-10808)
IEEE DOI
2203
Training, Technological innovation, Face recognition,
Benchmark testing, Orbits, Robustness, Datasets and evaluation,
Vision applications and systems
BibRef
Baik, S.[Sungyong],
Choi, J.[Janghoon],
Kim, H.[Heewon],
Cho, D.[Dohee],
Min, J.[Jaesik],
Lee, K.M.[Kyoung Mu],
Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning,
ICCV21(9445-9454)
IEEE DOI
2203
Learning systems, Metals, Task analysis, Optimization,
Transfer/Low-shot/Semi/Unsupervised Learning,
Efficient training and inference methods
BibRef
Li, W.H.[Wei-Hong],
Liu, X.L.[Xia-Lei],
Bilen, H.[Hakan],
Cross-domain Few-shot Learning with Task-specific Adapters,
CVPR22(7151-7160)
IEEE DOI
2210
BibRef
Earlier:
Universal Representation Learning from Multiple Domains for Few-shot
Classification,
ICCV21(9506-9515)
IEEE DOI
2203
Training, Analytical models, Systematics, Costs,
Computational modeling, Estimation, retrieval.
Uniform resource locators, Representation learning,
Knowledge engineering, Visualization, Computer aided instruction,
Recognition and classification
BibRef
Das, R.[Rajshekhar],
Wang, Y.X.[Yu-Xiong],
Moura, J.M.F.[José M. F.],
On the Importance of Distractors for Few-Shot Classification,
ICCV21(9010-9020)
IEEE DOI
2203
Training, Codes, Stochastic processes, Performance gain,
Task analysis, Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Afrasiyabi, A.[Arman],
Larochelle, H.[Hugo],
Lalonde, J.F.[Jean-François],
Gagné, C.[Christian],
Matching Feature Sets for Few-Shot Image Classification,
CVPR22(9004-9014)
IEEE DOI
2210
BibRef
Earlier: A1, A3, A4, Only:
Mixture-based Feature Space Learning for Few-shot Image
Classification,
ICCV21(9021-9031)
IEEE DOI
2203
Measurement, Training, Feature extraction,
Market research, Standards, Transfer/low-shot/long-tail learning,
Deep learning architectures and techniques.
Clustering algorithms, Mixture models, Classification algorithms,
Recognition and classification
BibRef
Phoo, C.P.[Cheng Perng],
Hariharan, B.[Bharath],
Coarsely-labeled Data for Better Few-shot Transfer,
ICCV21(9032-9041)
IEEE DOI
2203
Representation learning, Codes, Filtering, Buildings,
Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Chen, Y.B.[Yin-Bo],
Liu, Z.A.[Zhu-Ang],
Xu, H.J.[Hui-Juan],
Darrell, T.J.[Trevor J.],
Wang, X.L.[Xiao-Long],
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning,
ICCV21(9042-9051)
IEEE DOI
2203
Training, Measurement, Codes, Classification algorithms,
Task analysis, Standards,
BibRef
Chowdhury, A.[Arkabandhu],
Jiang, M.[Mingchao],
Chaudhuri, S.[Swarat],
Jermaine, C.[Chris],
Few-shot Image Classification: Just Use a Library of Pre-trained
Feature Extractors and a Simple Classifier,
ICCV21(9425-9434)
IEEE DOI
2203
Transfer learning, Feature extraction, Libraries,
Computational efficiency, Classification algorithms, Feeds,
Vision applications and systems
BibRef
Zhang, C.[Chi],
Ding, H.H.[Heng-Hui],
Lin, G.S.[Guo-Sheng],
Li, R.[Ruibo],
Wang, C.H.[Chang-Hu],
Shen, C.H.[Chun-Hua],
Meta Navigator:
Search for a Good Adaptation Policy for Few-shot Learning,
ICCV21(9415-9424)
IEEE DOI
2203
Adaptation models, Machine learning algorithms, Navigation,
Machine learning, Benchmark testing, Classification algorithms,
Recognition and classification
BibRef
Lazarou, M.[Michalis],
Stathaki, T.[Tania],
Avrithis, Y.[Yannis],
Iterative label cleaning for transductive and semi-supervised
few-shot learning,
ICCV21(8731-8740)
IEEE DOI
2203
Manifolds, Codes, Semisupervised learning, Prediction algorithms,
Cleaning, Inference algorithms,
Recognition and classification
BibRef
Xu, J.Y.[Jing-Yi],
Le, H.[Hieu],
Huang, M.Z.[Ming-Zhen],
Athar, S.[Shah_Rukh],
Samaras, D.[Dimitris],
Variational Feature Disentangling for Fine-Grained Few-Shot
Classification,
ICCV21(8792-8801)
IEEE DOI
2203
Codes, Lighting, Benchmark testing, Task analysis,
Image classification,
BibRef
Kang, D.[Dahyun],
Kwon, H.[Heeseung],
Min, J.[Juhong],
Cho, M.[Minsu],
Relational Embedding for Few-Shot Classification,
ICCV21(8802-8813)
IEEE DOI
2203
Training, Visualization, Tensors, Image recognition, Correlation,
Transforms, Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Huang, K.[Kai],
Geng, J.[Jie],
Jiang, W.[Wen],
Deng, X.Y.[Xin-Yang],
Xu, Z.[Zhe],
Pseudo-loss Confidence Metric for Semi-supervised Few-shot Learning,
ICCV21(8651-8660)
IEEE DOI
2203
Measurement, Training, Weight measurement, Learning systems,
Estimation, Multitasking, Extraterrestrial measurements,
Recognition and classification
BibRef
Yang, L.[Lihe],
Zhuo, W.[Wei],
Qi, L.[Lei],
Shi, Y.H.[Ying-Huan],
Gao, Y.[Yang],
Mining Latent Classes for Few-shot Segmentation,
ICCV21(8701-8710)
IEEE DOI
2203
Training, Costs, Codes, Training data, Prototypes, Benchmark testing,
Transfer/Low-shot/Semi/Unsupervised Learning, Segmentation, grouping and shape
BibRef
Fei, N.Y.[Nan-Yi],
Gao, Y.Z.[Yi-Zhao],
Lu, Z.W.[Zhi-Wu],
Xiang, T.[Tao],
Z-Score Normalization, Hubness, and Few-Shot Learning,
ICCV21(142-151)
IEEE DOI
2203
Visualization, Prototypes, Benchmark testing, Boosting,
Recognition and classification, Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Zhang, X.[Xueting],
Meng, D.B.[De-Bin],
Gouk, H.[Henry],
Hospedales, T.[Timothy],
Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition,
ICCV21(631-640)
IEEE DOI
2203
Training, Representation learning, Measurement, Uncertainty,
Memory management, Feature extraction,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Yin, C.X.[Cheng-Xiang],
Wu, K.[Kun],
Che, Z.P.[Zheng-Ping],
Jiang, B.[Bo],
Xu, Z.Y.[Zhi-Yuan],
Tang, J.[Jian],
Hierarchical Graph Attention Network for Few-shot Visual-Semantic
Learning,
ICCV21(2157-2166)
IEEE DOI
2203
Integrated circuits, Deep learning, Visualization, Semantics,
Training data, Genomics,
Visual reasoning and logical representation
BibRef
Zhou, Z.Q.[Zi-Qi],
Qiu, X.[Xi],
Xie, J.T.[Jiang-Tao],
Wu, J.[Jianan],
Zhang, C.[Chi],
Binocular Mutual Learning for Improving Few-shot Classification,
ICCV21(8382-8391)
IEEE DOI
2203
Learning systems, Degradation, Computational modeling,
Decision making, Focusing, Performance gain,
Recognition and classification
BibRef
Qi, G.D.[Guo-Dong],
Yu, H.M.[Hui-Min],
Lu, Z.H.[Zhao-Hui],
Li, S.Z.[Shu-Zhao],
Transductive Few-Shot Classification on the Oblique Manifold,
ICCV21(8392-8402)
IEEE DOI
2203
Manifolds, Measurement, Machine learning, Benchmark testing,
Feature extraction, Approximation algorithms,
Recognition and classification
BibRef
Wu, J.[Jiamin],
Zhang, T.Z.[Tian-Zhu],
Zhang, Y.D.[Yong-Dong],
Wu, F.[Feng],
Task-aware Part Mining Network for Few-Shot Learning,
ICCV21(8413-8422)
IEEE DOI
2203
Adaptation models, Computational modeling, Benchmark testing,
Generators, Task analysis, Standards,
Recognition and classification
BibRef
Liu, Y.B.[Yan-Bin],
Lee, J.H.[Ju-Ho],
Zhu, L.C.[Lin-Chao],
Chen, L.[Ling],
Shi, H.[Humphrey],
Yang, Y.[Yi],
A Multi-Mode Modulator for Multi-Domain Few-Shot Classification,
ICCV21(8433-8442)
IEEE DOI
2203
Training, Extrapolation, Correlation, Computational modeling,
Modulation, Information sharing,
BibRef
Osahor, U.[Uche],
Nasrabadi, N.M.[Nasser M.],
Ortho-Shot: Low Displacement Rank Regularization with Data
Augmentation for Few-Shot Learning,
WACV22(2040-2049)
IEEE DOI
2202
Computational modeling, Pipelines,
Diversity reception, Data models, Stability analysis,
Semi- and Un- supervised Learning Deep Learning -> Efficient Training and
Inference Methods for Networks
BibRef
Lazarou, M.[Michalis],
Stathaki, T.[Tania],
Avrithis, Y.[Yannis],
Tensor feature hallucination for few-shot learning,
WACV22(2050-2060)
IEEE DOI
2202
Training, Representation learning, Tensors,
Focusing, Performance gain, Generative adversarial networks, GANs
BibRef
Garg, A.[Ashima],
Bagga, S.[Shaurya],
Singh, Y.[Yashvardhan],
Anand, S.[Saket],
HierMatch: Leveraging Label Hierarchies for Improving Semi-Supervised
Learning,
WACV22(2061-2070)
IEEE DOI
2202
Costs, Semisupervised learning, Benchmark testing,
Labeling, Deep Learning Transfer, Few-shot, Semi- and Un- supervised Learning
BibRef
Yang, F.Y.[Feng-Yuan],
Wang, R.P.[Rui-Ping],
Chen, X.L.[Xi-Lin],
Semantic Guided Latent Parts Embedding for Few-Shot Learning,
WACV23(5436-5446)
IEEE DOI
2302
BibRef
Earlier:
SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot
Learning,
WACV22(1586-1596)
IEEE DOI
2202
Training, Deep learning, Visualization, Semantics, Training data,
Prototypes, Generators,
and algorithms (including transfer).
Knowledge engineering,
Correlation, Prototypes, Transfer, Few-shot,
Semi- and Un- supervised Learning
BibRef
Bateni, P.[Peyman],
Barber, J.[Jarred],
van de Meent, J.W.[Jan-Willem],
Wood, F.[Frank],
Enhancing Few-Shot Image Classification with Unlabelled Examples,
WACV22(1597-1606)
IEEE DOI
2202
Training, Codes, Computational modeling,
Benchmark testing, Feature extraction, Data mining, Transfer,
Semi- and Un- supervised Learning
BibRef
Ye, C.G.[Chuang-Guan],
Zhu, H.Y.[Hong-Yuan],
Liao, Y.B.[Yong-Bin],
Zhang, Y.G.[Yang-Gang],
Chen, T.[Tao],
Fan, J.Y.[Jia-Yuan],
What Makes for Effective Few-shot Point Cloud Classification?,
WACV22(267-276)
IEEE DOI
2202
Point cloud compression, Deep learning, Solid modeling,
Adaptation models, Systematics,
3D Computer Vision
BibRef
Simon, C.[Christian],
Koniusz, P.[Piotr],
Harandi, M.[Mehrtash],
Meta-Learning for Multi-Label Few-Shot Classification,
WACV22(346-355)
IEEE DOI
2202
Microwave integrated circuits, Protocols,
Predictive models, Benchmark testing, Inference algorithms,
Semi- and Un- supervised Learning Deep Learning
BibRef
Yang, P.[Peng],
Ren, S.G.[Shao-Gang],
Zhao, Y.[Yang],
Li, P.[Ping],
Calibrating CNNs for Few-Shot Meta Learning,
WACV22(408-417)
IEEE DOI
2202
Training, Adaptation models, Neuroscience, Neurons,
Benchmark testing, Calibration, Transfer,
Learning and Optimization
BibRef
Zheng, P.X.[Pei-Xiao],
Guo, X.[Xin],
Qi, L.[Lin],
Edge-Labeling Based Directed Gated Graph Network for Few-Shot
Learning,
ICIP21(544-548)
IEEE DOI
2201
Backpropagation, Convolution, Image processing,
Image edge detection, Neural networks, Logic gates, CNN, GRU
BibRef
Liang, Z.Y.[Zi-Yun],
Gu, Y.[Yun],
Yang, J.[Jie],
Hardmix: A Regularization Method to Mitigate the Large Shift in
Few-Shot Domain Adaptation,
ICIP21(454-458)
IEEE DOI
2201
Training, Bridges, Image processing, Training data,
Benchmark testing, Classification algorithms, Domain Adaptation, Mix-Up
BibRef
Cheng, Y.C.[Yuan-Chia],
Lin, C.S.[Ci-Siang],
Yang, F.E.[Fu-En],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Few-Shot Classification in Unseen Domains by Episodic Meta-Learning
Across Visual Domains,
ICIP21(434-438)
IEEE DOI
2201
Training, Visualization, Image recognition, Target recognition,
Data models, Task analysis, few-shot learning
BibRef
Liu, S.[Sihan],
Wang, Y.[Yue],
Few-shot Learning with Online Self-Distillation,
VIPriors21(1067-1070)
IEEE DOI
2112
Training, Adaptation models, Pipelines, Benchmark testing, Data models
BibRef
Stojanov, S.[Stefan],
Thai, A.[Anh],
Rehg, J.M.[James M.],
Using Shape to Categorize: Low-Shot Learning with an Explicit Shape
Bias,
CVPR21(1798-1808)
IEEE DOI
2111
Shape, Psychology,
Cognition, Pattern recognition, Object recognition
BibRef
Hong, J.[Jie],
Fang, P.F.[Peng-Fei],
Li, W.H.[Wei-Hao],
Zhang, T.[Tong],
Simon, C.[Christian],
Harandi, M.[Mehrtash],
Petersson, L.[Lars],
Reinforced Attention for Few-Shot Learning and Beyond,
CVPR21(913-923)
IEEE DOI
2111
Image recognition, Computational modeling,
Reinforcement learning, Prediction algorithms, Data models, Pattern recognition
BibRef
Tang, S.X.[Shi-Xiang],
Chen, D.P.[Da-Peng],
Bai, L.[Lei],
Liu, K.J.[Kai-Jian],
Ge, Y.X.[Yi-Xiao],
Ouyang, W.L.[Wan-Li],
Mutual CRF-GNN for Few-shot Learning,
CVPR21(2329-2339)
IEEE DOI
2111
Computational modeling, Semantics,
Benchmark testing, Probabilistic logic, Market research, Pattern recognition
BibRef
Zhang, B.Q.[Bao-Quan],
Li, X.[Xutao],
Ye, Y.M.[Yun-Ming],
Huang, Z.C.[Zhi-Chao],
Zhang, L.[Lisai],
Prototype Completion with Primitive Knowledge for Few-Shot Learning,
CVPR21(3753-3761)
IEEE DOI
2111
Knowledge engineering, Codes, Annotations,
Computational modeling, Prototypes, Feature extraction
BibRef
Chen, C.F.[Chao-Fan],
Yang, X.S.[Xiao-Shan],
Xu, C.S.[Chang-Sheng],
Huang, X.[Xuhui],
Ma, Z.[Zhe],
ECKPN: Explicit Class Knowledge Propagation Network for Transductive
Few-shot Learning,
CVPR21(6592-6601)
IEEE DOI
2111
Visualization, Art, Computational modeling,
Knowledge representation, Benchmark testing, Calibration
BibRef
Wertheimer, D.[Davis],
Tang, L.[Luming],
Hariharan, B.[Bharath],
Few-Shot Classification with Feature Map Reconstruction Networks,
CVPR21(8008-8017)
IEEE DOI
2111
Computational modeling,
Benchmark testing, Pattern recognition, Computational efficiency
BibRef
Zhang, H.G.[Hong-Guang],
Koniusz, P.[Piotr],
Jian, S.[Songlei],
Li, H.D.[Hong-Dong],
Torr, P.H.S.[Philip H. S.],
Rethinking Class Relations: Absolute-relative Supervised and
Unsupervised Few-shot Learning,
CVPR21(9427-9436)
IEEE DOI
2111
Training, Learning systems, Protocols, Annotations,
Animals, Semantics
BibRef
Yue, X.Y.[Xiang-Yu],
Zheng, Z.W.[Zang-Wei],
Zhang, S.H.[Shang-Hang],
Gao, Y.[Yang],
Darrell, T.J.[Trevor J.],
Keutzer, K.[Kurt],
Vincentelli, A.S.[Alberto Sangiovanni],
Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation,
CVPR21(13829-13839)
IEEE DOI
2111
Semantics, Predictive models, Benchmark testing, Pattern recognition
BibRef
Chen, Z.Y.[Zheng-Yu],
Ge, J.X.[Ji-Xie],
Zhan, H.[Heshen],
Huang, S.[Siteng],
Wang, D.L.[Dong-Lin],
Pareto Self-Supervised Training for Few-Shot Learning,
CVPR21(13658-13667)
IEEE DOI
2111
Training, Pareto optimization, Benchmark testing,
Space exploration, Pattern recognition, Task analysis
BibRef
Rizve, M.N.[Mamshad Nayeem],
Khan, S.[Salman],
Khan, F.S.[Fahad Shahbaz],
Shah, M.[Mubarak],
Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning,
CVPR21(10831-10841)
IEEE DOI
2111
Training, Measurement, Benchmark testing,
Pattern recognition, Task analysis, Optimization
BibRef
Zhao, Y.[Yang],
Li, C.Y.[Chun-Yyan],
Yu, P.[Ping],
Chen, C.Y.[Chang-You],
ReMP: Rectified Metric Propagation for Few-Shot Learning,
LLID21(2581-2590)
IEEE DOI
2109
Training, Force, Prototypes,
Performance gain, Extraterrestrial measurements
BibRef
Chen, Z.T.[Zi-Tian],
Maji, S.[Subhransu],
Learned-Miller, E.G.[Erik G.],
Shot in the Dark: Few-Shot Learning with No Base-Class Labels,
LLID21(2662-2671)
IEEE DOI
2109
Supervised learning, Robustness, Pattern recognition
BibRef
Pahde, F.[Frederik],
Puscas, M.[Mihai],
Klein, T.[Tassilo],
Nabi, M.[Moin],
Multimodal Prototypical Networks for Few-shot Learning,
WACV21(2643-2652)
IEEE DOI
2106
Training, Learning systems, Deep learning, Visualization,
Prototypes
BibRef
Mazumder, P.[Pratik],
Singh, P.[Pravendra],
Namboodiri, V.P.[Vinay P.],
Improving Few-Shot Learning using Composite Rotation based Auxiliary
Task,
WACV21(2653-2662)
IEEE DOI
2106
Learning systems, Training, Radio frequency,
Neural networks, Benchmark testing
BibRef
Mazumder, P.[Pratik],
Singh, P.[Pravendra],
Namboodiri, V.P.[Vinay P.],
RNNP: A Robust Few-Shot Learning Approach,
WACV21(2663-2672)
IEEE DOI
2106
Learning systems, Training, Prototypes,
Noise measurement, Labeling
BibRef
Azad, R.[Reza],
Fayjie, A.R.[Abdur R.],
Kauffmann, C.[Claude],
Ben Ayed, I.[Ismail],
Pedersoli, M.[Marco],
Dolz, J.[Jose],
On the Texture Bias for Few-Shot CNN Segmentation,
WACV21(2673-2682)
IEEE DOI
2106
Training, Visualization, Image segmentation, Shape, Semantics,
Prototypes, Bidirectional control
BibRef
Liu, G.[Ge],
Zhao, L.L.[Ling-Lan],
Li, W.[Wei],
Guo, D.[Dashan],
Fang, X.Z.[Xiang-Zhong],
Class-wise Metric Scaling for Improved Few-Shot Classification,
WACV21(586-595)
IEEE DOI
2106
Measurement, Training, Refining, Performance gain,
Feature extraction, Convex functions
BibRef
Zhang, J.H.[Jian-Hong],
Zhang, M.[Manli],
Lu, Z.W.[Zhi-Wu],
Xiang, T.[Tao],
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning,
WACV21(3481-3490)
IEEE DOI
2106
Training, Adaptation models, Noise reduction,
Training data, Search problems, Data models
BibRef
Zhang, G.J.[Gong-Jie],
Cui, K.W.[Kai-Wen],
Wu, R.L.[Rong-Liang],
Lu, S.J.[Shi-Jian],
Tian, Y.H.[Yong-Hong],
PNPDet: Efficient Few-shot Detection without Forgetting via
Plug-and-Play Sub-networks,
WACV21(3822-3831)
IEEE DOI
2106
Measurement, Bridges, Detectors,
Visual systems
BibRef
Luo, Q.X.[Qin-Xuan],
Wang, L.F.[Ling-Feng],
Lv, J.[Jingguo],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Few-Shot Learning via Feature Hallucination with Variational
Inference,
WACV21(3962-3971)
IEEE DOI
2106
Training, Deep learning,
Computational modeling, Gaussian distribution, Data models
BibRef
Fortin, M.P.[Mathieu Pagé],
Chaib-draa, B.[Brahim],
Towards Contextual Learning in Few-shot Object Classification,
WACV21(3278-3287)
IEEE DOI
2106
Visualization, Semantics, Genomics, Bioinformatics
BibRef
Zhang, X.[Xu],
Zhang, Y.[Youjia],
Zhang, Z.[Zuyu],
Multi-granularity Recurrent Attention Graph Neural Network for Few-shot
Learning,
MMMod21(II:147-158).
Springer DOI
2106
BibRef
Wang, H.J.[Hao-Jie],
Lian, J.Y.[Jie-Ya],
Xiong, S.W.[Sheng-Wu],
Few-shot Learning with Unlabeled Outlier Exposure,
MMMod21(I:340-351).
Springer DOI
2106
BibRef
Matsumi, S.[Susumu],
Yamada, K.[Keiichi],
Few-Shot Learning Based on Metric Learning Using Class Augmentation,
ICPR21(196-201)
IEEE DOI
2105
Measurement, Support vector machines, Training data,
Machine learning, Nearest neighbor methods, Extraterrestrial measurements
BibRef
Wu, W.[Wei],
Pang, S.[Shanmin],
Tian, Z.Q.[Zhi-Qiang],
Li, Y.[Yaochen],
Meta Generalized Network for Few-Shot Classification,
ICPR21(1400-1405)
IEEE DOI
2105
Training, Measurement, Adaptation models, Image recognition,
Benchmark testing, Feature extraction, Pattern recognition
BibRef
Lifchitz, Y.[Yann],
Avrithis, Y.[Yannis],
Picard, S.[Sylvaine],
Few-Shot Few-Shot Learning and the role of Spatial Attention,
ICPR21(2693-2700)
IEEE DOI
2105
Training, Focusing, Benchmark testing, Pattern recognition,
Task analysis, Clutter, Standards
BibRef
Nguyen, K.[Khoi],
Todorovic, S.[Sinisa],
A Self-supervised GAN for Unsupervised Few-shot Object Recognition,
ICPR21(3225-3231)
IEEE DOI
2105
Training, Image coding, Performance gain, Probabilistic logic,
Pattern recognition, Object recognition, Image reconstruction
BibRef
Sun, J.[Jiamei],
Lapuschkin, S.[Sebastian],
Samek, W.[Wojciech],
Zhao, Y.Q.[Yun-Qing],
Cheung, N.M.[Ngai-Man],
Binder, A.[Alexander],
Explanation-Guided Training for Cross-Domain Few-Shot Classification,
ICPR21(7609-7616)
IEEE DOI
2105
Training, Heating systems, Visualization, Computational modeling,
Predictive models, Power capacitors, Pattern recognition
BibRef
Hamidouche, M.,
Lassance, C.[Carlos],
Hu, Y.,
Drumetz, L.,
Pasdeloup, B.,
Gripon, V.[Vincent],
Improving Classification Accuracy With Graph Filtering,
ICIP21(334-338)
IEEE DOI
2201
Training, Filtering, Training data, Machine learning,
Benchmark testing, Feature extraction, graph filtering,
deep learning
BibRef
Hu, Y.Q.[Yu-Qing],
Gripon, V.[Vincent],
Pateux, S.[Stéphane],
Graph-based Interpolation of Feature Vectors for Accurate Few-Shot
Classification,
ICPR21(8164-8171)
IEEE DOI
2105
Interpolation, Feature extraction, Graph neural networks,
Pattern recognition, Standards, Logistics
BibRef
Yan, B.M.[Bao-Ming],
Zhou, C.[Chen],
Zhao, B.[Bo],
Guo, K.[Kan],
Yang, J.[Jiang],
Li, X.B.[Xiao-Bo],
Zhang, M.[Ming],
Wang, Y.Z.[Yi-Zhou],
Augmented Bi-path Network for Few-shot Learning,
ICPR21(8461-8468)
IEEE DOI
2105
Training, Visualization, Neural networks, Merging, Training data,
Feature extraction, Robustness
BibRef
Wang, Z.[Zhe],
Liu, L.[Li],
Li, F.[FanZhang],
TAAN: Task-Aware Attention Network for Few-shot Classification,
ICPR21(9130-9136)
IEEE DOI
2105
Training, Measurement, Transforms, Benchmark testing,
Feature extraction, Pattern recognition,
task-relevant channel attention
BibRef
Lifchitz, Y.[Yann],
Avrithis, Y.[Yannis],
Picard, S.[Sylvaine],
Local Propagation for Few-Shot Learning,
ICPR21(10457-10464)
IEEE DOI
2105
Image representation, Pattern recognition, Standards
BibRef
Cai, C.H.[Chun-Hao],
Yuan, M.L.[Ming-Lei],
Lu, T.[Tong],
IFSM: An Iterative Feature Selection Mechanism for Few-Shot Image
Classification,
ICPR21(9429-9436)
IEEE DOI
2105
Learning systems, Training data, Network architecture, Jitter,
Feature extraction, Reliability engineering, Pattern recognition,
feature selection
BibRef
Tseng, H.Y.[Hung-Yu],
Chen, Y.W.[Yi-Wen],
Tsai, Y.H.[Yi-Hsuan],
Liu, S.[Sifei],
Lin, Y.Y.[Yen-Yu],
Yang, M.H.[Ming-Hsuan],
Regularizing Meta-learning via Gradient Dropout,
ACCV20(IV:218-234).
Springer DOI
2103
BibRef
Perrett, T.[Toby],
Masullo, A.[Alessandro],
Burghardt, T.[Tilo],
Mirmehdi, M.[Majid],
Damen, D.[Dima],
Meta-learning with Context-Agnostic Initialisations,
ACCV20(IV:70-86).
Springer DOI
2103
For few-shot by finding initial result to fine-tune.
BibRef
Minami, S.[Soma],
Hirakawa, T.[Tsubasa],
Yamashita, T.[Takayoshi],
Fujiyoshi, H.[Hironobu],
Knowledge Transfer Graph for Deep Collaborative Learning,
ACCV20(IV:203-217).
Springer DOI
2103
BibRef
Guan, J.[Jiechao],
Zhang, M.[Manli],
Lu, Z.W.[Zhi-Wu],
Large-scale Cross-domain Few-shot Learning,
ACCV20(III:474-491).
Springer DOI
2103
BibRef
Das, D.[Debasmit],
Moon, J.H.,
Lee, C.S.G.[C. S. George],
Few-shot Image Recognition with Manifolds,
ISVC20(II:3-14).
Springer DOI
2103
BibRef
Liu, C.H.[Cheng-Hao],
Wang, Z.H.[Zhi-Hao],
Sahoo, D.[Doyen],
Fang, Y.[Yuan],
Zhang, K.[Kun],
Hoi, S.C.H.[Steven C. H.],
Adaptive Task Sampling for Meta-learning,
ECCV20(XVIII:752-769).
Springer DOI
2012
BibRef
Guo, Y.H.[Yun-Hui],
Codella, N.C.[Noel C.],
Karlinsky, L.[Leonid],
Codella, J.V.[James V.],
Smith, J.R.[John R.],
Saenko, K.[Kate],
Rosing, T.[Tajana],
Feris, R.[Rogerio],
A Broader Study of Cross-domain Few-shot Learning,
ECCV20(XXVII:124-141).
Springer DOI
2011
BibRef
Puri, R.[Rishi],
Zakhor, A.[Avideh],
Puri, R.[Raul],
Few Shot Learning For Point Cloud Data Using Model Agnostic Meta
Learning,
ICIP20(1906-1910)
IEEE DOI
2011
Extend MAML.
Task analysis, Feature extraction,
Machine learning, Adaptation models, Neural networks, Training, 3D
BibRef
Liu, X.,
Liu, P.,
Zong, L.,
Transductive Prototypical Network For Few-Shot Classification,
ICIP20(1671-1675)
IEEE DOI
2011
Prototypes, Training, Testing, Task analysis, Manganese,
Neural networks, Semisupervised learning, Few-shot learning,
transductive learning
BibRef
Kim, J.,
Kim, M.,
Kim, J.U.,
Lee, H.J.,
Lee, S.,
Hong, J.,
Ro, Y.M.,
Learning Style Correlation for Elaborate Few-Shot Classification,
ICIP20(1791-1795)
IEEE DOI
2011
Feature extraction, Measurement, Correlation, Data mining,
Task analysis, Machine learning, Visualization, Deep learning,
Few-shot classification
BibRef
Zhong, Q.,
Chen, L.,
Qian, Y.,
Few-Shot Learning for Remote Sensing Image Retrieval With MAML,
ICIP20(2446-2450)
IEEE DOI
2011
Image retrieval, Feature extraction, Training, Remote sensing,
Task analysis, Data models, Histograms, Remote sensing, MAML
BibRef
Rodríguez, P.[Pau],
Laradji, I.[Issam],
Drouin, A.[Alexandre],
Lacoste, A.[Alexandre],
Embedding Propagation: Smoother Manifold for Few-shot Classification,
ECCV20(XXVI:121-138).
Springer DOI
2011
BibRef
Tian, Y.L.[Yong-Long],
Wang, Y.[Yue],
Krishnan, D.[Dilip],
Tenenbaum, J.B.[Joshua B.],
Isola, P.[Phillip],
Rethinking Few-shot Image Classification:
A Good Embedding is All You Need?,
ECCV20(XIV:266-282).
Springer DOI
2011
BibRef
Su, J.C.[Jong-Chyi],
Maji, S.[Subhransu],
Hariharan, B.[Bharath],
When Does Self-supervision Improve Few-shot Learning?,
ECCV20(VII:645-666).
Springer DOI
2011
BibRef
Liu, Q.[Qing],
Majumder, O.[Orchid],
Achille, A.[Alessandro],
Ravichandran, A.[Avinash],
Bhotika, R.[Rahul],
Soatto, S.[Stefano],
Incremental Few-shot Meta-learning via Indirect Discriminant Alignment,
ECCV20(VII:685-701).
Springer DOI
2011
BibRef
Lichtenstein, M.[Moshe],
Sattigeri, P.[Prasanna],
Feris, R.[Rogerio],
Giryes, R.[Raja],
Karlinsky, L.[Leonid],
Tafssl: Task-adaptive Feature Sub-space Learning for Few-shot
Classification,
ECCV20(VII:522-539).
Springer DOI
2011
BibRef
Dvornik, N.[Nikita],
Schmid, C.[Cordelia],
Mairal, J.[Julien],
Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification,
ECCV20(X:769-786).
Springer DOI
2011
BibRef
Wang, S.[Shuo],
Yue, J.[Jun],
Liu, J.Z.[Jian-Zhuang],
Tian, Q.[Qi],
Wang, M.[Meng],
Large-scale Few-shot Learning via Multi-modal Knowledge Discovery,
ECCV20(X:718-734).
Springer DOI
2011
BibRef
Kim, J.[Jaekyeom],
Kim, H.[Hyoungseok],
Kim, G.[Gunhee],
Model-Agnostic Boundary-Adversarial Sampling for Test-Time
Generalization in Few-Shot Learning,
ECCV20(I:599-617).
Springer DOI
2011
BibRef
Nguyen, V.N.[Van Nhan],
Løkse, S.[Sigurd],
Wickstrøm, K.[Kristoffer],
Kampffmeyer, M.[Michael],
Roverso, D.[Davide],
Jenssen, R.[Robert],
Sen: A Novel Feature Normalization Dissimilarity Measure for
Prototypical Few-shot Learning Networks,
ECCV20(XXIII:118-134).
Springer DOI
2011
BibRef
Liu, J.[Jinlu],
Song, L.[Liang],
Qin, Y.Q.[Yong-Qiang],
Prototype Rectification for Few-shot Learning,
ECCV20(I:741-756).
Springer DOI
2011
BibRef
Liu, B.[Bin],
Cao, Y.[Yue],
Lin, Y.T.[Yu-Tong],
Li, Q.[Qi],
Zhang, Z.[Zheng],
Long, M.S.[Ming-Sheng],
Hu, H.[Han],
Negative Margin Matters:
Understanding Margin in Few-Shot Classification,
ECCV20(IV:438-455).
Springer DOI
2011
BibRef
Afrasiyabi, A.[Arman],
Lalonde, J.F.[Jean-François],
Gagné, C.[Christian],
Associative Alignment for Few-shot Image Classification,
ECCV20(V:18-35).
Springer DOI
2011
BibRef
Monnier, T.[Tom],
Vincent, E.[Elliot],
Ponce, J.[Jean],
Aubry, M.[Mathieu],
Unsupervised Layered Image Decomposition into Object Prototypes,
ICCV21(8620-8630)
IEEE DOI
2203
Social networking (online), Computational modeling, Prototypes,
Predictive models, Benchmark testing, Image decomposition,
Visual reasoning and logical representation
BibRef
Sbai, O.[Othman],
Couprie, C.[Camille],
Aubry, M.[Mathieu],
Unsupervised Image Decomposition in Vector Layers,
ICIP20(1576-1580)
IEEE DOI
2011
Deep Image generation, unsupervised learning
BibRef
Sbai, O.[Othman],
Couprie, C.[Camille],
Aubry, M.[Mathieu],
Impact of Base Dataset Design on Few-shot Image Classification,
ECCV20(XVI: 597-613).
Springer DOI
2010
BibRef
Liu, Y.Y.[Yao-Yao],
Schiele, B.[Bernt],
Sun, Q.[Qianru],
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning,
ECCV20(XVI: 404-421).
Springer DOI
2010
BibRef
Guo, Y.,
Cheung, N.,
Attentive Weights Generation for Few Shot Learning via Information
Maximization,
CVPR20(13496-13505)
IEEE DOI
2008
Task analysis, Feature extraction, Mutual information, Generators,
Mathematical model, Adaptation models, Linear programming
BibRef
Elsken, T.,
Staffler, B.,
Metzen, J.H.,
Hutter, F.,
Meta-Learning of Neural Architectures for Few-Shot Learning,
CVPR20(12362-12372)
IEEE DOI
2008
Task analysis, Training, Neural networks,
Adaptation models, Standards, Machine learning
BibRef
Li, A.[Aoxue],
Huang, W.R.[Wei-Ran],
Lan, X.[Xu],
Feng, J.S.[Jia-Shi],
Li, Z.G.[Zhen-Guo],
Wang, L.W.[Li-Wei],
Boosting Few-Shot Learning With Adaptive Margin Loss,
CVPR20(12573-12581)
IEEE DOI
2008
Task analysis, Training, Semantics, Measurement, Additives, Mars, Generators
BibRef
Yu, Z.,
Chen, L.,
Cheng, Z.,
Luo, J.,
TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot
Learning,
CVPR20(12853-12861)
IEEE DOI
2008
Feature extraction, Training, Task analysis,
Semisupervised learning, Data models, Entropy, Data mining
BibRef
Yang, L.,
Li, L.,
Zhang, Z.,
Zhou, X.,
Zhou, E.,
Liu, Y.,
DPGN: Distribution Propagation Graph Network for Few-Shot Learning,
CVPR20(13387-13396)
IEEE DOI
2008
Pattern recognition
BibRef
Tang, L.,
Wertheimer, D.,
Hariharan, B.,
Revisiting Pose-Normalization for Fine-Grained Few-Shot Recognition,
CVPR20(14340-14349)
IEEE DOI
2008
Feature extraction, Training, Task analysis, Birds, Heating systems,
Standards, Semantics
BibRef
Bateni, P.,
Goyal, R.,
Masrani, V.,
Wood, F.,
Sigal, L.,
Improved Few-Shot Visual Classification,
CVPR20(14481-14490)
IEEE DOI
2008
Feature extraction, Task analysis,
Euclidean distance, Prototypes, Computational modeling
BibRef
Xue, Z.,
Xie, Z.,
Xing, Z.,
Duan, L.,
Relative Position and Map Networks in Few-shot Learning for Image
Classification,
VL3W20(4032-4036)
IEEE DOI
2008
Measurement, Training, Feature extraction, Visualization,
Task analysis, Neural networks, Computational modeling
BibRef
Ye, H.,
Hu, H.,
Zhan, D.,
Sha, F.,
Few-Shot Learning via Embedding Adaptation With Set-to-Set Functions,
CVPR20(8805-8814)
IEEE DOI
2008
Task analysis, Visualization, Adaptation models,
Feature extraction, Cats, Prototypes, Training
BibRef
Zhou, L.,
Cui, P.,
Jia, X.,
Yang, S.,
Tian, Q.,
Learning to Select Base Classes for Few-Shot Classification,
CVPR20(4623-4632)
IEEE DOI
2008
Optimization, Testing, Data models, Training data, Adaptation models,
Training, Bayes methods
BibRef
Zhu, H.[Hao],
Koniusz, P.[Piotr],
EASE: Unsupervised Discriminant Subspace Learning for Transductive
Few-Shot Learning,
CVPR22(9068-9078)
IEEE DOI
2210
Learning systems, Codes, Benchmark testing, Data structures,
Pattern recognition, Standards,
Machine learning
BibRef
Simon, C.,
Koniusz, P.,
Nock, R.,
Harandi, M.,
Adaptive Subspaces for Few-Shot Learning,
CVPR20(4135-4144)
IEEE DOI
2008
Prototypes, Task analysis, Feature extraction, Neural networks,
Data models, Robustness, Machine learning
BibRef
Fan, Q.[Qi],
Tang, C.K.[Chi-Keung],
Tai, Y.W.[Yu-Wing],
Few-Shot Object Detection with Model Calibration,
ECCV22(XIX:720-739).
Springer DOI
2211
BibRef
Fan, Q.[Qi],
Zhuo, W.,
Tang, C.K.[Chi-Keung],
Tai, Y.W.[Yu-Wing],
Few-Shot Object Detection With Attention-RPN and Multi-Relation
Detector,
CVPR20(4012-4021)
IEEE DOI
2008
Object detection, Training, Task analysis, Detectors, Proposals,
Semantics
BibRef
Tao, X.,
Hong, X.,
Chang, X.,
Dong, S.,
Wei, X.,
Gong, Y.,
Few-Shot Class-Incremental Learning,
CVPR20(12180-12189)
IEEE DOI
2008
Power capacitors, Training, Task analysis, Topology,
Adaptation models, Neural networks, Network topology
BibRef
Jena, R.,
Halder, S.S.,
Sycara, K.,
MA3: Model Agnostic Adversarial Augmentation for Few Shot learning,
VL3W20(3966-3970)
IEEE DOI
2008
Task analysis, Training, Transforms, Standards, Neural networks,
Data models
BibRef
Li, K.,
Zhang, Y.,
Li, K.,
Fu, Y.,
Adversarial Feature Hallucination Networks for Few-Shot Learning,
CVPR20(13467-13476)
IEEE DOI
2008
Generators, Task analysis, Data models, Training,
Measurement, Neural networks
BibRef
Rahimpour, A.,
Qi, H.,
Class-Discriminative Feature Embedding For Meta-Learning based
Few-Shot Classification,
WACV20(3168-3176)
IEEE DOI
2006
Task analysis, Measurement, Training, Prototypes, Predictive models,
Machine learning, Data models
BibRef
Mangla, P.,
Singh, M.,
Sinha, A.,
Kumari, N.,
Balasubramanian, V.N.,
Krishnamurthy, B.,
Charting the Right Manifold: Manifold Mixup for Few-shot Learning,
WACV20(2207-2216)
IEEE DOI
2006
Task analysis, Manifolds, Training, Feature extraction, Robustness,
Neural networks, Adaptation models
BibRef
Chen, P.F.[Peng-Fei],
Yuan, M.L.[Ming-Lei],
Lu, T.[Tong],
Multi-scale Comparison Network for Few-shot Learning,
MMMod20(II:3-13).
Springer DOI
2003
BibRef
Seo, S.[Seonguk],
Seo, P.H.[Paul Hongsuck],
Han, B.H.[Bo-Hyung],
Learning for Single-Shot Confidence Calibration in Deep Neural Networks
Through Stochastic Inferences,
CVPR19(9022-9030).
IEEE DOI
2002
BibRef
Wang, X.[Xin],
Yu, F.[Fisher],
Wang, R.[Ruth],
Darrell, T.J.[Trevor J.],
Gonzalez, J.E.[Joseph E.],
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning,
CVPR19(1831-1840).
IEEE DOI
2002
BibRef
Zhang, H.G.[Hong-Guang],
Zhang, J.[Jing],
Koniusz, P.[Piotr],
Few-Shot Learning via Saliency-Guided Hallucination of Samples,
CVPR19(2765-2774).
IEEE DOI
2002
BibRef
Wu, Z.H.[Zhong-Hua],
Shi, X.X.[Xiang-Xi],
Lin, G.S.[Guo-Sheng],
Cai, J.F.[Jian-Fei],
Learning Meta-class Memory for Few-Shot Semantic Segmentation,
ICCV21(497-506)
IEEE DOI
2203
Weight measurement, Training, Image quality, Image segmentation,
Fuses, Semantics, Prototypes, Recognition and classification, Scene analysis and understanding
BibRef
Zhang, C.[Chi],
Lin, G.S.[Guo-Sheng],
Liu, F.[Fayao],
Yao, R.[Rui],
Shen, C.H.[Chun-Hua],
CANet: Class-Agnostic Segmentation Networks with Iterative Refinement
and Attentive Few-Shot Learning,
CVPR19(5212-5221).
IEEE DOI
2002
BibRef
Chu, W.H.[Wen-Hsuan],
Li, Y.J.[Yu-Jhe],
Chang, J.C.[Jing-Cheng],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Spot and Learn: A Maximum-Entropy Patch Sampler for Few-Shot Image
Classification,
CVPR19(6244-6253).
IEEE DOI
2002
BibRef
Alfassy, A.[Amit],
Karlinsky, L.[Leonid],
Aides, A.[Amit],
Shtok, J.[Joseph],
Harary, S.[Sivan],
Feris, R.[Rogerio],
Giryes, R.[Raja],
Bronstein, A.M.[Alex M.],
LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning,
CVPR19(6541-6550).
IEEE DOI
2002
BibRef
Wertheimer, D.[Davis],
Hariharan, B.[Bharath],
Few-Shot Learning With Localization in Realistic Settings,
CVPR19(6551-6560).
IEEE DOI
2002
BibRef
Wang, T.[Tao],
Zhang, X.P.[Xiao-Peng],
Yuan, L.[Li],
Feng, J.S.[Jia-Shi],
Few-Shot Adaptive Faster R-CNN,
CVPR19(7166-7175).
IEEE DOI
2002
BibRef
Fei, N.Y.[Nan-Yi],
Guan, J.C.[Jie-Chao],
Lu, Z.W.[Zhi-Wu],
Gao, Y.Z.[Yi-Zhao],
Few-shot Zero-shot Learning: Knowledge Transfer with Less Supervision,
ACCV20(III:592-608).
Springer DOI
2103
BibRef
Li, A.[Aoxue],
Luo, T.[Tiange],
Lu, Z.W.[Zhi-Wu],
Xiang, T.[Tao],
Wang, L.W.[Li-Wei],
Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy,
CVPR19(7205-7213).
IEEE DOI
2002
BibRef
Li, W.B.[Wen-Bin],
Wang, L.[Lei],
Xu, J.L.[Jing-Lin],
Huo, J.[Jing],
Gao, Y.[Yang],
Luo, J.B.[Jie-Bo],
Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot
Learning,
CVPR19(7253-7260).
IEEE DOI
2002
BibRef
Schonfeld, E.[Edgar],
Ebrahimi, S.[Sayna],
Sinha, S.[Samarth],
Darrell, T.J.[Trevor J.],
Akata, Z.[Zeynep],
Generalized Zero- and Few-Shot Learning via Aligned Variational
Autoencoders,
CVPR19(8239-8247).
IEEE DOI
2002
BibRef
Dutta, A.[Anjan],
Mancini, M.[Massimiliano],
Akata, Z.[Zeynep],
Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning,
DeepMTL21(2189-2198)
IEEE DOI
2112
Learning systems, Visualization, Protocols, Image recognition,
Transfer learning, Semantics, Benchmark testing
BibRef
Pastore, G.[Giuseppe],
Cermelli, F.[Fabio],
Xian, Y.Q.[Yong-Qin],
Mancini, M.[Massimiliano],
Akata, Z.[Zeynep],
Caputo, B.[Barbara],
A Closer Look at Self-training for Zero-Label Semantic Segmentation,
LLID21(2687-2696)
IEEE DOI
2109
Training, Image segmentation, Semantics, Pipelines,
Predictive models, Information filters, Pattern recognition
BibRef
Xian, Y.Q.[Yong-Qin],
Choudhury, S.[Subhabrata],
He, Y.[Yang],
Schiele, B.[Bernt],
Akata, Z.[Zeynep],
Semantic Projection Network for Zero- and Few-Label Semantic
Segmentation,
CVPR19(8248-8257).
IEEE DOI
2002
BibRef
Lifchitz, Y.[Yann],
Avrithis, Y.[Yannis],
Picard, S.[Sylvaine],
Bursuc, A.[Andrei],
Dense Classification and Implanting for Few-Shot Learning,
CVPR19(9250-9259).
IEEE DOI
2002
BibRef
Jamal, M.A.[Muhammad Abdullah],
Qi, G.J.[Guo-Jun],
Task Agnostic Meta-Learning for Few-Shot Learning,
CVPR19(11711-11719).
IEEE DOI
2002
BibRef
Ye, M.[Meng],
Guo, Y.H.[Yu-Hong],
Progressive Ensemble Networks for Zero-Shot Recognition,
CVPR19(11720-11728).
IEEE DOI
2002
BibRef
Atzmon, Y.[Yuval],
Chechik, G.[Gal],
Adaptive Confidence Smoothing for Generalized Zero-Shot Learning,
CVPR19(11663-11672).
IEEE DOI
2002
BibRef
Kampffmeyer, M.[Michael],
Chen, Y.[Yinbo],
Liang, X.D.[Xiao-Dan],
Wang, H.[Hao],
Zhang, Y.J.[Yu-Jia],
Xing, E.P.[Eric P.],
Rethinking Knowledge Graph Propagation for Zero-Shot Learning,
CVPR19(11479-11488).
IEEE DOI
2002
BibRef
Tong, B.[Bin],
Wang, C.[Chao],
Klinkigt, M.[Martin],
Kobayashi, Y.[Yoshiyuki],
Nonaka, Y.[Yuuichi],
Hierarchical Disentanglement of Discriminative Latent Features for
Zero-Shot Learning,
CVPR19(11459-11468).
IEEE DOI
2002
BibRef
Hascoet, T.[Tristan],
Ariki, Y.[Yasuo],
Takiguchi, T.[Tetsuya],
On Zero-Shot Recognition of Generic Objects,
CVPR19(9545-9553).
IEEE DOI
2002
BibRef
Xie, G.S.[Guo-Sen],
Liu, L.[Li],
Jin, X.B.[Xiao-Bo],
Zhu, F.[Fan],
Zhang, Z.[Zheng],
Qin, J.[Jie],
Yao, Y.Z.[Ya-Zhou],
Shao, L.[Ling],
Attentive Region Embedding Network for Zero-Shot Learning,
CVPR19(9376-9385).
IEEE DOI
2002
BibRef
Xie, G.S.[Guo-Sen],
Liu, L.[Li],
Zhu, F.[Fan],
Zhao, F.[Fang],
Zhang, Z.[Zheng],
Yao, Y.Z.[Ya-Zhou],
Qin, J.[Jie],
Shao, L.[Ling],
Region Graph Embedding Network for Zero-shot Learning,
ECCV20(IV:562-580).
Springer DOI
2011
BibRef
Paul, A.[Akanksha],
Krishnan, N.C.[Narayanan C.],
Munjal, P.[Prateek],
Semantically Aligned Bias Reducing Zero Shot Learning,
CVPR19(7049-7058).
IEEE DOI
2002
BibRef
Ding, Z.M.[Zheng-Ming],
Liu, H.F.[Hong-Fu],
Marginalized Latent Semantic Encoder for Zero-Shot Learning,
CVPR19(6184-6192).
IEEE DOI
2002
BibRef
Li, J.[Jin],
Lan, X.G.[Xu-Guang],
Liu, Y.[Yang],
Wang, L.[Le],
Zheng, N.N.[Nan-Ning],
Compressing Unknown Images With Product Quantizer for Efficient
Zero-Shot Classification,
CVPR19(5458-5467).
IEEE DOI
2002
BibRef
Zhu, P.K.[Peng-Kai],
Wang, H.X.[Han-Xiao],
Saligrama, V.[Venkatesh],
Generalized Zero-Shot Recognition Based on Visually Semantic Embedding,
CVPR19(2990-2998).
IEEE DOI
2002
BibRef
Pal, A.[Arghya],
Balasubramanian, V.N.[Vineeth N.],
Zero-Shot Task Transfer,
CVPR19(2184-2193).
IEEE DOI
2002
BibRef
Sariyildiz, M.B.[Mert Bulent],
Cinbis, R.G.[Ramazan Gokberk],
Gradient Matching Generative Networks for Zero-Shot Learning,
CVPR19(2163-2173).
IEEE DOI
2002
BibRef
Huang, H.[He],
Wang, C.H.[Chang-Hu],
Yu, P.S.[Philip S.],
Wang, C.D.[Chang-Dong],
Generative Dual Adversarial Network for Generalized Zero-Shot Learning,
CVPR19(801-810).
IEEE DOI
2002
BibRef
Li, J.J.[Jing-Jing],
Jing, M.M.[Meng-Meng],
Lu, K.[Ke],
Ding, Z.M.[Zheng-Ming],
Zhu, L.[Lei],
Huang, Z.[Zi],
Leveraging the Invariant Side of Generative Zero-Shot Learning,
CVPR19(7394-7403).
IEEE DOI
2002
BibRef
Li, H.Y.[Hong-Yang],
Eigen, D.[David],
Dodge, S.[Samuel],
Zeiler, M.[Matthew],
Wang, X.G.[Xiao-Gang],
Finding Task-Relevant Features for Few-Shot Learning by Category
Traversal,
CVPR19(1-10).
IEEE DOI
2002
BibRef
Kim, J.[Jongmin],
Kim, T.[Taesup],
Kim, S.[Sungwoong],
Yoo, C.D.[Chang D.],
Edge-Labeling Graph Neural Network for Few-Shot Learning,
CVPR19(11-20).
IEEE DOI
2002
BibRef
Gidaris, S.[Spyros],
Komodakis, N.[Nikos],
Generating Classification Weights With GNN Denoising Autoencoders for
Few-Shot Learning,
CVPR19(21-30).
IEEE DOI
2002
BibRef
Sun, Q.R.[Qian-Ru],
Liu, Y.Y.[Yao-Yao],
Chua, T.S.[Tat-Seng],
Schiele, B.[Bernt],
Meta-Transfer Learning for Few-Shot Learning,
CVPR19(403-412).
IEEE DOI
2002
BibRef
Pahde, F.,
Ostapenko, O.,
Hnichen, P.J.,
Klein, T.,
Nabi, M.,
Self-Paced Adversarial Training for Multimodal Few-Shot Learning,
WACV19(218-226)
IEEE DOI
1904
learning (artificial intelligence), neural nets,
object recognition, Oxford-102 dataset, fine grained CUB dataset,
Training data
BibRef
Mehrotra, A.,
Dukkipati, A.,
Skip Residual Pairwise Networks With Learnable Comparative Functions
for Few-Shot Learning,
WACV19(886-894)
IEEE DOI
1904
image representation, learning (artificial intelligence),
mini-Imagenet dataset, skip residual pairwise networks,
Data models
BibRef
Pahde, F.,
Puscas, M.,
Wolff, J.,
Klein, T.,
Sebe, N.,
Nabi, M.,
Low-Shot Learning From Imaginary 3D Model,
WACV19(978-985)
IEEE DOI
1904
image classification, learning (artificial intelligence),
neural nets, object recognition, set theory,
Meta-Learning
BibRef
Zhang, L.[Lu],
Yang, X.[Xu],
Liu, Z.Y.[Zhi-Yong],
Qi, L.[Lu],
Zhou, H.[Hao],
Chiu, C.[Charles],
Single Shot Feature Aggregation Network for Underwater Object
Detection,
ICPR18(1906-1911)
IEEE DOI
1812
Feature extraction, Object detection, Detectors, Task analysis,
Training, Semantics, Convolutional neural networks
BibRef
Xu, P.,
Zhao, X.,
Huang, K.,
Densely Connected Single-Shot Detector,
ICPR18(2178-2183)
IEEE DOI
1812
Feature extraction, Detectors, Object detection, Convolution,
Transforms, Task analysis, Pattern recognition
BibRef
Gidaris, S.,
Komodakis, N.,
Dynamic Few-Shot Visual Learning Without Forgetting,
CVPR18(4367-4375)
IEEE DOI
1812
Training, Feature extraction, Generators, Training data,
Visualization, Object recognition, Task analysis
BibRef
Qiao, S.,
Liu, C.,
Shen, W.,
Yuille, A.L.,
Few-Shot Image Recognition by Predicting Parameters from Activations,
CVPR18(7229-7238)
IEEE DOI
1812
Training, Neural networks, Visualization, Training data, Linearity
BibRef
Wang, Y.,
Girshick, R.,
Hebert, M.,
Hariharan, B.,
Low-Shot Learning from Imaginary Data,
CVPR18(7278-7286)
IEEE DOI
1812
Training, Strain, Visualization, Data visualization, Task analysis,
Feature extraction, Machine vision
BibRef
Zhao, F.[Fang],
Zhao, J.[Jian],
Yan, S.C.[Shui-Cheng],
Feng, J.S.[Jia-Shi],
Dynamic Conditional Networks for Few-Shot Learning,
ECCV18(XV: 20-36).
Springer DOI
1810
BibRef
Lin, C.,
Wang, Y.F.,
Lei, C.,
Chen, K.,
Semantics-Guided Data Hallucination for Few-Shot Visual
Classification,
ICIP19(3302-3306)
IEEE DOI
1910
Few-shot learning, deep learning, image classification, data hallucination
BibRef
Chu, W.,
Wang, Y.F.,
Learning Semantics-Guided Visual Attention for Few-Shot Image
Classification,
ICIP18(2979-2983)
IEEE DOI
1809
Task analysis, Training, Feature extraction, Visualization,
Semantics, Generators, Silicon, Few-shot learning, image classification
BibRef
Pahde, F.[Frederik],
Nabi, M.[Main],
Klein, T.[Tassila],
Jahnichen, P.[Patrick],
Discriminative Hallucination for Multi-Modal Few-Shot Learning,
ICIP18(156-160)
IEEE DOI
1809
Training, Visualization, Birds, Machine learning,
Training data, Task analysis, Few-Shot Learning, Multi-Modal,
Fine-grained Recognition
BibRef
Qi, H.,
Brown, M.,
Lowe, D.G.,
Low-Shot Learning with Imprinted Weights,
CVPR18(5822-5830)
IEEE DOI
1812
Training, Neural networks, Semantics, Google, Training data, Euclidean distance
BibRef
Hariharan, B.[Bharath],
Girshick, R.[Ross],
Low-Shot Visual Recognition by Shrinking and Hallucinating Features,
ICCV17(3037-3046)
IEEE DOI
1802
Recognize categories from very few examples.
image recognition, learning (artificial intelligence),
object recognition, feature hallucination, feature shrinking,
Visualization
BibRef
Xu, Z.,
Zhu, L.,
Yang, Y.,
Few-Shot Object Recognition from Machine-Labeled Web Images,
CVPR17(5358-5366)
IEEE DOI
1711
Google, Neural networks, Object recognition, Training, Visualization
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
One Shot Learning .