di Manzo, M.,
Trucco, E.,
Giunchiglia, F., and
Ricci, F.,
FUR: Understanding FUnctional Reasoning,
IJIS(4), 1989, pp. 431-457.
BibRef
8900
di Manzo, M.,
Adorni, G.,
Giunchiglia, F.,
Reasoning about Scene Descriptions,
PIEEE(74), 1986, pp. 1013-1025.
BibRef
8600
Stark, L.,
Functionality in Object Recognition,
CVIU(62), No. 2, September 1995, pp. 145-146.
DOI Link Review, introduction to the special issue.
BibRef
9509
Stark, L.,
Bowyer, K.W.,
Achieving Generalized Object Recognition Through Reasoning About
Association of Function to Structure,
PAMI(13), No. 10, October 1991, pp. 1097-1104.
IEEE DOI
BibRef
9110
Stark, L.[Louise],
Reasoning About Functionality In Object Recognition,
IVC(16), No. 11, August 1 1998, pp. 727-728.
Elsevier DOI
9808
Special issue Introduction.
BibRef
Stark, L., and
Bowyer, K.W.,
Function-Based Generic Recognition for Multiple Object Categories,
CVGIP(59), No. 1, January 1994, pp. 1-21.
DOI Link
BibRef
9401
And:
3DORS93(447-470).
BibRef
Earlier:
Generic Recognition Through Qualitative Reasoning about
3-D Shape and Object Function,
CVPR91(251-256).
IEEE DOI 3-D wireframe models of objects and a comparison with the results
of human recognition. Model matching with constraints to infer
functionality.
BibRef
Stark, L., and
Bowyer, K.W.,
Indexing Function-Based Categories for Generic Recognition,
CVPR92(795-797).
IEEE DOI Functional use rather than shape (chair is for sitting on).
BibRef
9200
Sutton, M.A.[Melanie A.],
Stark, L.[Louise],
Bowyer, K.W.[Kevin W.],
Function from Visual Analysis and Physical Interaction:
A Methodology for Recognition of Generic Classes of Objects,
IVC(16), No. 11, August 1 1998, pp. 745-763.
Elsevier DOI
9808
BibRef
Sutton, M.A.[Melanie A.],
Function from Visual Analysis and Physical Interaction:
A Methodology for Recognition of Generic Classes of Objects,
Ph.D.Thesis, Univ. of South FL, May, 1997.
BibRef
9705
Sutton, M.A.[Melanie A.],
Stark, L.,
Bowyer, K.W.,
GRUFF-3: Generalizing the Domain of a Function-Based Recognition System,
PR(27), No. 12, December 1994, pp. 1743-1766.
Elsevier DOI Generic objects. Form and function.
BibRef
9412
Woods, K.,
Cook, D.,
Hall, L.O.,
Bowyer, K.W., and
Stark, L.,
Learning Membership Functions in a Function-Based Object Recognition
System,
JAIR(3), 1995, pp. 187-222.
HTML Version. (postscript: volume3/woods95a.ps)
BibRef
9500
Cook, D.,
Hall, L.O.,
Stark, L.,
Bowyer, K.W.,
Learning Combination of Evidence Functions in Object Recognition,
AAAI-MLCV93(xx).
University of South Florida.
BibRef
9300
Green, K.,
Eggert, D.W.,
Stark, L.,
Bowyer, K.W.,
Generic Recognition of Articulated Objects Through
Reasoning about Potential Function,
CVIU(62), No. 2, September 1995, pp. 177-193.
DOI Link
BibRef
9509
Earlier:
Generic Recognition of Articulated Objects by
Reasoning about Functionality,
ICPR94(A:847-849).
IEEE DOI
Articulated Shape. Objects are categorized according to potential uses.
First recover an articulated shape model, determine functional
potential
BibRef
Stark, L., and
Bowyer, K.W.,
Generic Object Recognition Using Form and Function,
World Scientific1996.
ISBN 981-02-1508-8.
BibRef
9600
Stark, L.[Louise],
Functional Context In Vision,
Context95(xx)
BibRef
9500
Stark, L.,
Recognizing Object Function Through Reasoning About 3-D Shape
and Dynamic Physical Properties,
CVPR94(546-553).
IEEE DOI
BibRef
9400
Stark, L.,
Hall, L.O.,
Bowyer, K.W.,
Methods for Combination of Evidence in Function-Based 3-D
Object Recognition,
PRAI(7), No. 3, June 1993, pp. 573-594.
BibRef
9306
Stark, L.,
Bowyer, K.W.,
Hoover, A.,
Goldgof, D.B.,
Recognizing Object Function Through Reasoning about
Partial Shape Descriptions and Dynamic Physical-Properties,
PIEEE(84), No. 11, November 1996, pp. 1640-1656.
9611
BibRef
Stark, L.,
Hoover, A.W.,
Goldgof, D.B.,
Bowyer, K.W.,
Function-Based Recognition from Incomplete Knowledge of Shape,
WQV93(11-22).
BibRef
9300
And:
Function-Based Recognition from Incomplete Knowledge of Object Shape,
Function93(141-148).
BibRef
Vaina, L.M.[Lucia M.], and
Jaulent, M.C.,
Object Structure and Action Requirements:
A Compatibility Model for Functional Recognition,
IJIS(6), 1991, pp. 313-336.
BibRef
9100
Hodges, J.,
Functional and Physical Object Characteristics and
Object Recognition in Improvisation,
CVIU(62), No. 2, September 1995, pp. 147-163.
DOI Link
BibRef
9509
And:
Naive Mechanics:
A Computational Model of Device Use and Function in Design Improvement,
IEEE_Expert(7), 1992, pp. 14-27.
Issues of how to determine constraints of a situation in order to
use an object.
BibRef
Bogoni, L.,
Bajcsy, R.,
Interactive Recognition and Representation of Functionality,
CVIU(62), No. 2, September 1995, pp. 194-214.
DOI Link
BibRef
9509
And:
Active Investigation of Functionality,
WVB94(xx).
Function implies action, the representation includes intrinsic properties
along with functions (how it is used) properties. Focuses on manipulations.
BibRef
Bogoni, L.,
Rucci, M.,
Bajcsy, R.,
Investigating Functionality: The Case of Piercing Operation,
ICPR94(A:837-839).
IEEE DOI
BibRef
9400
Bogoni, L.[Luca],
Functional Features for Chopping Extracted
from Observations and Interactions,
IVC(16), No. 11, August 1 1998, pp. 765-783.
Elsevier DOI
9808
BibRef
Cooper, P.R.,
Birnbaum, L.A.,
Brand, M.E.,
Causal Scene Understanding,
CVIU(62), No. 2, September 1995, pp. 215-231.
DOI Link
BibRef
9509
Earlier: A2, A3, A1:
Using Causal Scene Analysis to Direct Focus of Attention,
WQV93(23-32).
Includes reasoning about what will happen and why (blocks domain,
elementary physics).
BibRef
Brand, M.E.,
Birnbaum, L.A.,
Cooper, P.R.,
Sensible Scenes:
Visual Understanding of Complex Scenes Through Causal Analysis,
AAAI-93(xx-yy).
BibRef
9300
Birnbaum, L.A.,
Brand, M.E., and
Cooper, P.R.[Paul R.],
Looking for Trouble: Using Causal Semantics to Direct
Focus of Attention,
ICCV93(49-56).
IEEE DOI
Focus of Attention. Adding rules of where to look to generate scan patterns like humans.
BibRef
9300
Brand, M.E.,
Cooper, P.R.,
Birnbaum, L.A.,
Seeing Physics or, Physics Is for Prediction,
PBMCV95(SESSION 5)
BibRef
9500
Brand, M.E.,
Physics-Based Visual Understanding,
CVIU(65), No. 2, February 1997, pp. 192-205.
DOI Link
9704
BibRef
Duric, Z.,
Fayman, J.A.,
Rivlin, E.,
Function from Motion,
PAMI(18), No. 6, June 1996, pp. 579-591.
IEEE DOI
9607
BibRef
Earlier:
Recognizing Functionality,
SCV95(247-252).
IEEE DOI
Optical Flow. U. of Maryland. Israel Inst. of Technology.
Function from motion.
Recognition of different actions (slicing, chopping) based on an analysis
of optical flow.
BibRef
Caruthers, F.,
Recognizing Object Function Through Reasoning About Partial Shape
Descriptions and Dynamic Physical-Properties,
PIEEE(84), No. 11, November 1996, pp. 1638-1639.
9611
See also Recognizing Object Function Through Reasoning about Partial Shape Descriptions and Dynamic Physical-Properties.
BibRef
Hassanin, M.[Mohammed],
Khan, S.[Salman],
Tahtali, M.[Murat],
Visual Affordance and Function Understanding: A Survey,
Surveys(54), No. 3, April 2021, pp. xx-yy.
DOI Link
2106
Survey, Visual Function. Discover information, understand it, and interact with the environment.
deep learning, Affordance prediction,
functional scene understanding, visual reasoning
BibRef
Zhai, W.[Wei],
Luo, H.C.[Hong-Chen],
Zhang, J.[Jing],
Cao, Y.[Yang],
Tao, D.C.[Da-Cheng],
One-Shot Object Affordance Detection in the Wild,
IJCV(130), No. 10, October 2022, pp. 2472-2500.
Springer DOI
2209
Dataset, Affordance.
WWW Link. Affordance: potential action possibilities of objects in the scene.
BibRef
Chen, D.P.[Dong-Pan],
Kong, D.[Dehui],
Li, J.H.[Jing-Hua],
Wang, L.C.[Li-Chun],
Gao, J.[Junna],
Yin, B.C.[Bao-Cai],
OASNet: Object Affordance State Recognition Network With Joint Visual
Features and Relational Semantic Embeddings,
CirSysVideo(34), No. 5, May 2024, pp. 3368-3382.
IEEE DOI Code:
WWW Link.
2405
Task analysis, Affordances, Image recognition, Semantics,
Visualization, Transformers, Robots
BibRef
Li, G.[Gen],
Sun, D.Q.[De-Qing],
Sevilla-Lara, L.[Laura],
Jampani, V.[Varun],
One-Shot Open Affordance Learning with Foundation Models,
CVPR24(3086-3096)
IEEE DOI Code:
WWW Link.
2410
Visualization, Affordances, Training data, Benchmark testing,
Data models, Foundation Models,
Vision-Language Models
BibRef
Delitzas, A.[Alexandros],
Takmaz, A.[Ayça],
Tombari, F.[Federico],
Sumner, R.[Robert],
Pollefeys, M.[Marc],
Engelmann, F.[Francis],
SceneFun3D: Fine-Grained Functionality and Affordance Understanding
in 3D Scenes,
CVPR24(14531-14542)
IEEE DOI
2410
Grounding, Annotations, Affordances, Motion segmentation,
Motion estimation, Natural languages, 3D scene understanding,
motion estimation
BibRef
Wang, X.H.[Xiao-Han],
Liu, Y.H.[Yue-Hu],
Song, X.H.[Xin-Hang],
Liu, Y.[Yuyi],
Zhang, S.[Sixian],
Jiang, S.Q.[Shu-Qiang],
An Interactive Navigation Method with Effect-oriented Affordance,
CVPR24(16446-16456)
IEEE DOI
2410
Visualization, Uncertainty, Costs, Navigation, Affordances,
Reinforcement learning, Embodied AI, affordance, Interactive Navigation
BibRef
Chen, S.Z.[Shi-Zhe],
Garcia, R.[Ricardo],
Laptev, I.[Ivan],
Schmid, C.[Cordelia],
SUGAR: Pre-training 3D Visual Representations for Robotics,
CVPR24(18049-18060)
IEEE DOI
2410
Representation learning, Visualization, Solid modeling, Grounding,
Affordances, Semantics
BibRef
Rai, A.[Arushi],
Buettner, K.[Kyle],
Kovashka, A.[Adriana],
Strategies to Leverage Foundational Model Knowledge in Object
Affordance Grounding,
WhatNext24(1714-1723)
IEEE DOI
2410
Heating systems, Grounding, Affordances, Pipelines
BibRef
Cuttano, C.[Claudia],
Rosi, G.[Gabriele],
Trivigno, G.[Gabriele],
Averta, G.[Giuseppe],
What does CLIP know about peeling a banana?,
Reasoning24(2238-2247)
IEEE DOI
2410
Training, Affordances, Scalability, Computational modeling, Supervised learning
BibRef
Liang, Y.Z.[Yuan-Zhi],
Wang, X.H.[Xiao-Han],
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
MAAL: Multimodality-Aware Autoencoder-based Affordance Learning for
3D Articulated Objects,
ICCV23(217-227)
IEEE DOI
2401
BibRef
Tang, J.J.[Jia-Jin],
Zheng, G.[Ge],
Yu, J.Y.[Jing-Yi],
Yang, S.[Sibei],
CoTDet: Affordance Knowledge Prompting for Task Driven Object
Detection,
ICCV23(3045-3055)
IEEE DOI
2401
BibRef
Wu, R.[Ruihai],
Ning, C.[Chuanruo],
Dong, H.[Hao],
Learning Foresightful Dense Visual Affordance for Deformable Object
Manipulation,
ICCV23(10913-10922)
IEEE DOI Code:
WWW Link.
2401
BibRef
Khalifa, Z.[Zeyad],
Shah, S.A.A.[Syed Afaq Ali],
A Large Scale Multi-View RGBD Visual Affordance Learning Dataset,
ICIP23(1325-1329)
IEEE DOI Code:
WWW Link.
2312
BibRef
Singhal, A.[Anirudh],
Chopra, A.[Ayush],
Ayush, K.[Kumar],
Patel, U.[Utkarsh],
Krishnamurthy, B.[Balaji],
Towards a Unified Framework for Visual Compatibility Prediction,
WACV20(3596-3605)
IEEE DOI
2006
Task analysis, Visualization, Robustness, Feature extraction,
Context modeling, Standards, Sensitivity
BibRef
Zhang, L.Z.[Ling-Zhi],
Du, W.Y.[Wei-Yu],
Zhou, S.H.[Sheng-Hao],
Wang, J.C.[Jian-Cong],
Shi, J.B.[Jian-Bo],
Inpaint2Learn: A Self-Supervised Framework for Affordance Learning,
WACV22(3778-3787)
IEEE DOI
2202
Training, Affordances, Pipelines, Predictive models,
Benchmark testing, Adversarial machine learning,
Analysis and Understanding Scene Understanding
BibRef
Minh, C.N.D.[Chau Nguyen Duc],
Gilani, S.Z.[Syed Zulqarnain],
Islam, S.M.S.[Syed Mohammed Shamsul],
Suter, D.[David],
Learning Affordance Segmentation: An Investigative Study,
DICTA20(1-8)
IEEE DOI
2201
Properties, capabilities.
Image segmentation, Visualization, Affordances,
Supervised learning, Semantics, Feature extraction, Task analysis
BibRef
Thermos, S.[Spyridon],
Papadopoulos, G.T.[Georgios T.],
Daras, P.[Petros],
Potamianos, G.[Gerasimos],
Attention-Enhanced Sensorimotor Object Recognition,
ICIP18(336-340)
IEEE DOI
1809
BibRef
Earlier:
Deep Affordance-Grounded Sensorimotor Object Recognition,
CVPR17(49-57)
IEEE DOI
1711
Object recognition, Measurement, Feature extraction, Task analysis,
Predictive models, Entropy, Dispersion,
deep neural networks.
Biological neural networks,
Robot sensing systems, Visualization
BibRef
Sawatzky, J.[Johann],
Garbade, M.[Martin],
Gall, J.[Juergen],
Ex Paucis Plura: Learning Affordance Segmentation from Very Few
Examples,
GCPR18(169-184).
Springer DOI
1905
Use existing annotated datasets to annotate new ones (reduce what needs
more work).
BibRef
Lüddecke, T.[Timo],
Wörgötter, F.[Florentin],
Learning to Segment Affordances,
AutoRob17(769-776)
IEEE DOI
1802
Computer architecture, Cost function,
Image segmentation, Predictive models, Training
BibRef
Hassan, M.[Mahmudul],
Dharmaratne, A.[Anuja],
'Affordance' detection by mid-level physical parts,
ICVNZ15(1-6)
IEEE DOI
1701
functional classification of objects.
computer vision
BibRef
Chao, Y.W.[Yu-Wei],
Wang, Z.[Zhan],
Mihalcea, R.[Rada],
Deng, J.[Jia],
Mining semantic affordances of visual object categories,
CVPR15(4259-4267)
IEEE DOI
1510
BibRef
Ku, L.Y.[Li Yang],
Sen, S.[Shiraj],
Learned-Miller, E.G.[Erik G.],
Grupen, R.A.[Roderic A.],
The Aspect Transition Graph: An Affordance-Based Model,
Affordance14(459-465).
Springer DOI
1504
BibRef
Grabner, H.[Helmut],
Gall, J.[Juergen],
Van Gool, L.J.[Luc J.],
What makes a chair a chair?,
CVPR11(1529-1536).
IEEE DOI
1106
BibRef
Goh, T.[Taeil],
West, R.[Ryan],
Okada, K.[Kazunori],
Robust detection of semantically equivalent visually dissimilar objects,
SLAM08(1-8).
IEEE DOI
0806
BibRef
Bar-Aviv, E.,
Rivlin, E.,
Functional 3D Object Classification Using Simulation of Embodied Agent,
BMVC06(I:307).
PDF File.
0609
BibRef
Narayanan, N.H.,
Chandrasekaran, B.,
Reasoning Visually about Spatial Interactions,
IJCAI91(360-365).
BibRef
9100
Kise, K.,
Hattori, H.,
Kitahashi, T., and
Fukunaga, K.,
Representing and Recognizing Simple Hand-Tools Based on Their Functions,
ACCV93(656-659).
BibRef
9300
Ho, S.,
Representing and Using Functional Definitions for Visual Recognition,
Ph.D.Thesis, Univ. of Wisconsin, 1987.
BibRef
8700
Bobick, A.F.[Aaron F.],
Richards, W.A.[Whitman A.],
Classifying Objects from Visual Information,
MIT AI Memo-879, June 1986.
WWW Link.
BibRef
8606
Bobick, A.F.[Aaron F.],
Natural Object Categorization,
MIT AI-TR-1001, November 1987.
WWW Link.
BibRef
8711
Lowry, M.R.,
Algorithm Synthesis for IU Applications,
DARPA87(835-842).
BibRef
8700
Lowry, M.R.,
Reasoning between Structure and Function,
DARPA82(260-264).
BibRef
8200
Freeman, P., and
Newell, A.,
A Model for Functional Reasoning in Design,
IJCAI71(621-640).
Not vision, but function analysis.
BibRef
7100
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Integration of Vision Modules, Select Operations, Sequence Operations .