Chaikin, G.M.[George Merrill],
An Algorithm For High Speed Curve Generation,
CGIP(3), No. 4, December 1974, pp. 346-349.
Elsevier DOI
BibRef
7412
Riesenfeld, R.F.,
On Chaikin's algorithm,
CGIP(4), No. 3, September 1975, pp. 304-310.
Elsevier DOI
0501
Formulate as parameterized recursive function. Relate to B-Splines.
See also Algorithm For High Speed Curve Generation, An.
BibRef
Shlien, S.[Seymour],
Allard, P.[Paul],
A FIR filtering approach for the generation of smooth curves on a
graphics terminal,
CGIP(17), No. 3, November 1981, pp. 269-280.
Elsevier DOI
0501
BibRef
Ramer, U.,
Ballard, D.H.,
Strip Trees: A Hierarchical Representation for Curves,
CACM(24), No. 5, May 1981, pp. 310-321.
BibRef
8105
And:
Correction:
CACM(25), No. 3, March 1982, pp. 213.
The strip is a rectangle that contains the curve in the given straight line
section. This allows for more efficient intersection and membership tests
since strips can be tested first.
BibRef
Ballard, D.H.,
Strip Trees: A Hierarchical Representation for Map Features,
PRIP79(278-285).
BibRef
7900
And:
DARPA79(121-133).
BibRef
Stockman, G.C.,
Kanal, L.N.,
Problem Reduction Representation for the
Linguistic Analysis of Waveforms,
PAMI(5), No. 3, May 1983, pp. 287-298.
BibRef
8305
Hoffman, D.D.,
Richards, W.A.,
Parts of Recognition,
Cognition(18), 1985, pp. 65-96.
BibRef
8500
And:
RCV87(227-242).
BibRef
And:
MIT AI Memo-732, December 1983.
A discussion of how humans partition curves and shapes
and a proposal that it will work for object recognition.
BibRef
Singh, M.,
Seyranian, G.,
Hoffman, D.D.,
Parsing silhouettes: The short-cut rule,
PandP(61), 1999, pp. 636-660.
BibRef
9900
Safaee-Rad, R.,
Tchoukanov, I.,
Smith, K.C.,
Benhabib, B.,
Constraints on Quadratic-Curved Features under Perspective Projection,
IVC(10), No. 8, October 1992, pp. 532-548.
Elsevier DOI
BibRef
9210
Safaee-Rad, R.,
Tchoukanov, I.,
Benhabib, B.,
Smith, K.C.,
Accurate Parameter Estimation of Quadratic Curves from
Grey-Level Images,
CVGIP(54), No. 2, September 1991, pp. 259-274.
Elsevier DOI
BibRef
9109
Earlier: A1, A4, A3, Only:
Accurate estimation of elliptical shape parameters from a grey-level
image,
ICPR90(II: 20-26).
IEEE DOI
9208
BibRef
Horn, B.K.P.,
Weldon, Jr., E.J.,
Filtering Closed Curves,
PAMI(8), No. 5, September 1986, pp. 665-668.
BibRef
8609
Earlier:
CVPR85(478-484). (MIT)
Represent as radius of curvature vs. tangent direction. Derives
various processing techniques, adding curves, and smoothing.
BibRef
Tsai, W.H.[Wen-Hsiang],
Moment-preserving thresolding: A new approach,
CVGIP(29), No. 3, 1985, pp. 377-393.
Elsevier DOI
0501
BibRef
Chen, L.H.[Ling-Hwei],
Tsai, W.H.[Wen-Hsiang],
Moment-Preserving Curve Detection,
SMC(18), 1988, pp. 148-158.
BibRef
8800
Chen, L.H.[Ling-Hwei],
Tsai, W.H.[Wen-Hsiang],
Moment-Preserving Line Detection,
PR(21), No. 1, 1988, pp. 45-53.
Elsevier DOI
BibRef
8800
Walters, D.[Deborah],
Selection of Image Primitives for General-Purpose Visual Processing,
CVGIP(37), No. 2, February 1987, pp. 261-298.
Elsevier DOI
BibRef
8702
Earlier:
Selection and Use of Image Features for Segmentation
of Boundary Images,
CVPR86(319-324).
BibRef
Chen, D.S.,
A Data-Driven Intermediate Level Feature Extraction Algorithm,
PAMI(11), No. 7, July 1989, pp. 749-758.
IEEE DOI Fit curves to edge data without linking, etc.
BibRef
8907
Günther, O.[Oliver],
Wong, E.[Eugene],
The Arc Tree: An Approximation Scheme to Represent Arbitrary
Curved Shapes,
CVGIP(51), No. 3, September 1990, pp. 313-337.
Elsevier DOI The curve is broken in half at each level of the
tree, not at any interest point.
BibRef
9009
Wang, L.[Li],
Pavlidis, T.[Theo],
Detection of Curved and Straight Segments from Gray-Scale Topography,
CVGIP(58), No. 3, November 1993, pp. 352-365.
DOI Link
BibRef
9311
Liang, P.[Ping],
Lee, J.F.[Jeng-Feng],
Wang, Y.F.[Yuan-Fang],
Orientation-based Unique Representation for Planar Curves and Shapes,
VC(8), 1992, pp. 191-199.
BibRef
9200
Lam, L.T.S.,
Lam, W.C.Y.,
Leung, D.N.K.,
A Knowledge-Based Boundary Convergence Algorithm for Line Detection,
PRL(15), No. 4, April 1994, pp. 383-392.
BibRef
9404
Dori, D.,
Haralick, R.M.[Robert M.],
A Pattern-Recognition Approach to the Detection of Complex Edges,
PRL(16), No. 5, May 1995, pp. 517-529.
BibRef
9505
Nishida, H.[Hirobumi],
Curve Description Based on Directional Features and
Quasi-Convexity Concavity,
PR(28), No. 7, July 1995, pp. 1045-1051.
Elsevier DOI
BibRef
9507
Nishida, H.[Hirobumi],
Mori, S.,
Structural Analysis and Description of Curves by
Quasi-Topological Features and Singular Points,
SDIA92(xx-yy).
BibRef
9200
Viero, T.,
Jeulin, D.,
Morphological Extraction of Line Networks from
Noisy Low-Contrast Images,
JVCIR(6), No. 4, December 1995, pp. 335-347.
BibRef
9512
Wu, K.N.,
Levine, M.D.,
2D Shape Segmentation: A New Approach,
PRL(17), No. 2, February 8 1996, pp. 133-140.
Related 3d:
See also 3D Part Segmentation: A New Physics-Based Approach.
BibRef
9602
Zhu, Q.M.[Qiu-Ming],
Efficient Evaluations of Edge-Connectivity and Width Uniformity,
IVC(14), No. 1, February 1996, pp. 21-34.
Elsevier DOI
9608
Evaluation, Edges.
Edges, Evaluation.
Connectivity. Similar to
See also Edge Evaluation using Local Edge Coherence.
BibRef
Zhu, Q.M.,
Payne, M.,
Riordan, V.,
Edge Linking by a Directional Potential Function (DPF),
IVC(14), No. 1, February 1996, pp. 59-70.
Elsevier DOI
9608
BibRef
Babaguchi, N.[Noboru],
Aibara, T.[Tsunehiro],
Curvedness of a Line Picture,
PR(20), No. 3, 1987, pp. 273-280.
Elsevier DOI
BibRef
8700
Zunic, J.,
A Coding Scheme for Certain Sets of Digital Curves,
PRL(16), 1995, pp. 97-104.
BibRef
9500
Hsu, J.C.[Jui-Chi],
Hwang, S.Y.[Shu-Yuen],
A Machine Learning Approach for Acquiring
Descriptive Classification Rules of Shape Contours,
PR(30), No. 2, February 1997, pp. 245-252.
Elsevier DOI
9704
BibRef
Kocic, L.M.,
Milovanovic, G.V.,
Shape-Preserving Approximations by Polynomials and Splines,
CompMathApp(33), No. 11, June 1997, pp. 59-97.
9708
BibRef
Kudo, M.[Mineichi],
Toyama, J.[Jun],
Shimbo, M.[Masaru],
Multidimensional curve classification using passing-through regions,
PRL(20), No. 11-13, November 1999, pp. 1103-1111.
0001
BibRef
Streekstra, G.J.,
van den Boomgaard, R.[Rein],
Smeulders, A.W.M.,
Scale Dependency of Image Derivatives for Feature Measurement in
Curvilinear Structures,
IJCV(42), No. 3, May-June 2001, pp. 177-189.
DOI Link
0108
BibRef
Streekstra, G.J.,
van den Boomgaard, R.[Rein],
Smeulders, A.W.M.,
Scale Dependent Differential Geometry for the Measurement of Center
Line and Diameter in 3D Curvilinear Structures,
ECCV00(I: 856-870).
Springer DOI
0003
BibRef
Streekstra, G.J.,
Smeulders, A.W.M.,
van den Boomgaard, R.,
Tracing of Curvilinear Structures in 3D Images with Single Scale
Diameter Measurement,
ScaleSpace99(501-506).
BibRef
9900
Geusebroek, J.M.[Jan-Mark],
Smeulders, A.W.M.[Arnold W.M.],
Geerts, H.[Hugo],
A Minimum Cost Approach for Segmenting Networks of Lines,
IJCV(43), No. 2, July 2001, pp. 99-111.
DOI Link
0108
BibRef
Tang, Y.Y.[Yuan Y.],
Yang, F.[Feng],
Liu, J.M.[Ji-Ming],
Basic Processes of Chinese Character Based on
Cubic B-Spline Wavelet Transform,
PAMI(23), No. 12, December 2001, pp. 1443-1448.
IEEE DOI
0112
For character compression, type descriptions, etc.
Describe contour as b-spline, use wavelet to get control
points for different resolutions.
BibRef
Huo, X.,
Chen, J.,
JBEAM: Multiscale Curve Coding via Beamlets,
IP(14), No. 11, November 2005, pp. 1665-1677.
IEEE DOI
0510
BibRef
Piegl, L.A.[Les A.],
Ma, W.Y.[Wei-Yin],
Tiller, W.[Wayne],
An alternative method of curve interpolation,
VC(21), No. 1-2, February 2005, pp. 104-117.
Springer DOI
0502
BibRef
Ganguly, P.[Pankaj],
Modified Arc tree based hierarchical representation of digital curve,
PRL(27), No. 6, 15 April 2006, pp. 529-535.
Elsevier DOI
0604
Digital curve; Hierarchical representation; Arc tree; Split points; ISE
BibRef
Berlemont, S.[Sylvain],
Olivo-Marin, J.C.[Jean-Christophe],
Combining Local Filtering and Multiscale Analysis for Edge, Ridge, and
Curvilinear Objects Detection,
IP(19), No. 1, January 2010, pp. 74-84.
IEEE DOI
1001
BibRef
Berlemont, S.[Sylvain],
Bensimon, A.[Aaron],
Olivo-Marin, J.C.[Jean-Christophe],
Feature-Adapted Fast Slant Stack,
ICIP07(IV: 57-60).
IEEE DOI
0709
Radon transform detecting features along curves.
See also JBEAM: Multiscale Curve Coding via Beamlets.
See also Fast slant stack: A notion of radon transform for data on a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful, and invertible.
BibRef
Manousopoulos, P.[Polychronis],
Drakopoulos, V.[Vassileios],
Theoharis, T.[Theoharis],
Parameter Identification of 1D Recurrent Fractal Interpolation
Functions with Applications to Imaging and Signal Processing,
JMIV(40), No. 2, June 2011, pp. 162-170.
WWW Link.
1103
To model irregular data.
BibRef
Kawase, H.[Hotaka],
Shinya, M.[Mikio],
Shiraishi, M.[Michio],
A Line Smoothing Method of Hand-Drawn Strokes Using Adaptive Moving
Average for Illustration Tracing Tasks,
IEICE(E95-D), No. 11, November 2012, pp. 2704-2709.
WWW Link.
1211
BibRef
Wu, G.[Gang],
Zhang, Y.C.[Yan-Chun],
A new Chebyshev polynomials descriptor applicable to open curves,
PRL(62), No. 1, 2015, pp. 41-48.
Elsevier DOI
1507
Chebyshev polynomial
BibRef
Mathlouthi, Y.[Yosra],
Mitiche, A.[Amar],
Ben Ayed, I.[Ismail],
Regularised differentiation for image derivatives,
IET-IPR(11), No. 5, April 2017, pp. 310-316.
DOI Link
1706
BibRef
Milaghardan, A.H.[Amin Hosseinpoor],
Abbaspour, R.A.[Rahim Ali],
Claramunt, C.[Christophe],
A Geometric Framework for Detection of Critical Points in a
Trajectory Using Convex Hulls,
IJGI(7), No. 1, 2018, pp. xx-yy.
DOI Link
1801
BibRef
Kimia, B.B.[Benjamin B.],
Li, X.Y.[Xiao-Yan],
Guo, Y.L.[Yu-Liang],
Tamrakar, A.[Amir],
Differential Geometry in Edge Detection:
Accurate Estimation of Position, Orientation and Curvature,
PAMI(41), No. 7, July 2019, pp. 1573-1586.
IEEE DOI
1906
Image edge detection, Detectors, Geometry, Kernel, Convolution,
Topology, Histograms, Edge detection, differential geometry,
topology
BibRef
Sánchez-García, E.[Elena],
Balaguer-Beser, Á.[Ángel],
Almonacid-Caballer, J.[Jaime],
Pardo-Pascual, J.E.[Josep Eliseu],
A New Adaptive Image Interpolation Method to Define the Shoreline at
Sub-Pixel Level,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Xu, X.[Xun],
Nguyen, M.C.[Manh Cuong],
Yazici, Y.[Yasin],
Lu, K.K.[Kang-Kang],
Min, H.[Hlaing],
Foo, C.S.[Chuan-Sheng],
SemiCurv: Semi-Supervised Curvilinear Structure Segmentation,
IP(31), 2022, pp. 5109-5120.
IEEE DOI
2208
Image segmentation, Roads, Task analysis, Semisupervised learning,
Correlation, Biomedical imaging, Training,
semantic segmentation
BibRef
Canêjo, M.J.[Marcos José],
Barros-de Mello, C.A.[Carlos Alexandre],
Edge Detection in Natural Scenes Inspired by the Speed Drawing
Challenge,
IJIG(23), No. 1 2023, pp. 2350009.
DOI Link
2302
BibRef
Challoob, M.[Mohsin],
Gao, Y.S.[Yong-Sheng],
Quadratic Tensor Anisotropy Measures for Reliable Curvilinear Pattern
Detection,
ACIVS20(139-150).
Springer DOI
2003
BibRef
Le Quentrec, É.[Étienne],
Mazo, L.[Loïc],
Baudrier, É.[Étienne],
Tajine, M.[Mohamed],
Local Turn-Boundedness: A Curvature Control for a Good Digitization,
DGCI19(51-61).
Springer DOI
1905
BibRef
Pomenkova, J.,
Klejmova, E.,
Optimization of time-frequency curve description via kernel smoothing,
WSSIP16(1-4)
IEEE DOI
1608
detonation
BibRef
Kozera, R.[Ryszard],
Noakes, L.[Lyle],
Szmielew, P.[Piotr],
Quartic Orders and Sharpness in Trajectory Estimation for Smooth
Cumulative Chord Cubics,
ICCVG14(9-16).
Springer DOI
1410
Curve fitting.
BibRef
Law, M.W.K.[Max W.K.],
Tay, K.Y.[Keng-Yeow],
Leung, A.[Andrew],
Garvin, G.J.[Gregory J.],
Li, S.[Shuo],
Dilated Divergence Based Scale-Space Representation for Curve Analysis,
ECCV12(II: 557-571).
Springer DOI
1210
BibRef
Dutta, M.[Mala],
Mahanta, A.K.[Anjana Kakoti],
Mining Calendar-Based Periodicities of Patterns in Temporal Data,
PReMI09(243-248).
Springer DOI
0912
1-d wave analysis
BibRef
Emeliyanenko, P.[Pavel],
Berberich, E.[Eric],
Sagraloff, M.[Michael],
Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast,
ISVC09(I: 608-619).
Springer DOI
0911
Demo:
WWW Link. Rendering curves more exactly.
BibRef
Guo, F.[Fenghua],
Zhang, C.M.[Cai-Ming],
A New Method for Approximating Optimal Parameterization of Polynomial
Curves,
ISVC06(II: 98-105).
Springer DOI
0611
BibRef
Baloch, S.H.,
Krim, H.,
Mio, W.,
Srivastava, A.,
3D Curve Interpolation and Object Reconstruction,
ICIP05(II: 982-985).
IEEE DOI
0512
BibRef
Angelopoulou, A.[Anastassia],
Psarrou, A.[Alexandra],
Rodríguez, J.G.[José García],
Revett, K.[Kenneth],
Automatic Landmarking of 2D Medical Shapes Using the Growing Neural Gas
Network,
CVBIA05(210-219).
Springer DOI
0601
BibRef
van Ginkel, M.[Michael],
Kraaijveld, M.A.,
van Vliet, L.J.[Lucas J.],
Reding, E.P.,
Verbeek, P.W.,
Lammers, H.J.,
Robust Curve Detection Using a Radon Transform in Orientation Space,
SCIA03(125-132).
Springer DOI
0310
BibRef
Mokhtari, M.,
Bergevin, R.,
Generic multi-scale segmentation and curve approximation method,
ScaleSpace01(xx-yy).
0106
BibRef
Shah, J.,
Segmentation of shapes,
ScaleSpace01(xx-yy).
0106
BibRef
Sporring, J.,
Arps, R.,
Representing Contours as Sequence of One Dimensional Functions,
ACCV00(xx-yy).
Minimum Description Length, Moving Frame
PS File.
0001
BibRef
Beyer, G.,
Representation and Wavelet Transformation of Relief-Related Space
Curves,
ISPRSGIS99(49-54).
BibRef
9900
Ran, X.N.[Xiao-Nong],
Farvardin, N.,
On planar curve representation,
ICIP94(I: 676-680).
IEEE DOI
9411
BibRef
Li, B.C.[Bing-Cheng],
Ma, S.D.[Song De],
Moment difference method for the parameter estimation of a quadratic
curve,
ICPR94(A:169-173).
IEEE DOI
9410
BibRef
Deren, D.,
Marcus, R.,
Werman, M.,
Peleg, S.,
Segmentation by Minimum Length Encoding,
ICPR90(I: 681-683).
IEEE DOI Line segment generation of curves (or waveforms).
BibRef
9000
Saund, E.,
Labeling of Curvilinear Structure Across Scales by Token Grouping,
CVPR92(257-263).
IEEE DOI
BibRef
9200
Sheinvald, J.,
Dom, B.,
Niblack, W.,
Banerjee, S.,
Detecting parameterized curve segments using MDL and the Hough
transform,
CVPR92(547-552).
IEEE DOI
0403
BibRef
Han, J.H.,
Detection of Convex and Concave Discontinuous Points in a Plane Curve,
ICCV90(71-74).
IEEE DOI
BibRef
9000
O'Gorman, L.,
Curvilinear Feature Detection from Curvature Estimation,
ICPR88(II: 1116-1119).
IEEE DOI
8811
BibRef
And:
An Analysis of Feature Detectability from Curvature Estimation,
CVPR88(235-240).
IEEE DOI
BibRef
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Curve Fitting .