Jones, D.I.,
Aerial inspection of overhead power lines using video: estimation of
image blurring due to vehicle and camera motion,
VISP(147), No. 2, April 2000, pp. 157.
0005
BibRef
Golightly, I.[Ian],
Jones, D.[Dewi],
Corner detection and matching for visual tracking during power line
inspection,
IVC(21), No. 9, September 2003, pp. 827-840.
Elsevier DOI
0308
BibRef
Sun, C.M.[Chang-Ming],
Jones, R.[Ronald],
Talbot, H.[Hugues],
Wu, X.L.[Xiao-Liang],
Cheong, K.[Kevin],
Beare, R.[Richard],
Buckley, M.[Michael],
Berman, M.[Mark],
Measuring the distance of vegetation from powerlines using stereo
vision,
PandRS(60), No. 4, June 2006, pp. 269-283.
Elsevier DOI
PDF File.
0610
Stereo matching; powerline inspection; power pole segmentation;
vegetation clearance; 3D vegetation surface
BibRef
Li, Z.R.[Zheng-Rong],
Liu, Y.[Yuee],
Walker, R.[Rodney],
Hayward, R.[Ross],
Zhang, J.L.[Jing-Lan],
Towards automatic power line detection for a UAV surveillance system
using pulse coupled neural filter and an improved Hough transform,
MVA(21), No. 5, August 2010, pp. 677-686.
WWW Link.
1011
BibRef
Liu, Y.[Yuee],
Li, Z.R.[Zheng-Rong],
Hayward, R.[Ross],
Walker, R.[Rodney],
Jin, H.[Hang],
Classification of Airborne LIDAR Intensity Data Using Statistical
Analysis and Hough Transform with Application to Power Line Corridors,
DICTA09(462-467).
IEEE DOI
0912
BibRef
Li, Z.R.[Zheng-Rong],
Liu, Y.[Yuee],
Hayward, R.[Ross],
Zhang, J.L.[Jing-Lan],
Cai, J.H.[Jin-Hai],
Knowledge-based power line detection for UAV surveillance and
inspection systems,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Mills, S.J.,
Gerardo Castro, M.P.,
Li, Z.,
Cai, J.,
Hayward, R.,
Mejias, L.,
Walker, R.A.,
Evaluation of Aerial Remote Sensing Techniques for Vegetation
Management in Power-Line Corridors,
GeoRS(48), No. 9, September 2010, pp. 3379-3390.
IEEE DOI
1008
BibRef
Li, Z.R.[Zheng-Rong],
Hayward, R.,
Zhang, J.L.[Jing-Lan],
Liu, Y.[Yuee],
Individual Tree Crown Delineation Techniques for Vegetation Management
in Power Line Corridor,
DICTA08(148-154).
IEEE DOI
0812
BibRef
Ma, Q.,
Goshi, D.S.,
Shih, Y.C.,
Sun, M.T.,
An Algorithm for Power Line Detection and Warning Based on a
Millimeter-Wave Radar Video,
IP(20), No. 12, December 2011, pp. 3534-3543.
IEEE DOI
1112
BibRef
Zhu, L.L.[Ling-Li],
Hyyppä, J.[Juha],
Fully-Automated Power Line Extraction from Airborne Laser Scanning
Point Clouds in Forest Areas,
RS(6), No. 11, 2014, pp. 11267-11282.
DOI Link
1412
See also Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D, The.
BibRef
Cheng, L.[Liang],
Tong, L.H.[Li-Hua],
Wang, Y.[Yu],
Li, M.C.[Man-Chun],
Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data,
RS(6), No. 4, 2014, pp. 3302-3320.
DOI Link
1405
See also Building Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis.
BibRef
Guo, B.[Bo],
Huang, X.F.[Xian-Feng],
Zhang, F.[Fan],
Sohn, G.[Gunho],
Classification of airborne laser scanning data using JointBoost,
PandRS(100), No. 1, 2015, pp. 71-83.
Elsevier DOI
1502
LiDAR
BibRef
Sohn, G.[Gunho],
Jwa, Y.[Yoonseok],
Kim, H.B.[Heungsik Brian],
Automatic Powerline Scene Classification And Reconstruction Using
Airborne Lidar Data,
AnnalsPRS(I-3), No. 2012, pp. 167-172.
DOI Link
1209
BibRef
Earlier: A2, A1, A3:
Automatic 3D Powerline Reconstruction Using Airborne LIDAR Data,
Laser09(105).
0909
See also Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data.
BibRef
Luo, C.,
Sohn, G.,
Line-based Classification of Terrestrial Laser Scanning Data using
Conditional Random Field,
SSG13(155-160).
DOI Link
1402
BibRef
Kim, H.B.[Heungsik Brian],
Sohn, G.[Gunho],
Random Forests Based Multiple Classifier System For Power-Line Scene
Classification,
Laser11(xx-yy).
DOI Link
1109
BibRef
Earlier:
3D classification of power-line scene from airborne laser scanning data
using Random Forests,
PCVIA10(A:126).
PDF File.
1009
BibRef
Jwa, Y.[Yoonseok],
Sohn, G.[Gunho],
A multi-level span analysis for improving 3D power-line reconstruction
performance using airborne laser scanning data,
PCVIA10(A:97).
PDF File.
1009
BibRef
Cho, C.J.,
Ko, H.,
Video-Based Dynamic Stagger Measurement of Railway Overhead Power
Lines Using Rotation-Invariant Feature Matching,
ITS(16), No. 3, June 2015, pp. 1294-1304.
IEEE DOI
1506
Feature extraction
BibRef
Chen, Y.P.[Yun-Ping],
Li, Y.[Yang],
Zhang, H.X.[Hui-Xiong],
Tong, L.[Ling],
Cao, Y.X.[Yong-Xing],
Xue, Z.H.[Zhi-Hang],
Automatic power line extraction from high resolution remote sensing
imagery based on an improved Radon transform,
PR(49), No. 1, 2016, pp. 174-186.
Elsevier DOI
1511
High resolution
BibRef
Guo, B.[Bo],
Li, Q.Q.[Qing-Quan],
Huang, X.F.[Xian-Feng],
Wang, C.S.[Chi-Sheng],
An Improved Method for Power-Line Reconstruction from Point Cloud
Data,
RS(8), No. 1, 2016, pp. 36.
DOI Link
1602
BibRef
Matikainen, L.[Leena],
Lehtomäki, M.[Matti],
Ahokas, E.[Eero],
Hyyppä, J.[Juha],
Karjalainen, M.[Mika],
Jaakkola, A.[Anttoni],
Kukko, A.[Antero],
Heinonen, T.[Tero],
Remote sensing methods for power line corridor surveys,
PandRS(119), No. 1, 2016, pp. 10-31.
Elsevier DOI
1610
Power line
BibRef
Pastucha, E.[Elzbieta],
Catenary System Detection, Localization and Classification Using
Mobile Scanning Data,
RS(8), No. 10, 2016, pp. 801.
DOI Link
1609
overhead power lines.
BibRef
Jung, J.W.[Jae-Wook],
Chen, L.[Leihan],
Sohn, G.[Gunho],
Luo, C.[Chao],
Won, J.U.[Jong-Un],
Multi-Range Conditional Random Field for Classifying Railway
Electrification System Objects Using Mobile Laser Scanning Data,
RS(8), No. 12, 2016, pp. 1008.
DOI Link
1612
BibRef
Zhang, Y.[Yong],
Yuan, X.X.[Xiu-Xiao],
Fang, Y.[Yi],
Chen, S.Y.[Shi-Yu],
UAV Low Altitude Photogrammetry for Power Line Inspection,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Zhang, Y.[Yong],
Yuan, X.X.[Xiu-Xiao],
Li, W.Z.[Wen-Zhuo],
Chen, S.Y.[Shi-Yu],
Automatic Power Line Inspection Using UAV Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Jaw, Y.[Yoonseok],
Sohn, G.[Gunho],
Wind adaptive modeling of transmission lines using minimum
description length,
PandRS(125), No. 1, 2017, pp. 193-206.
Elsevier DOI
1703
3D transmission line model
BibRef
Jiang, S.[San],
Jiang, W.[Wanshou],
Huang, W.[Wei],
Yang, L.[Liang],
UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and
Offsite Visual Inspection of Transmission Line,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Jiang, S.[San],
Jiang, W.[Wanshou],
On-Board GNSS/IMU Assisted Feature Extraction and Matching for
Oblique UAV Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Qin, X.Y.[Xin-Yan],
Wu, G.P.[Gong-Ping],
Ye, X.[Xuhui],
Huang, L.[Le],
Lei, J.[Jin],
A Novel Method to Reconstruct Overhead High-Voltage Power Lines Using
Cable Inspection Robot LiDAR Data,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, Y.J.[Yan-Jun],
Chen, Q.[Qi],
Liu, L.[Lin],
Zheng, D.Y.[Dun-Yong],
Li, C.K.[Chao-Kui],
Li, K.[Kai],
Supervised Classification of Power Lines from Airborne LiDAR Data in
Urban Areas,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Chen, C.[Chi],
Yang, B.S.[Bi-Sheng],
Song, S.[Shuang],
Peng, X.Y.[Xiang-Yang],
Huang, R.G.[Rong-Gang],
Automatic Clearance Anomaly Detection for Transmission Line Corridors
Utilizing UAV-Borne LIDAR Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Yang, B.S.[Bi-Sheng],
Chen, C.[Chi],
Automatic registration of UAV-borne sequent images and LiDAR data,
PandRS(101), No. 1, 2015, pp. 262-274.
Elsevier DOI
1503
Unmanned aerial vehicles mapping
BibRef
Wang, Y.J.[Yan-Jun],
Chen, Q.[Qi],
Liu, L.[Lin],
Li, X.[Xiong],
Sangaiah, A.K.[Arun Kumar],
Li, K.[Kai],
Systematic Comparison of Power Line Classification Methods from ALS
and MLS Point Cloud Data,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Zhou, R.Q.[Ru-Qin],
Jiang, W.S.[Wan-Shou],
Jiang, S.[San],
A Novel Method for High-Voltage Bundle Conductor Reconstruction from
Airborne LiDAR Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Ortega, S.[Sebastián],
Trujillo, A.[Agustín],
Santana, J.M.[José Miguel],
Suárez, J.P.[José Pablo],
Santana, J.[Jaisiel],
Characterization and modeling of power line corridor elements from
LiDAR point clouds,
PandRS(152), 2019, pp. 24-33.
Elsevier DOI
1905
Power line, Classification, Point cloud, Modeling
BibRef
Zhang, H.[Heng],
Yang, W.[Wen],
Yu, H.[Huai],
Zhang, H.[Haijian],
Xia, G.S.[Gui-Song],
Detecting Power Lines in UAV Images with Convolutional Features and
Structured Constraints,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Peng, S.[Shuwen],
Xi, X.H.[Xiao-Huan],
Wang, C.[Cheng],
Dong, P.L.[Pin-Liang],
Wang, P.[Pu],
Nie, S.[Sheng],
Systematic Comparison of Power Corridor Classification Methods from
ALS Point Clouds,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Sánchez-Rodríguez, A.[Ana],
Soilán, M.[Mario],
Cabaleiro, M.[Manuel],
Arias, P.[Pedro],
Automated Inspection of Railway Tunnels' Power Line Using LiDAR Point
Clouds,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Tomaszewski, M.[Michal],
Michalski, P.[Pawel],
Ruszczak, B.[Bogdan],
Zator, S.[Slawomir],
Detection of power line insulators on digital images with the use of
laser spots,
IET-IPR(13), No. 12, October 2019, pp. 2358-2366.
DOI Link
1911
BibRef
Zhang, R.Z.[Rui-Zhuo],
Yang, B.S.[Bi-Sheng],
Xiao, W.[Wen],
Liang, F.[Fuxun],
Liu, Y.[Yang],
Wang, Z.M.[Zi-Ming],
Automatic Extraction of High-Voltage Power Transmission Objects from
UAV Lidar Point Clouds,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Tao, X.[Xian],
Zhang, D.P.[Da-Peng],
Wang, Z.H.[Zi-Hao],
Liu, X.L.[Xi-Long],
Zhang, H.Y.[Hong-Yan],
Xu, D.[De],
Detection of Power Line Insulator Defects Using Aerial Images
Analyzed With Convolutional Neural Networks,
SMCS(50), No. 4, April 2020, pp. 1486-1498.
IEEE DOI
2004
Insulators, Inspection, Feature extraction, Object detection, Shape,
Support vector machines, Convolutional neural networks,
insulators
BibRef
Jung, J.[Jaehoon],
Che, E.[Erzhuo],
Olsen, M.J.[Michael J.],
Shafer, K.C.[Katherine C.],
Automated and efficient powerline extraction from laser scanning data
using a voxel-based subsampling with hierarchical approach,
PandRS(163), 2020, pp. 343-361.
Elsevier DOI
2005
Powerlines, Lidar, Laser scanning, Point cloud, Voxel-based subsampling
BibRef
Munir, N.[Nosheen],
Awrangjeb, M.[Mohammad],
Stantic, B.[Bela],
Automatic Extraction of High-Voltage Bundle Subconductors Using
Airborne LiDAR Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Pastucha, E.[Elzbieta],
Puniach, E.[Edyta],
Scislowicz, A.[Agnieszka],
Cwiakala, P.[Pawel],
Niewiem, W.[Witold],
Wiacek, P.[Pawel],
3D Reconstruction of Power Lines Using UAV Images to Monitor Corridor
Clearance,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Nardinocchi, C.,
Balsi, M.,
Esposito, S.,
Fully Automatic Point Cloud Analysis for Powerline Corridor Mapping,
GeoRS(58), No. 12, December 2020, pp. 8637-8648.
IEEE DOI
2012
Wires, Poles and towers, Laser radar,
Task analysis, Inspection, Vegetation mapping, Data analysis,
unmanned aerial vehicles (UAVs)
BibRef
Ma, Y.P.[Yun-Peng],
Li, Q.W.[Qing-Wu],
Chu, L.[Lulu],
Zhou, Y.Q.[Ya-Qin],
Xu, C.[Chang],
Real-Time Detection and Spatial Localization of Insulators for UAV
Inspection Based on Binocular Stereo Vision,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Fan, Y.Z.[Yong-Zhao],
Zou, R.[Rong],
Fan, X.Y.[Xiao-Yun],
Dong, R.D.[Ren-Dong],
Xie, M.Y.[Meng-You],
A Hierarchical Clustering Method to Repair Gaps in Point Clouds of
Powerline Corridor for Powerline Extraction,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Siranec, M.[Marek],
Höger, M.[Marek],
Otcenasova, A.[Alena],
Advanced Power Line Diagnostics Using Point Cloud Data:
Possible Applications and Limits,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Li, B.[Bo],
Chen, C.[Cheng],
Dong, S.[Shiwen],
Qiao, J.F.[Jun-Feng],
Transmission line detection in aerial images:
An instance segmentation approach based on multitask neural networks,
SP:IC(96), 2021, pp. 116278.
Elsevier DOI
2106
Transmission line detection, Deep neural networks, Convolutional neural networks
BibRef
Luo, Y.H.[Yan-Hong],
Yu, X.[Xue],
Yang, D.S.[Dong-Sheng],
A new recognition algorithm for high-voltage lines based on improved
LSD and convolutional neural networks,
IET-IPR(15), No. 1, 2021, pp. 260-268.
DOI Link
2106
BibRef
Tan, J.X.[Jun-Xiang],
Zhao, H.J.[Hao-Jie],
Yang, R.H.[Rong-Hao],
Liu, H.[Hua],
Li, S.[Shaoda],
Liu, J.F.[Jian-Fei],
An Entropy-Weighting Method for Efficient Power-Line Feature
Evaluation and Extraction from LiDAR Point Clouds,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Dutta, T.[Tanima],
Soni, A.[Aishwarya],
Gona, P.[Prateek],
Gupta, H.P.[Hari Prabhat],
Real Testbed for Autonomous Anomaly Detection in Power Grid Using
Low-Cost Unmanned Aerial Vehicles and Aerial Imaging,
MultMedMag(28), No. 3, July 2021, pp. 63-74.
IEEE DOI
2109
Cameras, Estimation, Power grids,
Anomaly detection, Monitoring, Lenses, 3D Anomaly Detection,
Power Grid Monitoring
BibRef
Chen, W.X.[Wen-Xiang],
Li, Y.N.[Ying-Na],
Zhao, Z.G.[Zhen-Gang],
InsulatorGAN: A Transmission Line Insulator Detection Model Using
Multi-Granularity Conditional Generative Adversarial Nets for UAV
Inspection,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Huang, W.[Wei],
Jiang, S.[San],
He, S.[Sheng],
Jiang, W.S.[Wan-Shou],
Accelerated Multi-View Stereo for 3D Reconstruction of Transmission
Corridor with Fine-Scale Power Line,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Bao, W.X.[Wen-Xia],
Ren, Y.X.[Yang-Xun],
Wang, N.[Nian],
Hu, G.S.[Gen-Sheng],
Yang, X.J.[Xian-Jun],
Detection of Abnormal Vibration Dampers on Transmission Lines in UAV
Remote Sensing Images with PMA-YOLO,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Mongus, D.[Domen],
Brumen, M.[Matej],
Žlaus, D.[Danijel],
Kohek, Š.[Štefan],
Tomažic, R.[Roman],
Kerin, U.[Uroš],
Kolmanic, S.[Simon],
A Complete Environmental Intelligence System for LiDAR-Based
Vegetation Management in Power-Line Corridors,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Liu, X.Y.[Xin-Yu],
Jin, Z.H.[Zhi-Heng],
Jiang, H.[Hao],
Miao, X.R.[Xi-Ren],
Chen, J.[Jing],
Lin, Z.C.[Zhi-Cheng],
Quality assessment for inspection images of power lines based on
spatial and sharpness evaluation,
IET-IPR(16), No. 2, 2022, pp. 356-364.
DOI Link
2201
BibRef
Zhong, J.P.[Jun-Ping],
Liu, Z.G.[Zhi-Gang],
Yang, C.[Cheng],
Wang, H.R.[Hong-Rui],
Gao, S.B.[Shi-Bin],
Núñez, A.[Alfredo],
Adversarial Reconstruction Based on Tighter Oriented Localization for
Catenary Insulator Defect Detection in High-Speed Railways,
ITS(23), No. 2, February 2022, pp. 1109-1120.
IEEE DOI
2202
Insulators, Rail transportation, Feature extraction, Inspection,
Image reconstruction, Machine learning, Lighting,
high-speed railways
BibRef
Zhao, L.[Le],
Yao, H.[Hongtai],
Tian, M.[Meng],
Wang, X.[Xianpei],
Robust power line extraction from aerial image using object-based
Gaussian-Markov random field with gravity property parameters,
SP:IC(103), 2022, pp. 116634.
Elsevier DOI
2203
Aerial image, Power line extraction,
Object-based Markov random field, Gaussian-Markov model, Gravity property model
BibRef
Ma, B.[Bin],
Fu, Y.K.[Yong-Kang],
Wang, C.[Chunpeng],
Li, J.[Jian],
Wang, Y.[Yuli],
A high-performance insulators location scheme based on YOLOv4 deep
learning network with GDIoU loss function,
IET-IPR(16), No. 4, 2022, pp. 1124-1134.
DOI Link
2203
BibRef
Zhao, W.[Wenbo],
Dong, Q.[Qing],
Zuo, Z.L.[Zheng-Li],
A Method Combining Line Detection and Semantic Segmentation for Power
Line Extraction from Unmanned Aerial Vehicle Images,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Xu, T.[Tao],
Gao, X.J.[Xian-Jun],
Yang, Y.[Yuanwei],
Xu, L.[Lei],
Xu, J.[Jie],
Wang, Y.J.[Yan-Jun],
Construction of a Semantic Segmentation Network for the Overhead
Catenary System Point Cloud Based on Multi-Scale Feature Fusion,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Geng, Y.X.[Yi-Xuan],
Pan, F.J.[Feng-Jun],
Jia, L.M.[Li-Min],
Wang, Z.P.[Zhi-Peng],
Qin, Y.[Yong],
Tong, L.[Lei],
Li, S.Q.[Shi-Qi],
UAV-LiDAR-Based Measuring Framework for Height and Stagger of
High-Speed Railway Contact Wire,
ITS(23), No. 7, July 2022, pp. 7587-7600.
IEEE DOI
2207
Wires, Laser radar, Rail transportation, Rails, Vehicle dynamics,
Position measurement, Contact wire, height, LiDAR, point clouds,
UAV
BibRef
Yu, L.[Long],
Gao, S.B.[Shi-Bin],
Zhang, D.K.[Dong-Kai],
Kang, G.Q.[Gao-Qiang],
Zhan, D.[Dong],
Roberts, C.[Clive],
A Survey on Automatic Inspections of Overhead Contact Lines by
Computer Vision,
ITS(23), No. 8, August 2022, pp. 10104-10125.
IEEE DOI
2208
Inspection, Wires, Contacts, Rail transportation, Force measurement,
Force, Overhead contact lines, computer vision, measurement,
deep learning
BibRef
Zhou, Y.[Yaqin],
Xu, C.[Chang],
Dai, Y.F.[Yun-Feng],
Feng, X.M.[Xing-Ming],
Ma, Y.P.[Yun-Peng],
Li, Q.W.[Qing-Wu],
Dual-View Stereovision-Guided Automatic Inspection System for
Overhead Transmission Line Corridor,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zou, K.S.[Kuan-Sheng],
Jiang, Z.B.[Zhen-Bang],
Power Line Extraction Framework Based on Edge Structure and Scene
Constraints,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, L.[Lele],
Wang, J.[Jinhu],
Shen, Y.[Yueqian],
Liang, J.[Jian],
Chen, Y.Y.[Yu-Yu],
Chen, L.S.[Lin-Sheng],
Zhou, M.[Mei],
A Deep Learning Based Method for Railway Overhead Wire Reconstruction
from Airborne LiDAR Data,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Bao, W.X.[Wen-Xia],
Du, X.[Xiang],
Wang, N.[Nian],
Yuan, M.[Mu],
Yang, X.J.[Xian-Jun],
A Defect Detection Method Based on BC-YOLO for Transmission Line
Components in UAV Remote Sensing Images,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhang, S.Y.[Sheng-Yuan],
Meng, Q.X.[Qing-Xiang],
Hu, Y.L.[Yu-Long],
Fu, Z.L.[Zhong-Liang],
Chen, L.[Lijin],
A Method for the Automatic Extraction of Support Devices in an
Overhead Catenary System Based on MLS Point Clouds,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Maskeliunas, R.[Rytis],
Pomarnacki, R.[Raimondas],
Huynh, V.K.[Van Khang],
Damaševicius, R.[Robertas],
Plonis, D.[Darius],
Power Line Monitoring through Data Integrity Analysis with Q-Learning
Based Data Analysis Network,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Gauce, D.[Diana],
Lektauers, A.[Arnis],
Solovjova, I.[Irina],
Grants, R.[Roberts],
Kolosovs, D.[Deniss],
Litvinenko, A.[Anna],
Application of Digital Twin in Medium-Voltage Overhead Distribution
Network Inspection,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Li, Z.[Ziran],
Zhang, Y.[Yanwen],
Wu, H.[Hao],
Suzuki, S.[Satoshi],
Namiki, A.[Akio],
Wang, W.[Wei],
Design and Application of a UAV Autonomous Inspection System for
High-Voltage Power Transmission Lines,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Munir, N.[Nosheen],
Awrangjeb, M.[Mohammad],
Stantic, B.[Bela],
Power Line Extraction and Reconstruction Methods from Laser Scanning
Data: A Literature Review,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wang, J.Y.[Jin-Yu],
Li, Y.N.[Ying-Na],
Chen, W.X.[Wen-Xiang],
UAV Aerial Image Generation of Crucial Components of High-Voltage
Transmission Lines Based on Multi-Level Generative Adversarial
Network,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zhang, Y.Z.[Yun-Zuo],
Song, Z.C.[Zhou-Chen],
Li, W.[Wenbo],
Enhancement multi-module network for few-shot leaky cable fixture
detection in railway tunnel,
SP:IC(113), 2023, pp. 116943.
Elsevier DOI
2303
Leaky cable fixture detection, Few-shot learning,
Enhancement multi-module network, Weight balance coefficient
BibRef
Lee, S.[Seulbi],
Ham, Y.[Youngjib],
Measuring the Distance between Trees and Power Lines under Wind Loads
to Assess the Heightened Potential Risk of Wildfire,
RS(15), No. 6, 2023, pp. 1485.
DOI Link
2304
BibRef
Hu, J.W.[Jing-Wei],
He, J.[Jing],
Guo, C.J.[Cheng-Jun],
End-to-End Powerline Detection Based on Images from UAVs,
RS(15), No. 6, 2023, pp. 1570.
DOI Link
2304
BibRef
Tang, M.[Minan],
Liang, K.[Kai],
Qiu, J.[Jiandong],
Small insulator target detection based on multi-feature fusion,
IET-IPR(17), No. 5, 2023, pp. 1520-1533.
DOI Link
2304
feature extraction, flaw detection, insulators, support vector machines
BibRef
Xu, C.[Chang],
Li, Q.W.[Qing-Wu],
Jiang, X.B.[Xiong-Biao],
Yu, D.B.[Da-Bing],
Zhou, Y.[Yaqin],
Dual-Space Graph-Based Interaction Network for RGB-Thermal Semantic
Segmentation in Electric Power Scene,
CirSysVideo(33), No. 4, April 2023, pp. 1577-1592.
IEEE DOI
2304
Feature extraction, Semantics, Visualization, Data mining,
Power systems, Inspection, Image edge detection, RGB-T,
scene comprehension
BibRef
Li, Y.[Yong],
Wei, S.D.[Shi-Di],
Liu, X.[Xuan],
Luo, Y.Z.[Yin-Zheng],
Li, Y.F.[Ya-Feng],
Shuang, F.[Feng],
An Improved Insulator and Spacer Detection Algorithm Based on Dual
Network and SSD,
IEICE(E106-D), No. 5, May 2023, pp. 662-672.
WWW Link.
2305
BibRef
Song, J.[Jiang],
Qian, J.G.[Jian-Guo],
Liu, Z.J.[Zheng-Jun],
Jiao, Y.[Yang],
Zhou, J.[Jiahui],
Li, Y.R.[Yong-Rong],
Chen, Y.M.[Yi-Ming],
Guo, J.[Jie],
Wang, Z.Q.[Zhi-Qiang],
Research on Arc Sag Measurement Methods for Transmission Lines Based
on Deep Learning and Photogrammetry Technology,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Jain, A.[Arpit],
Shah, T.[Tapan],
Yousefhussien, M.[Mohammed],
Pandey, A.[Achalesh],
Combining Remotely Sensed Imagery with Survival Models for Outage
Risk Estimation of the Power Grid,
EarthVision21(1202-1211)
IEEE DOI
2109
Schedules, Satellites, Vegetation mapping, Vegetation, Forestry,
Predictive models, Power grids
BibRef
Yu, W.,
Xi, J.,
Wu, Z.,
Lei, W.,
Zhu, C.,
Tang, T.,
A Method for Extracting Substation Equipment Based on UAV Laser
Scanning Point Clouds,
SmartCityApp20(413-419).
DOI Link
2012
BibRef
Kähler, O.,
Hochstöger, S.,
Kemper, G.,
Birchbauer, J.,
Automating Powerline Inspection: A Novel Multisensor System for Data
Analysis Using Deep Learning,
ISPRS20(B4:747-754).
DOI Link
2012
BibRef
Wu, Z.,
Lei, W.,
Sun, W.,
Chen, C.,
Wang, H.,
Yu, W.,
Zhong, H.,
Zhu, C.,
Xi, J.,
Yang, B.,
Power Transmission Line Reconstruction From Sequential Oblique UAV
Images,
ISPRS20(B2:515-520).
DOI Link
2012
BibRef
Choi, H.,
Koo, G.,
Kim, B.J.,
Kim, S.W.[S. Woo],
Real-time Power Line Detection Network using Visible Light and
Infrared Images,
IVCNZ19(1-6)
IEEE DOI
2004
convolutional neural nets, image fusion, image segmentation,
infrared imaging, inspection, learning (artificial intelligence), Real-time
BibRef
Jiang, S.,
Jiang, W.,
UAV-based Oblique Photogrammetry for 3d Reconstruction of Transmission
Line: Practices and Applications,
UAV-g19(401-406).
DOI Link
1912
BibRef
Toschi, I.,
Morabito, D.,
Grilli, E.,
Remondino, F.,
Carlevaro, C.,
Cappellotto, A.,
Tamagni, G.,
Maffeis, M.,
Cloud-based Solution for Nationwide Power Line Mapping,
Semantics3D19(119-126).
DOI Link
1912
BibRef
Pu, S.,
Xie, L.,
Ji, M.,
Zhao, Y.,
Liu, W.,
Wang, L.,
Zhao, Y.,
Yang, F.,
Qiu, D.,
Real-time Powerline Corridor Inspection By Edge Computing of UAV Lidar
Data,
UAV-g19(547-551).
DOI Link
1912
BibRef
Yermo, M.,
Martínez, J.,
Lorenzo, O.G.,
Vilariño, D.L.,
Cabaleiro, J.C.,
Pena, T.F.,
Rivera, F.F.,
Automatic Detection and Characterisation of Power Lines and Their
Surroundings Using Lidar Data,
Laser19(1161-1168).
DOI Link
1912
BibRef
Ganovelli, F.,
Malomo, L.,
Scopigno, R.,
Reconstructing Power Lines from Images,
IVCNZ18(1-6)
IEEE DOI
1902
Wires, Cameras, Image segmentation,
Image reconstruction, Image edge detection,
power lines
BibRef
Gubbi, J.[Jayavardhana],
Varghese, A.[Ashley],
Balamuralidhar, P.,
A new deep learning architecture for detection of long linear
infrastructure,
MVA17(207-210)
DOI Link
1708
Adaptation models, Data models, Drones, Feature extraction,
Machine learning, Monitoring, Training
BibRef
Zhou, X.[Xiao],
Zheng, X.L.[Xiao-Liang],
Ou, K.[Kejun],
Power line detect system based on stereo vision and FPGA,
ICIVC17(715-719)
IEEE DOI
1708
Decision making, Digital signal processing,
Field programmable gate arrays, Image edge detection,
Real-time systems, Robustness, Shape, FPGA, census transform,
morphology, power line detect, real time, stereo, vision
BibRef
Baker, L.,
Mills, S.,
Langlotz, T.,
Rathbone, C.,
Power line detection using Hough transform and line tracing
techniques,
ICVNZ16(1-6)
IEEE DOI
1701
Cameras
BibRef
Han, G.[Ge],
Gong, W.[Wei],
Cui, X.H.[Xiao-Hui],
Zhang, M.[Miao],
Chen, J.[Jun],
Estimation Of Insulator Contaminations By Means Of Remote Sensing
Technique,
ISPRS16(B8: 73-77).
DOI Link
1610
To prevent power failures.
BibRef
Zhou, G.,
Yuan, J.,
Yen, I.L.,
Bastani, F.,
Robust real-time UAV based power line detection and tracking,
ICIP16(744-748)
IEEE DOI
1610
Cameras
BibRef
Li, B.L.[Bing-Lin],
Thomas, G.[Gabriel],
Williams, D.[Dexter],
Ice Detection on Electrical Power Cables,
ISVC15(II: 355-364).
Springer DOI
1601
BibRef
Józków, G.,
Vander Jagt, B.,
Toth, C.,
Experiments with UAS Imagery for Automatic Modeling of Power Line 3D
Geometry,
UAV-g15(403-409).
DOI Link
1512
BibRef
Pan, W.W.,
Dou, Y.J.,
Wang, G.L.,
Wu, M.X.,
Ren, R.G.,
Xu, X.,
Development and Test of Blimp-Based Compact LIDAR Powewr-Line
Inspection System,
PIA15(155-159).
DOI Link
1504
BibRef
Cerón, A.[Alexander],
Mondragón Bernal, I.F.[Iván F.],
Prieto, F.[Flavio],
Towards Visual Based Navigation with Power Line Detection,
ISVC14(I: 827-836).
Springer DOI
1501
BibRef
Liu, Y.,
Mejias, L.,
Li, Z.,
Fast Power Line Detection and Localization Using Steerable Filter For
Active Uav Guidance,
ISPRS12(XXXIX-B3:491-496).
DOI Link
1209
BibRef
Liang, J.[Jing],
Zhang, J.X.[Ji-Xian],
Deng, K.Z.[Ka-Zhong],
Liu, Z.J.[Zheng-Jun],
Shi, Q.S.[Qun-Shan],
A New Power-Line Extraction Method Based on Airborne LiDAR Point Cloud
Data,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Shi, Q.S.[Qun-Shan],
Xu, Q.[Qing],
Xing, S.[Shuai],
Lan, C.Z.[Chao-Zhen],
Liang, J.[Jing],
A Vector Collection Method Based on LiDAR Point Cloud Data,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Wan, X.[Xue],
Qu, X.Z.[Xiao-Zhi],
Wang, L.T.[Li-Tao],
Wu, B.[Buwei],
Zhang, J.Q.[Jian-Qing],
Zheng, S.Y.[Shun-Yi],
Photogrammetric techniques for power line ranging,
PCVIA10(B:29).
PDF File.
1009
BibRef
Candamo, J.[Joshua],
Goldgof, D.[Dmitry],
Kasturi, R.[Rangachar],
Godavarthy, S.[Sridhar],
Detecting Wires in Cluttered Urban Scenes Using a Gaussian Model,
ICPR10(432-435).
IEEE DOI
1008
Not roads, powerlines, etc.
BibRef
Gu, I.Y.H.[Irene Y.H.],
Sistiaga, U.[Unai],
Berlijn, S.M.[Sonja M.],
Fahlström, A.[Anders],
Intelligent Video Surveillance for Detecting Snow and Ice Coverage on
Electrical Insulators of Power Transmission Lines,
CAIP09(1179-1187).
Springer DOI
0909
BibRef
Gu, I.Y.H.[Irene Y.H.],
Sistiaga, U.[Unai],
Berlijn, S.M.[Sonja M.],
Fahlstrom, A.[Anders],
Online detection of snow coverage and swing angles of electrical
insulators on power transmission lines using videos,
ICIP09(3249-3252).
IEEE DOI
0911
BibRef
Ituen, I.,
Sohn, G.,
Jenkins, A.,
A Case Study: Workflow Analysis of Power Line Systems for Risk
Management,
ISPRS08(B3b: 331 ff).
PDF File.
0807
BibRef
Hofler, H.,
Dambacher, M.,
Dimopoulos, N.,
Jetter, V.,
Monitoring and inspecting overhead wires and supporting structures,
IVS04(512-517).
IEEE DOI
0411
BibRef
Loehlein, O.[Otto],
Detection of Linear Objects for Synthetic Vision Applications,
SPIE(2736), 1996, pp. 128-135.
Roads and power lines in radar images.
BibRef
9600
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Transmission Towers, Pylons, Poles, Extraction, Radar, SAR, Lidar, Laser, Depth .