Cao, Y.,
Wu, Z.,
Shen, C.,
Estimating Depth From Monocular Images as Classification Using Deep
Fully Convolutional Residual Networks,
CirSysVideo(28), No. 11, November 2018, pp. 3174-3182.
IEEE DOI
1811
Estimation, Training, Semantics, Network architecture,
Predictive models, Neural networks, Probability distribution,
depth estimation
BibRef
He, L.,
Wang, G.,
Hu, Z.,
Learning Depth From Single Images With Deep Neural Network Embedding
Focal Length,
IP(27), No. 9, September 2018, pp. 4676-4689.
IEEE DOI
1807
Markov processes, image processing,
learning (artificial intelligence), neural nets,
single images
BibRef
Zhang, Z.Y.[Zhen-Yu],
Xu, C.Y.[Chun-Yan],
Yang, J.[Jian],
Tai, Y.[Ying],
Chen, L.[Liang],
Deep hierarchical guidance and regularization learning for end-to-end
depth estimation,
PR(83), 2018, pp. 430-442.
Elsevier DOI
1808
Depth estimation, Multi-regularization, Deep neural network
BibRef
Amirkolaee, H.A.[Hamed Amini],
Arefi, H.[Hossein],
Height estimation from single aerial images using a deep
convolutional encoder-decoder network,
PandRS(149), 2019, pp. 50-66.
Elsevier DOI
1903
Convolutional neural network, Height image,
Digital aerial image, Encoder, Decoder
BibRef
Liu, J.W.[Ji-Wei],
Zhang, Y.Z.[Yun-Zhou],
Cui, J.H.[Jia-Hua],
Feng, Y.H.[Yong-Hui],
Pang, L.Z.[Lin-Zhuo],
Fully convolutional multi-scale dense networks for monocular depth
estimation,
IET-CV(13), No. 5, August 2019, pp. 515-522.
DOI Link
1908
BibRef
Yang, X.,
Gao, Y.,
Luo, H.,
Liao, C.,
Cheng, K.,
Bayesian DeNet: Monocular Depth Prediction and Frame-Wise Fusion With
Synchronized Uncertainty,
MultMed(21), No. 11, November 2019, pp. 2701-2713.
IEEE DOI
1911
Uncertainty, Cameras, Bayes methods,
Simultaneous localization and mapping, Training, Video sequences,
convolutional neural network
BibRef
Chen, S.[Songnan],
Tang, M.X.[Meng-Xia],
Kan, J.M.[Jiang-Ming],
Encoder-decoder with densely convolutional networks for monocular
depth estimation,
JOSA-A(36), No. 10, October 2019, pp. 1709-1718.
DOI Link
1912
Feature extraction, Image registration, Image resolution,
Motion estimation, Neural networks, Stochastic gradient descent
BibRef
Chen, S.[Songnan],
Han, J.Y.[Jun-Yu],
Tang, M.X.[Meng-Xia],
Dong, R.[Ruifang],
Kan, J.M.[Jiang-Ming],
Encoder-Decoder Structure with Multiscale Receptive Field Block for
Unsupervised Depth Estimation from Monocular Video,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yan, H.,
Yu, X.,
Zhang, Y.,
Zhang, S.,
Zhao, X.,
Zhang, L.,
Single Image Depth Estimation With Normal Guided Scale Invariant Deep
Convolutional Fields,
CirSysVideo(29), No. 1, January 2019, pp. 80-92.
IEEE DOI
1901
Estimation, Semantics,
Memory management, Feature extraction,
multitask CNN
BibRef
Padhy, R.P.[Ram Prasad],
Chang, X.J.[Xiao-Jun],
Choudhury, S.K.[Suman Kumar],
Sa, P.K.[Pankaj Kumar],
Bakshi, S.[Sambit],
Multi-stage cascaded deconvolution for depth map and surface normal
prediction from single image,
PRL(127), 2019, pp. 165-173.
Elsevier DOI
1911
Scene understanding, Depth map, Surface normal, CNN, Multi-stage, Deconvolution
BibRef
Li, J.[Jun],
Yuce, C.[Can],
Klein, R.[Reinhard],
Yao, A.[Angela],
A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from
Single RGB Images,
CVIU(186), 2019, pp. 25-36.
Elsevier DOI
1908
BibRef
Earlier: A1, A3, A4, Only:
ICCV17(3392-3400)
IEEE DOI
1802
Depth estimation, Depth gradient, Set loss, Indoor scenes, Man-made objects.
image colour analysis, learning (artificial intelligence), NYU,
NYU Depth, accurate depth map, deep learning methods,
Training
BibRef
Song, W.,
Li, S.,
Liu, J.,
Hao, A.,
Zhao, Q.,
Qin, H.,
Contextualized CNN for Scene-Aware Depth Estimation From Single RGB
Image,
MultMed(22), No. 5, May 2020, pp. 1220-1233.
IEEE DOI
2005
Estimation, Semantics, Training, Task analysis, Feature extraction,
Decoding, Convolution, Depth Estimation, CNN, Single RGB Image,
Scene-Aware Algorithm
BibRef
Zhang, Y.Y.[Yu-Yang],
Xu, S.B.[Shi-Biao],
Wu, B.Y.[Bao-Yuan],
Shi, J.[Jian],
Meng, W.L.[Wei-Liang],
Zhang, X.P.[Xiao-Peng],
Unsupervised Multi-View Constrained Convolutional Network for
Accurate Depth Estimation,
IP(29), 2020, pp. 7019-7031.
IEEE DOI
2007
Estimation, Training, Feature extraction, Geometry,
Cameras, Unsupervised learning, Unsupervised learning, depth consistency
BibRef
Liu, J.[Jun],
Li, Q.[Qing],
Cao, R.[Rui],
Tang, W.M.[Wen-Ming],
Qiu, G.P.[Guo-Ping],
MiniNet: An extremely lightweight convolutional neural network for
real-time unsupervised monocular depth estimation,
PandRS(166), 2020, pp. 255-267.
Elsevier DOI
2007
Monocular depth estimation, Convolutional neural network,
Unsupervised learning, Lightweight, Real-time
BibRef
Cheng, X.J.[Xin-Jing],
Wang, P.[Peng],
Yang, R.G.[Rui-Gang],
Learning Depth with Convolutional Spatial Propagation Network,
PAMI(42), No. 10, October 2020, pp. 2361-2379.
IEEE DOI
2009
BibRef
Earlier:
Depth Estimation via Affinity Learned with Convolutional Spatial
Propagation Network,
ECCV18(XVI: 108-125).
Springer DOI
1810
Estimation, Task analysis, Cameras,
Laser radar, Convolutional codes, Benchmark testing,
spatial pyramid pooling
BibRef
Liu, J.[Jun],
Li, Q.[Qing],
Cao, R.[Rui],
Tang, W.M.[Wen-Ming],
Qiu, G.P.[Guo-Ping],
A contextual conditional random field network for monocular depth
estimation,
IVC(98), 2020, pp. 103922.
Elsevier DOI
2006
Monocular depth estimation, Deep neural network,
Skip connection, Conditional random field
BibRef
Cao, Y.Z.H.[Yuan-Zhou-Han],
Zhao, T.Q.[Tian-Qi],
Xian, K.[Ke],
Shen, C.H.[Chun-Hua],
Cao, Z.G.[Zhi-Guo],
Xu, S.G.[Shu-Gong],
Monocular Depth Estimation With Augmented Ordinal Depth Relationships,
CirSysVideo(30), No. 8, August 2020, pp. 2674-2682.
IEEE DOI
2008
Estimation, Measurement, Videos, Training, Motion pictures,
Task analysis, Labeling, Depth estimation, RGB-D dataset,
deep network
BibRef
Ali, U.[Usman],
Bayramli, B.[Bayram],
Alsarhan, T.[Tamam],
Lu, H.T.[Hong-Tao],
A lightweight network for monocular depth estimation with decoupled
body and edge supervision,
IVC(113), 2021, pp. 104261.
Elsevier DOI
2108
Monocular depth estimation, Deep learning, Lightweight network
BibRef
Tao, Y.[Yu],
Muller, J.P.[Jan-Peter],
Xiong, S.[Siting],
Conway, S.J.[Susan J.],
MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital
Imagery of Mars Using Deep Learning,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chang, Y.K.[Ya-Kun],
Jung, C.[Cheolkon],
Sun, J.[Jun],
Joint Reflection Removal and Depth Estimation from a Single Image,
Cyber(51), No. 12, December 2021, pp. 5836-5849.
IEEE DOI
2112
Estimation, Glass, Cameras, Image edge detection, Feature extraction,
Collaboration, Deep learning,
transmission recovery
BibRef
Huynh, L.[Lam],
Pedone, M.[Matteo],
Nguyen, P.[Phong],
Matas, J.G.[Jiri G.],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss,
3DV21(228-238)
IEEE DOI
2201
Image sensors, Deep learning, Neural networks, Estimation, Sensors,
saliency detection, self-attention, normalized Hessian loss
BibRef
Chen, Z.[Zeyu],
Wu, B.[Bo],
Liu, W.C.[Wai Chung],
Mars3DNet: CNN-Based High-Resolution 3D Reconstruction of the Martian
Surface from Single Images,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Zhao, J.S.[Jiang-San],
Kumar, A.[Ajay],
Banoth, B.N.[Balaji Naik],
Marathi, B.[Balram],
Rajalakshmi, P.[Pachamuthu],
Rewald, B.[Boris],
Ninomiya, S.[Seishi],
Guo, W.[Wei],
Deep-Learning-Based Multispectral Image Reconstruction from Single
Natural Color RGB Image: Enhancing UAV-Based Phenotyping,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Nie, W.Z.[Wei-Zhi],
Liu, A.A.[An-An],
Zhao, S.C.[Si-Cheng],
Gao, Y.[Yue],
Deep Correlated Joint Network for 2-D Image-Based 3-D Model Retrieval,
Cyber(52), No. 3, March 2022, pp. 1862-1871.
IEEE DOI
2203
Solid modeling, Shape, Feature extraction, Visualization,
Correlation, Loss measurement, Benchmark testing,
deep metric learning
BibRef
Zhang, X.C.[Xuan-Cheng],
Ma, R.[Rui],
Zou, C.Q.[Chang-Qing],
Zhang, M.H.[Ming-Hao],
Zhao, X.B.[Xi-Bin],
Gao, Y.[Yue],
View-Aware Geometry-Structure Joint Learning for Single-View 3D Shape
Reconstruction,
PAMI(44), No. 10, October 2022, pp. 6546-6561.
IEEE DOI
2209
Shape, Image reconstruction, Geometry, Periodic structures,
Solid modeling, Topology, Single-view 3D reconstruction,
representation learning
BibRef
Wu, B.Y.[Bing-Yuan],
Wang, Y.X.[Yong-Xiong],
Rich global feature guided network for monocular depth estimation,
IVC(125), 2022, pp. 104520.
Elsevier DOI
2208
Monocular depth estimation, Transformer,
Large kernel convolution attention, Global feature
BibRef
Hu, N.[Nian],
Zhou, H.[Heyu],
Huang, X.D.[Xiang-Dong],
Li, X.[Xuanya],
Liu, A.A.[An-An],
A Feature Transformation Framework With Selective Pseudo-Labeling for
2D Image-Based 3D Shape Retrieval,
CirSysVideo(32), No. 11, November 2022, pp. 8010-8021.
IEEE DOI
2211
Shape, Feature extraction, Solid modeling, Training, Transforms,
Self-organizing feature maps, 3D shape retrieval, multi-view learning
BibRef
Dong, X.S.[Xing-Shuai],
Garratt, M.A.[Matthew A.],
Anavatti, S.G.[Sreenatha G.],
Abbass, H.A.[Hussein A.],
MobileXNet: An Efficient Convolutional Neural Network for Monocular
Depth Estimation,
ITS(23), No. 11, November 2022, pp. 20134-20147.
IEEE DOI
2212
Estimation, Convolution, Convolutional neural networks,
Task analysis, Decoding, Computer architecture, Semantics, autonomous vehicles
BibRef
Li, R.[Rui],
Xue, D.[Danna],
Su, S.L.[Shao-Lin],
He, X.T.[Xian-Tuo],
Mao, Q.[Qing],
Zhu, Y.[Yu],
Sun, J.Q.[Jin-Qiu],
Zhang, Y.N.[Yan-Ning],
Learning Depth via Leveraging Semantics: Self-Supervised Monocular
Depth Estimation with Both Implicit and Explicit Semantic Guidance,
PR(137), 2023, pp. 109297.
Elsevier DOI
2302
Semantic-guided self-supervised depth estimation,
Semantic-aware spatial feature modulation,
Uncertainty weighting
BibRef
Li, R.[Rui],
Xue, D.[Danna],
Zhu, Y.[Yu],
Wu, H.[Hao],
Sun, J.Q.[Jin-Qiu],
Zhang, Y.N.[Yan-Ning],
Self-Supervised Monocular Depth Estimation with Frequency-Based
Recurrent Refinement,
MultMed(25), 2023, pp. 5626-5637.
IEEE DOI
2311
BibRef
Jia, S.C.[Shao-Cheng],
Pei, X.[Xin],
Yao, W.[Wei],
Wong, S.C.,
Self-Supervised Depth Estimation Leveraging Global Perception and
Geometric Smoothness,
ITS(24), No. 2, February 2023, pp. 1502-1517.
IEEE DOI
2302
Estimation, Feature extraction, Transformers,
Computational modeling, Sensors, Geometry, Depth estimation,
self-supervised learning
BibRef
Wang, F.[Fei],
Cheng, J.[Jun],
Liu, P.L.[Peng-Lei],
CbwLoss: Constrained Bidirectional Weighted Loss for Self-Supervised
Learning of Depth and Pose,
ITS(24), No. 6, June 2023, pp. 5803-5821.
IEEE DOI
2306
Cameras, Image reconstruction, Feature extraction, Deep learning,
Videos, Neural networks, Robot vision systems, Depth estimation,
self-supervised learning
BibRef
Tang, S.[Shuai],
Lu, T.W.[Tong-Wei],
Liu, X.X.[Xuan-Xuan],
Zhou, H.B.[Hua-Bing],
Zhang, Y.[Yanduo],
CATNet: Convolutional attention and transformer for monocular depth
estimation,
PR(145), 2024, pp. 109982.
Elsevier DOI
2311
Monocular depth estimation, Convolutional attention, Transformer, Adaptive bins
BibRef
Bae, J.[Jinwoo],
Hwang, K.[Kyumin],
Im, S.H.[Sung-Hoon],
A Study on the Generality of Neural Network Structures for Monocular
Depth Estimation,
PAMI(46), No. 4, April 2024, pp. 2224-2238.
IEEE DOI
2403
Transformers, Estimation, Decoding, Shape, Task analysis,
Visualization, Training, Generalization.
BibRef
Wang, L.J.[Li-Jun],
Wang, Y.F.[Yi-Fan],
Wang, L.Z.[Lin-Zhao],
Zhan, Y.L.[Yun-Long],
Wang, Y.[Ying],
Lu, H.C.[Hu-Chuan],
Can Scale-Consistent Monocular Depth Be Learned in a Self-Supervised
Scale-Invariant Manner?,
ICCV21(12707-12716)
IEEE DOI
2203
Point cloud compression, Art, Motion estimation,
Design methodology, Estimation,
BibRef
Huynh, L.[Lam],
Nguyen, P.[Phong],
Matas, J.G.[Jirí G.],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Lightweight Monocular Depth with a Novel Neural Architecture Search
Method,
WACV22(326-336)
IEEE DOI
2202
Search methods, Computational modeling,
Estimation, Computer architecture, Manuals, Benchmark testing,
3D Computer Vision Deep Learning
BibRef
Tilmon, B.[Brevin],
Koppal, S.J.[Sanjeev J.],
SaccadeCam: Adaptive Visual Attention for Monocular Depth Sensing,
ICCV21(5989-5998)
IEEE DOI
2203
Visualization, Image resolution, Adaptive systems, Animals,
Prototypes, Estimation, Stereo,
Computational photography
BibRef
Xiong, J.H.[Jin-Hui],
Heidrich, W.[Wolfgang],
In-the-Wild Single Camera 3D Reconstruction Through Moving Water
Surfaces,
ICCV21(12538-12547)
IEEE DOI
2203
Geometry, Surface reconstruction, Casting, Shape, Laboratories,
3D from a single image and shape-from-x, Stereo,
3D from multiview and other sensors
BibRef
Jung, H.[Hyunyoung],
Park, E.[Eunhyeok],
Yoo, S.[Sungjoo],
Fine-grained Semantics-aware Representation Enhancement for
Self-supervised Monocular Depth Estimation,
ICCV21(12622-12632)
IEEE DOI
2203
Training, Measurement, Geometry, Codes, Semantics, Estimation,
3D from a single image and shape-from-x,
Vision for robotics and autonomous vehicles
BibRef
Liu, L.[Lina],
Song, X.B.[Xi-Bin],
Wang, M.M.[Meng-Meng],
Liu, Y.[Yong],
Zhang, L.J.[Liang-Jun],
Self-supervised Monocular Depth Estimation for All Day Images using
Domain Separation,
ICCV21(12717-12726)
IEEE DOI
2203
Codes, Estimation, Lighting, Generative adversarial networks,
Feature extraction, Data mining,
3D from multiview and other sensors
BibRef
Huynh, L.[Lam],
Nguyen, P.[Phong],
Matas, J.G.[Jirí G.],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Boosting Monocular Depth Estimation with Lightweight 3D Point Fusion,
ICCV21(12747-12756)
IEEE DOI
2203
Point cloud compression, Deep learning, Solid modeling, Fuses,
Computational modeling,
BibRef
Wei, J.,
Jiang, J.,
Yilmaz, A.,
MOHE-Net: Monocular Object Height Estimation Network Using Deep
Learning and Scene Geometry,
ISPRS21(B2-2021: 557-564).
DOI Link
2201
BibRef
Lo, C.C.[Chen-Chou],
Vandewalle, P.[Patrick],
Depth Estimation from Monocular Images and Sparse Radar Using Deep
Ordinal Regression Network,
ICIP21(3343-3347)
IEEE DOI
2201
Deep learning, Rain, Radar measurements, Image processing,
Estimation, Radar, monocular depth estimation, radar,
nuScenes
BibRef
Li, R.[Runfa],
Nguyen, T.[Truong],
SM3D: Simultaneous Monocular Mapping and 3D Detection,
ICIP21(3652-3656)
IEEE DOI
2201
Training, Location awareness, Deep learning, Image processing,
Pose estimation, SM3D, Monocular Mapping, Monocular 3D detection,
Depth Estimation
BibRef
Roddick, T.[Thomas],
Biggs, B.[Benjamin],
Reino, D.O.[Daniel Olmeda],
Cipolla, R.[Roberto],
On the Road to Large-Scale 3D Monocular Scene Reconstruction using
Deep Implicit Functions,
AVVision21(2875-2884)
IEEE DOI
2112
Training, Image resolution, Shape, Roads, Pipelines, Hazards
BibRef
Hornauer, J.[Julia],
Nalpantidis, L.[Lazaros],
Belagiannis, V.[Vasileios],
Visual Domain Adaptation for Monocular Depth Estimation on
Resource-Constrained Hardware,
ERCVAD21(954-962)
IEEE DOI
2112
Training, Deep learning, Visualization, Adaptation models,
Neural networks, Estimation, Computer architecture
BibRef
Pintore, G.[Giovanni],
Agus, M.[Marco],
Almansa, E.[Eva],
Schneider, J.[Jens],
Gobbetti, E.[Enrico],
SliceNet: deep dense depth estimation from a single indoor panorama
using a slice-based representation,
CVPR21(11531-11540)
IEEE DOI
2111
Deep learning, Surface reconstruction,
Estimation, Feature extraction,
Indoor environment
BibRef
Bak, J.[Junhyeong],
Park, I.K.[In Kyu],
Light Field Synthesis from a Monocular Image using Variable LDI,
LightField23(3399-3407)
IEEE DOI
2309
BibRef
Bae, K.[Kyuho],
Ivan, A.[Andre],
Nagahara, H.[Hajime],
Park, I.K.[In Kyu],
5D Light Field Synthesis from a Monocular Video,
ICPR21(7157-7164)
IEEE DOI
2105
Learning systems, Deep learning, Feature extraction, Cameras,
Light fields, Image reconstruction
BibRef
Hidalgo-Carrió, J.,
Gehrig, D.,
Scaramuzza, D.,
Learning Monocular Dense Depth from Events,
3DV20(534-542)
IEEE DOI
2102
Cameras, Estimation, Sensors, Standards, Measurement,
Robot vision systems, Training, deep learning, depth
BibRef
Chen, Z.,
Wu, B.,
Liu, W.C.,
Deep Learning for 3d Reconstruction of the Martian Surface Using
Monocular Images: A First Glance,
ISPRS20(B3:1111-1116).
DOI Link
2012
BibRef
Aleotti, F.[Filippo],
Tosi, F.[Fabio],
Zhang, L.[Li],
Poggi, M.[Matteo],
Mattoccia, S.[Stefano],
Reversing the Cycle: Self-supervised Deep Stereo Through Enhanced
Monocular Distillation,
ECCV20(XI:614-632).
Springer DOI
2011
BibRef
Swami, K.,
Bondada, P.V.,
Bajpai, P.K.,
ACED: Accurate And Edge-Consistent Monocular Depth Estimation,
ICIP20(1376-1380)
IEEE DOI
2011
Estimation, Training, Computational modeling, Convolution,
Task analysis, Cameras, Machine learning,
deep learning
BibRef
Xu, Y.F.[Yi-Fan],
Fan, T.Q.[Tian-Qi],
Yuan, Y.[Yi],
Singh, G.[Gurprit],
Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3d
Reconstruction with Symmetry,
ECCV20(I:248-263).
Springer DOI
2011
BibRef
Ren, H.,
Raj, A.,
El-Khamy, M.,
Lee, J.,
SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep
Learning for Monocular Depth Estimation,
DeepVision20(3235-3243)
IEEE DOI
2008
Estimation, Supervised learning, Training, Unsupervised learning,
Semantics
BibRef
Ren, H.,
El-Khamy, M.,
Lee, J.,
Stereo Disparity Estimation via Joint Supervised, Unsupervised, and
Weakly Supervised Learning,
ICIP20(2760-2764)
IEEE DOI
2011
Supervised learning, Estimation, Feature extraction,
Unsupervised learning, Loss measurement, Error analysis, Training,
weakly supervised learning
BibRef
Smirnov, D.,
Fisher, M.,
Kim, V.G.,
Zhang, R.,
Solomon, J.,
Deep Parametric Shape Predictions Using Distance Fields,
CVPR20(558-567)
IEEE DOI
2008
Shape,
Task analysis, Geometry, Loss measurement, Machine learning
BibRef
Xu, S.,
Yang, J.,
Chen, D.,
Wen, F.,
Deng, Y.,
Jia, Y.,
Tong, X.,
Deep 3D Portrait From a Single Image,
CVPR20(7707-7717)
IEEE DOI
2008
Face, Geometry, Image reconstruction, Hair
BibRef
Sun, Y.H.[Yun-Han],
Shi, J.L.[Jin-Long],
Bai, S.[Suqin],
Qian, Q.A.[Qi-Ang],
Sun, Z.X.[Zheng-Xing],
Single View Depth Estimation via Dense Convolution Network with
Self-supervision,
MMMod20(II:241-253).
Springer DOI
2003
BibRef
Rodríguez-Santiago, A.L.[Armando Levid],
Arias-Aguilar, J.A.[José Anibal],
Petrilli-Barceló, A.E.[Alberto Elías],
Miranda-Luna, R.[Rosebet],
A Simple Methodology for 2d Reconstruction Using a CNN Model,
MCPR20(98-107).
Springer DOI
2007
BibRef
Fang, Z.,
Chen, X.,
Chen, Y.,
Van Gool, L.J.,
Towards Good Practice for CNN-Based Monocular Depth Estimation,
WACV20(1080-1089)
IEEE DOI
2006
Estimation, Training, Computer architecture, Decoding,
Analytical models, Image resolution, Network architecture
BibRef
Luis, J.,
Bello, G.,
Kim, M.,
A Novel Monocular Disparity Estimation Network with Domain
Transformation and Ambiguity Learning,
ICIP19(474-478)
IEEE DOI
1910
Monocular disparity estimation,
deep convolutional neural networks (DCNN), unsupervised learning
BibRef
Kumari, S.,
Jha, R.R.,
Bhavsar, A.,
Nigam, A.,
AUTODEPTH: Single Image Depth Map Estimation via Residual CNN
Encoder-Decoder and Stacked Hourglass,
ICIP19(340-344)
IEEE DOI
1910
Depth map estimation, CNN, Residual connection, Encoder-decoder, Hourglass
BibRef
Shin, D.,
Ren, Z.,
Sudderth, E.,
Fowlkes, C.C.,
3D Scene Reconstruction With Multi-Layer Depth and Epipolar
Transformers,
ICCV19(2172-2182)
IEEE DOI
2004
cameras, computational geometry, convolutional neural nets,
image colour analysis, image reconstruction, Surface reconstruction
BibRef
Kaneko, M.,
Sakurada, K.,
Aizawa, K.,
TriDepth: Triangular Patch-Based Deep Depth Prediction,
DeepSLAM19(3747-3750)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image colour analysis, image reconstruction,
single view depth prediction
BibRef
Zhou, Y.,
Qi, H.,
Zhai, Y.,
Sun, Q.,
Chen, Z.,
Wei, L.,
Ma, Y.,
Learning to Reconstruct 3D Manhattan Wireframes From a Single Image,
ICCV19(7697-7706)
IEEE DOI
2004
convolutional neural nets, image reconstruction,
image representation, learning (artificial intelligence),
Image reconstruction
BibRef
Atapour-Abarghouei, A.[Amir],
Breckon, T.P.[Toby P.],
To Complete or to Estimate, That is the Question: A Multi-Task
Approach to Depth Completion and Monocular Depth Estimation,
3DV19(183-193)
IEEE DOI
1911
BibRef
And:
Monocular Segment-Wise Depth: Monocular Depth Estimation Based on a
Semantic Segmentation Prior,
ICIP19(4295-4299)
IEEE DOI
1910
BibRef
Earlier:
Real-Time Monocular Depth Estimation Using Synthetic Data with Domain
Adaptation via Image Style Transfer,
CVPR18(2800-2810)
IEEE DOI
1812
Estimation, Training, Generators, Data models, Laser radar,
Training data, Task analysis, Monocular Depth Estimation,
3D Scene Understanding.
Adaptation models, Predictive models, Neural networks.
Monocular Depth Estimation, Convolutional Neural Networks, Semantic Segmentation
BibRef
Hu, J.,
Ozay, M.,
Zhang, Y.,
Okatani, T.,
Revisiting Single Image Depth Estimation: Toward Higher Resolution
Maps With Accurate Object Boundaries,
WACV19(1043-1051)
IEEE DOI
1904
convolutional neural nets, feature extraction, image fusion,
image reconstruction, image resolution, inference mechanisms,
Image edge detection
BibRef
Gadelha, M.,
Wang, R.,
Maji, S.,
Shape Reconstruction Using Differentiable Projections and Deep Priors,
ICCV19(22-30)
IEEE DOI
2004
gradient methods, image reconstruction, noisy projections,
viewpoint uncertainities, shape given measurements,
Bayes methods
BibRef
Ramon, E.,
Ruiz, G.,
Batard, T.,
Giró-i-Nieto, X.,
Hyperparameter-Free Losses for Model-Based Monocular Reconstruction,
GMDL19(4075-4084)
IEEE DOI
2004
cameras, computational complexity, computational geometry,
image reconstruction, minimisation, pose estimation,
deep learning
BibRef
van Dijk, T.,
de Croon, G.,
How Do Neural Networks See Depth in Single Images?,
ICCV19(2183-2191)
IEEE DOI
2004
cameras, image processing, neural nets, deep neural networks,
depth estimation, camera pitch, vertical image position, Cameras,
Biological neural networks
BibRef
Irie, G.,
Kawanishi, T.,
Kashino, K.,
Robust Learning for Deep Monocular Depth Estimation,
ICIP19(964-968)
IEEE DOI
1910
Monocular depth estimation, robust loss function, supervised learning
BibRef
Choi, S.,
Nguyen, A.,
Kim, J.,
Ahn, S.,
Lee, S.,
Point Cloud Deformation for Single Image 3d Reconstruction,
ICIP19(2379-2383)
IEEE DOI
1910
3D reconstruction, point cloud processing, neural network, deep learning
BibRef
Li, R.[Ruibo],
Xian, K.[Ke],
Shen, C.H.[Chun-Hua],
Cao, Z.G.[Zhi-Guo],
Lu, H.[Hao],
Hang, L.X.[Ling-Xiao],
Deep Attention-Based Classification Network for Robust Depth Prediction,
ACCV18(IV:663-678).
Springer DOI
1906
BibRef
Smith, R.[Rory],
Burghardt, T.[Tilo],
DeepKey: Towards End-to-End Physical Key Replication from a Single
Photograph,
GCPR18(487-502).
Springer DOI
1905
RGB image of a key, generate the 3D key.
BibRef
Ito, S.[Seiya],
Kaneko, N.[Naoshi],
Shinohara, Y.[Yuma],
Sumi, K.[Kazuhiko],
Deep Modular Network Architecture for Depth Estimation from Single
Indoor Images,
3D-Wild18(I:324-336).
Springer DOI
1905
BibRef
Fu, H.,
Gong, M.,
Wang, C.,
Batmanghelich, K.,
Tao, D.,
Deep Ordinal Regression Network for Monocular Depth Estimation,
CVPR18(2002-2011)
IEEE DOI
1812
Estimation, Feature extraction, Training, Spatial resolution, Kernel
BibRef
Kumar, A.C.,
Bhandarkar, S.M.,
Prasad, M.,
DepthNet:
A Recurrent Neural Network Architecture for Monocular Depth Prediction,
DeepSLAM18(396-3968)
IEEE DOI
1812
Simultaneous localization and mapping, Image reconstruction,
Recurrent neural networks, Video sequences
BibRef
Ron, D.,
Duan, K.,
Ma, C.,
Xu, N.,
Wang, S.,
Hanumante, S.,
Sagar, D.,
Monocular Depth Estimation via Deep Structured Models with Ordinal
Constraints,
3DV18(570-577)
IEEE DOI
1812
feedforward neural nets, image resolution,
inference mechanisms, user interfaces, deep structured model,
ordinal constraints
BibRef
Carvalho, M.,
Saux, B.L.,
Trouvé-Peloux, P.,
Almansa, A.,
Champagnat, F.,
On Regression Losses for Deep Depth Estimation,
ICIP18(2915-2919)
IEEE DOI
1809
Estimation, Training, Standards, Convolution,
Machine learning, Network architecture, Depth estimation,
loss function
BibRef
Huang, J.[Jun],
Bi, T.T.[Tian-Teng],
Liu, Y.[Yue],
Wang, Y.T.[Yong-Tian],
Stereo Generation from a Single Image Using Deep Residual Network,
ICIP18(3653-3657)
IEEE DOI
1809
Painting, Training, Interpolation,
Measurement, Stereo image processing, Image edge detection,
layered images
BibRef
Yang, N.[Nan],
Wang, R.[Rui],
Stückler, J.[Jörg],
Cremers, D.[Daniel],
Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for
Monocular Direct Sparse Odometry,
ECCV18(VIII: 835-852).
Springer DOI
1810
BibRef
Kuznietsov, Y.,
Stückler, J.[Jörg],
Leibe, B.[Bastian],
Semi-Supervised Deep Learning for Monocular Depth Map Prediction,
CVPR17(2215-2223)
IEEE DOI
1711
Cameras, Laser noise, Machine learning, Measurement by laser beam,
Sensors, Training
BibRef
Xu, D.,
Wang, W.,
Tang, H.,
Liu, H.,
Sebe, N.,
Ricci, E.,
Structured Attention Guided Convolutional Neural Fields for Monocular
Depth Estimation,
CVPR18(3917-3925)
IEEE DOI
1812
Estimation, Predictive models, Task analysis,
Computer architecture, Semantics, Computational modeling, Fuses
BibRef
Yang, F.T.[Feng-Ting],
Zhou, Z.[Zihan],
Recovering 3D Planes from a Single Image via Convolutional Neural
Networks,
ECCV18(X: 87-103).
Springer DOI
1810
BibRef
da Silveira, T.L.T.,
Dal'aqua, L.P.,
Jung, C.R.,
Indoor Depth Estimation from Single Spherical Images,
ICIP18(2935-2939)
IEEE DOI
1809
Estimation, Cameras, Distortion, Image color analysis, Training,
Convolutional neural networks, Solid modeling, Spherical images,
BibRef
Zhao, S.Y.[Shi-Yu],
Zhang, L.[Lin],
Shen, Y.[Ying],
Zhu, Y.N.[Yong-Ning],
A CNN-Based Depth Estimation Approach with Multi-scale Sub-pixel
Convolutions and a Smoothness Constraint,
ACCV18(II:365-380).
Springer DOI
1906
BibRef
Koch, T.[Tobias],
Liebel, L.[Lukas],
Fraundorfer, F.[Friedrich],
Körner, M.[Marco],
Evaluation of CNN-Based Single-Image Depth Estimation Methods,
DeepLearn-G18(III:331-348).
Springer DOI
1905
BibRef
He, L.,
Yu, M.,
Wang, G.,
Spindle-Net:
CNNs for Monocular Depth Inference with Dilation Kernel Method,
ICPR18(2504-2509)
IEEE DOI
1812
Convolution, Image resolution, Kernel, Feature extraction,
Neural networks, Computer architecture, Task analysis
BibRef
Jaritz, M.,
Charette, R.D.,
Wirbel, E.,
Perrotton, X.,
Nashashibi, F.,
Sparse and Dense Data with CNNs:
Depth Completion and Semantic Segmentation,
3DV18(52-60)
IEEE DOI
1812
feature extraction, image colour analysis,
image segmentation, learning (artificial intelligence),
RGB+sparse depth fusion
BibRef
Moukari, M.,
Picard, S.,
Simoni, L.,
Jurie, F.,
Deep Multi-Scale Architectures for Monocular Depth Estimation,
ICIP18(2940-2944)
IEEE DOI
1809
Training, Estimation, Decoding, Computer architecture, Semantics,
Spatial resolution, Task analysis, monocular depth estimation,
CNN architecture
BibRef
Johnston, A.,
Garg, R.,
Carneiro, G.,
Reid, I.D.[Ian D.],
Scaling CNNs for High Resolution Volumetric Reconstruction from a
Single Image,
DeepLearn-G17(930-939)
IEEE DOI
1802
Convolution, Deconvolution, Discrete cosine transforms,
Image reconstruction, Shape, Solid modeling, Training
BibRef
Weerasekera, C.S.[Chamara Saroj],
Garg, R.[Ravi],
Latif, Y.[Yasir],
Reid, I.D.[Ian D.],
Learning Deeply Supervised Good Features to Match for Dense Monocular
Reconstruction,
ACCV18(V:609-624).
Springer DOI
1906
BibRef
Hua, Y.,
Tian, H.,
Cai, A.,
Shi, P.,
Cross-modal correlation learning with deep convolutional architecture,
VCIP15(1-4)
IEEE DOI
1605
Analytical models
BibRef
Tian, H.[Hu],
Zhuang, B.J.[Bo-Jin],
Hua, Y.[Yan],
Cai, A.N.[An-Ni],
Depth inference with convolutional neural network,
VCIP14(169-172)
IEEE DOI
1504
BibRef
Earlier:
Depth extraction from a single image by sampling based on distance
metric learning,
ICIP14(2017-2021)
IEEE DOI
1502
feature extraction.
Estimation.
Mahalanobis distance rather than Euclidean distance between images.
depth fusion.
BibRef
Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Single View 3D Reconstruction, Generative Adversarial Networks, GAN .