9.8.1.5 Depth Ordering, Single View 3D Reconstruction

Chapter Contents (Back)
Single View. Depth Ordering.

Tweed, D.S., Calway, A.D.,
Integrated Segmentation and Depth Ordering of Motion Layers in Image Sequences,
IVC(20), No. 9-10, August 2002, pp. 709-723.
Elsevier DOI 0208
BibRef
Earlier: BMVC00(xx-yy).
PDF File. 0009
BibRef
And:
Moving Object Graphs and Layer Extraction from Image Sequences,
BMVC01(Poster Session 1. ).
HTML Version. University of Bristol 0110
BibRef

Benois-Pineau, J.[Jenny], Nicolas, H.[Henri],
A New Method for Region-Based Depth Ordering in a Video Sequence: Application to Frame Interpolation,
JVCIR(13), No. 3, September 2002, pp. 363-385.
DOI Link 0208
BibRef

Feldman, D.[Doron], Weinshall, D.[Daphna],
Motion Segmentation and Depth Ordering Using an Occlusion Detector,
PAMI(30), No. 7, July 2008, pp. 1171-1185.
IEEE DOI 0806
BibRef
Earlier:
Motion Segmentation Using an Occlusion Detector,
WDV06(34-47).
Springer DOI 0705
BibRef

Palou, G.[Guillem], Salembier, P.[Philippe],
Monocular Depth Ordering Using T-Junctions and Convexity Occlusion Cues,
IP(22), No. 5, May 2013, pp. 1926-1939.
IEEE DOI 1303
BibRef
Earlier:
2.1 Depth Estimation of Frames in Image Sequences Using Motion Occlusions,
QU3ST12(III: 516-525).
Springer DOI 1210
BibRef

Palou, G.[Guillem], Salembier, P.[Philippe],
Depth order estimation for video frames using motion occlusions,
IET-CV(8), No. 2, April 2014, pp. 152-160.
DOI Link 1407
BibRef
Earlier:
Depth ordering on image sequences using motion occlusions,
ICIP12(1217-1220).
IEEE DOI 1302
image motion analysis BibRef

Palou, G.[Guillem], Salembier, P.[Philippe],
Hierarchical Video Representation with Trajectory Binary Partition Tree,
CVPR13(2099-2106)
IEEE DOI 1309
BibRef

Morel, J.M.[Jean-Michel], Salembier, P.[Philippe],
Monocular Depth by Nonlinear Diffusion,
ICCVGIP08(95-102).
IEEE DOI 0812
Line junctions, local convexity. BibRef

Amer, M.R.[Mohamed R.], Yousefi, S.[Siavash], Raich, R.[Raviv], Todorovic, S.[Sinisa],
Monocular Extraction of 2.1D Sketch Using Constrained Convex Optimization,
IJCV(112), No. 1, March 2015, pp. 23-42.
Springer DOI 1503
Depth ordering. BibRef

Ming, A., Wu, T., Ma, J., Sun, F., Zhou, Y.,
Monocular Depth-Ordering Reasoning with Occlusion Edge Detection and Couple Layers Inference,
IEEE_Int_Sys(31), No. 2, March 2016, pp. 54-65.
IEEE DOI 1604
Feature extraction BibRef

Wu, K.W.[Ke-Wei], Gao, Y.[Yang], Ma, H.L.[Hai-Long], Sun, Y.X.[Yong-Xuan], Yao, T.T.[Ting-Ting], Xie, Z.[Zhao],
A deep generative directed network for scene depth ordering,
JVCIR(58), 2019, pp. 554-564.
Elsevier DOI 1901
Deep generative directed-network, Depth ordering, Hidden Markov field, DenseNet
See also Densely Connected Convolutional Networks. BibRef

Mohaghegh, H., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.,
Aggregation of Rich Depth-Aware Features in a Modified Stacked Generalization Model for Single Image Depth Estimation,
CirSysVideo(29), No. 3, March 2019, pp. 683-697.
IEEE DOI 1903
BibRef
Earlier:
Single image depth estimation using joint local-global features,
ICPR16(727-732)
IEEE DOI 1705
Estimation, Training, Semantics, Solid modeling, modified stacked generalization model. Monocular depth cues. Correlation, Databases, Data-driven approaches, Depth estimation, Joint local-global framework, KNN regression model. BibRef

Mao, J.F.[Jia-Fa], Huang, W.[Wei], Sheng, W.G.[Wei-Guo],
Target distance measurement method using monocular vision,
IET-IPR(14), No. 13, November 2020, pp. 3181-3187.
DOI Link 2012
BibRef

Koch, T.[Tobias], Liebel, L.[Lukas], Körner, M.[Marco], Fraundorfer, F.[Friedrich],
Comparison of monocular depth estimation methods using geometrically relevant metrics on the IBims-1 dataset,
CVIU(191), 2020, pp. 102877.
Elsevier DOI 2002
BibRef

Chen, W.[Wei], Luo, X.[Xin], Liang, Z.F.[Zheng-Fa], Li, C.[Chen], Wu, M.F.[Ming-Fei], Gao, Y.M.[Yuan-Ming], Jia, X.G.[Xiao-Gang],
A Unified Framework for Depth Prediction from a Single Image and Binocular Stereo Matching,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Ye, X.C.[Xin-Chen], Zhang, M.L.[Ming-Liang], Yang, J.Y.[Jing-Yu], Fan, X.[Xin], Guo, F.F.[Fang-Fang],
A sparsity-promoting image decomposition model for depth recovery,
PR(107), 2020, pp. 107506.
Elsevier DOI 2008
Image decomposition, Depth recovery, Depth discontinuities, Depth cameras BibRef

Mathew, A.[Alwyn], Mathew, J.[Jimson],
Monocular depth estimation with SPN loss,
IVC(100), 2020, pp. 103934.
Elsevier DOI 2008
Depth estimation, Monocular depth estimation BibRef

Karatsiolis, S.[Savvas], Kamilaris, A.[Andreas], Cole, I.[Ian],
IMG2nDSM: Height Estimation from Single Airborne RGB Images with Deep Learning,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Zhang, Y.F.[Yu-Feng], Ding, L.H.[Liang-Hui], Li, Y.X.[Yu-Xi], Lin, W.Y.[Wei-Yao], Zhao, M.B.[Ming-Bi], Yu, X.Y.[Xiao-Yuan], Zhan, Y.L.[Yun-Long],
A regional distance regression network for monocular object distance estimation,
JVCIR(79), 2021, pp. 103224.
Elsevier DOI 2109
Monocular distance estimation, Object detection, Deep neural network, Surveillance BibRef

Ye, X.C.[Xin-Chen], Chen, S.[Shude], Xu, R.[Rui],
DPNet: Detail-preserving network for high quality monocular depth estimation,
PR(109), 2021, pp. 107578.
Elsevier DOI 2009
Depth estimation, Detail-preserving, Spatial, Attention, Depth map BibRef

Liu, H.J.[Hua-Jun], Lei, D.[Dian], Zhu, Q.[Qing], Sui, H.G.[Hai-Gang], Zhang, H.R.[Huan-Ran], Wang, Z.Y.[Zi-Yan],
Single-image depth estimation by refined segmentation and consistency reconstruction,
SP:IC(90), 2021, pp. 116048.
Elsevier DOI 2012
Depth estimation, Image segmentation, Consistency reconstruction, Single image BibRef

Chen, H.X., Li, K., Fu, Z., Liu, M., Chen, Z., Guo, Y.,
Distortion-Aware Monocular Depth Estimation for Omnidirectional Images,
SPLetters(28), 2021, pp. 334-338.
IEEE DOI 2102
Distortion, Convolution, Strips, Feature extraction, Estimation, Training, Kernel, Depth estimation, deformable convolution, omnidirectional images BibRef

Lee, J.H.[Jae-Han], Kim, C.S.[Chang-Su],
Single-Image Depth Estimation Using Relative Depths,
JVCIR(84), 2022, pp. 103459.
Elsevier DOI 2204
Monocular depth estimation, Relative depth, 3D analysis BibRef

Li, Y.[Yang], Tu, Y.C.[Yu-Cheng], Chen, X.X.[Xiao-Xue], Zhao, H.[Hao], Zhou, G.[Guyue],
Distance-Aware Occlusion Detection With Focused Attention,
IP(31), 2022, pp. 5661-5676.
IEEE DOI 2209
Task analysis, Transformers, Decoding, Legged locomotion, Visualization, Feature extraction, Semantics, Focused attention, visualizations of attention weights BibRef

She, Y.T.[Yu-Tong], Li, P.[Peng], Wei, M.Q.[Ming-Qiang], Liang, D.[Dong], Chen, Y.P.[Yi-Ping], Xie, H.R.[Hao-Ran], Wang, F.L.[Fu Lee],
eViTBins: Edge-Enhanced Vision-Transformer Bins for Monocular Depth Estimation on Edge Devices,
ITS(25), No. 12, December 2024, pp. 20320-20334.
IEEE DOI 2412
Image edge detection, Accuracy, Transformers, Real-time systems, Autonomous aerial vehicles, Transportation, Navigation, traffic monitoring BibRef

Zhu, R.J.[Rui-Jie], Song, Z.Y.[Zi-Yang], Liu, L.[Li], He, J.F.[Jian-Feng], Zhang, T.Z.[Tian-Zhu], Zhang, Y.D.[Yong-Dong],
HA-Bins: Hierarchical Adaptive Bins for Robust Monocular Depth Estimation Across Multiple Datasets,
CirSysVideo(34), No. 6, June 2024, pp. 4354-4366.
IEEE DOI 2406
Estimation, Transformers, Correlation, Decoding, Generators, Task analysis, Predictive models, Monocular depth estimation, dense prediction BibRef

Liu, L.[Li], Zhu, R.J.[Rui-Jie], Deng, J.C.[Jia-Cheng], Song, Z.Y.[Zi-Yang], Yang, W.F.[Wen-Fei], Zhang, T.Z.[Tian-Zhu],
Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation,
CirSysVideo(35), No. 2, February 2025, pp. 1136-1149.
IEEE DOI 2502
Estimation, Adaptation models, Cameras, Aggregates, Predictive models, Feature extraction, dense prediction BibRef

Law, H.[Ho], Kang, S.H.[Sung Ha],
Image Vectorization with Depth: Convexified Shape Layers with Depth Ordering,
SIIMS(18), No. 2, 2025, pp. 963-1001.
DOI Link 2507
BibRef

Esfahani, M.M.[Mohammad Momeni], Reza-Sahebi, M.[Mahmod], Mokhtarzade, M.[Mehdi],
Height estimation from monocular aerial images using convolutional multi-scale and transformer coupling network (CMT),
PandRS(227), 2025, pp. 759-774.
Elsevier DOI 2508
Monocular Height Estimation, Convolutional multi-scale, Transformer, Aerial image, Encoder-decoder architecture BibRef


Yang, Y.Z.[Yue-Zhi], Chen, Q.[Qimin], Kim, V.G.[Vladimir G.], Chaudhuri, S.[Siddhartha], Huang, Q.X.[Qi-Xing], Chen, Z.Q.[Zhi-Qin],
GenVDM: Generating Vector Displacement Maps From a Single Image,
CVPR25(26618-26629)
IEEE DOI Code:
WWW Link. 2508
Surface reconstruction, Solid modeling, Shape, Pipelines, Focusing, Vectors, Image reconstruction, vector displacement map, 3d generation BibRef

Guo, Y.L.[Yu-Liang], Garg, S.[Sparsh], Miangoleh, S.M.H.[S. Mahdi H.], Huang, X.Y.[Xin-Yu], Ren, L.[Liu],
Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera,
CVPR25(26996-27006)
IEEE DOI 2508
Training, Image resolution, Accuracy, Foundation models, Depth measurement, Training data, Cameras, Testing, metric depth, foundation model BibRef

Piccinelli, L.[Luigi], Yang, Y.H.[Yung-Hsu], Sakaridis, C.[Christos], Segu, M.[Mattia], Li, S.Y.[Si-Yuan], Van Gool, L.J.[Luc J.], Yu, F.[Fisher],
UniDepth: Universal Monocular Metric Depth Estimation,
CVPR24(10106-10116)
IEEE DOI 2410
Measurement, Training, Solid modeling, Accuracy, Estimation, Propulsion, Depth Estimation, Monocular Depth Estimation, Foundation Models BibRef

Hu, D.T.[Dong-Ting], Peng, L.[Liuhua], Chu, T.J.[Ting-Jin], Zhang, X.X.[Xiao-Xing], Mao, Y.I.[Yin-Ian], Bondell, H.[Howard], Gong, M.M.[Ming-Ming],
Uncertainty Quantification in Depth Estimation via Constrained Ordinal Regression,
ECCV22(II:237-256).
Springer DOI 2211

WWW Link. BibRef

Xu, X.Y.[Xiao-Yu], Qiu, J.Y.[Jia-Yan], Wang, X.C.[Xin-Chao], Wang, Z.[Zhou],
Relationship Spatialization for Depth Estimation,
ECCV22(XXXVII:615-637).
Springer DOI 2211
BibRef

Lee, H.[Hyunmin], Park, J.[Jaesik],
Instance-wise Occlusion and Depth Orders in Natural Scenes,
CVPR22(21178-21189)
IEEE DOI 2210
Annotations, Cameras, Datasets and evaluation, 3D from single images, Scene analysis and understanding BibRef

Kim, S.Y.[Soo Ye], Zhang, J.M.[Jian-Ming], Niklaus, S.[Simon], Fan, Y.F.[Yi-Fei], Chen, S.[Simon], Lin, Z.[Zhe], Kim, M.C.[Mun-Churl],
Layered Depth Refinement with Mask Guidance,
CVPR22(3845-3855)
IEEE DOI 2210
Image segmentation, Refining, Estimation, Self-supervised learning, Predictive models, 3D from single images, Low-level vision BibRef

Feng, P.[Panhe], She, Q.[Qi], Zhu, L.[Lei], Li, J.X.[Jia-Xin], Zhang, L.[Lin], Feng, Z.J.[Zi-Jian], Wang, C.H.[Chang-Hu], Li, C.P.[Chun-Peng], Kang, X.J.[Xue-Jing], Ming, A.[Anlong],
MT-ORL: Multi-Task Occlusion Relationship Learning,
ICCV21(9344-9353)
IEEE DOI 2203
Couplings, Codes, Feature extraction, Multitasking, Decoding, Vision applications and systems BibRef

Fei, X.H.[Xiao-Han], Wang, H.[Henry], Cheong, L.L.[Lin Lee], Zeng, X.Y.[Xiang-Yu], Wang, M.[Meng], Tighe, J.[Joseph],
Single View Physical Distance Estimation using Human Pose,
ICCV21(12386-12396)
IEEE DOI 2203
System performance, Estimation, Cameras, Social factors, Sensor systems, Production facilities, Calibration, Vision for robotics and autonomous vehicles BibRef

Bhattacharjee, D.[Deblina], Everaert, M.[Martin], Salzmann, M.[Mathieu], Süsstrunk, S.[Sabine],
Estimating Image Depth in the Comics Domain,
WACV22(1111-1120)
IEEE DOI 2202
Laplace equations, Annotations, Semantics, Benchmark testing, Animation, Noise measurement, Semi- and Un- supervised Learning BibRef

Bhat, S.F.[Shariq Farooq], Alhashim, I.[Ibraheem], Wonka, P.[Peter],
AdaBins: Depth Estimation Using Adaptive Bins,
CVPR21(4008-4017)
IEEE DOI 2111
Measurement, Image segmentation, Image resolution, Estimation, Transformers BibRef

Zhang, C.[Cheng], Cui, Z.P.[Zhao-Peng], Zhang, Y.[Yinda], Zeng, B.[Bing], Pollefeys, M.[Marc], Liu, S.C.[Shuai-Cheng],
Holistic 3D Scene Understanding from a Single Image with Implicit Representation,
CVPR21(8829-8838)
IEEE DOI 2111
Solid modeling, Shape, Layout, Pipelines, Estimation, Object detection BibRef

Mertan, A., Sahin, Y.H., Duff, D.J., Unal, G.,
A New Distributional Ranking Loss With Uncertainty: Illustrated in Relative Depth Estimation,
3DV20(1079-1088)
IEEE DOI 2102
Estimation, Uncertainty, Mathematical model, Task analysis, Neural networks, Training, Standards BibRef

Lee, J.H.[Jae-Han], Kim, C.S.[Chang-Su],
Multi-loss Rebalancing Algorithm for Monocular Depth Estimation,
ECCV20(XVII:785-801).
Springer DOI 2011
BibRef

Nishimura, M.[Mark], Lindell, D.B.[David B.], Metzler, C.[Christopher], Wetzstein, G.[Gordon],
Disambiguating Monocular Depth Estimation with a Single Transient,
ECCV20(XXI:139-155).
Springer DOI 2011
BibRef

Klokov, R.[Roman], Boyer, E.[Edmond], Verbeek, J.[Jakob],
Discrete Point Flow Networks for Efficient Point Cloud Generation,
ECCV20(XXIII:694-710).
Springer DOI 2011
Generate the point cloud. BibRef

Popov, S.[Stefan], Bauszat, P.[Pablo], Ferrari, V.[Vittorio],
Corenet: Coherent 3d Scene Reconstruction from a Single RGB Image,
ECCV20(II:366-383).
Springer DOI 2011
BibRef

Watson, J.[Jamie], Aodha, O.M.[Oisin Mac], Turmukhambetov, D.[Daniyar], Brostow, G.J.[Gabriel J.], Firman, M.[Michael],
Learning Stereo from Single Images,
ECCV20(I:722-740).
Springer DOI 2011
BibRef

Ramamonjisoa, M., Lepetit, V.,
SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular Depth Estimation,
3D-Wild19(2109-2118)
IEEE DOI 2004
augmented reality, cameras, image colour analysis, image reconstruction, object recognition, Surface Normal Estimation BibRef

Zhou, Y., Ma, J., Ming, A., Bai, X.,
Learning Training Samples for Occlusion Edge Detection and Its Application in Depth Ordering Inference,
ICPR18(541-546)
IEEE DOI 1812
Training, Image edge detection, Optimization, Logistics, Task analysis, Frequency modulation, Encoding BibRef

Zhang, Z.Y.[Zi-Yu], Schwing, A.G.[Alexander G.], Fidler, S.[Sanja], Urtasun, R.[Raquel],
Monocular Object Instance Segmentation and Depth Ordering with CNNs,
ICCV15(2614-2622)
IEEE DOI 1602
Automobiles BibRef

Visa, G.P.[Guillem Palou], Salembier, P.[Philippe],
Precision-Recall-Classification Evaluation Framework: Application to Depth Estimation on Single Images,
ECCV14(I: 648-662).
Springer DOI 1408
depth ordering on single images. Segment then order. BibRef

Ming, A.[Anlong], Xun, B.F.[Bao-Feng], Ni, J.[Jia], Gao, M.F.[Ming-Fei], Zhou, Y.[Yu],
Learning discriminative occlusion feature for depth ordering inference on monocular image,
ICIP15(2525-2529)
IEEE DOI 1512
depth order inference; feature selection; occlusion edge BibRef

Kowdle, A.[Adarsh], Gallagher, A.C.[Andrew C.], Chen, T.H.[Tsu-Han],
Revisiting Depth Layers from Occlusions,
CVPR13(2091-2098)
IEEE DOI 1309
Image-based modeling; scene understanding; segmentation. Moving object in scene gives pairwise depth ordering. Integrate over time. BibRef

Turetken, E.[Engin], Alatan, A.A.[A. Aydin],
Temporally consistent layer depth ordering via pixel voting for pseudo 3D representation,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Malik, J.,
Visual grouping and object recognition,
CIAP01(612-621).
IEEE DOI 0210
BibRef

Yu, S.X.[Stella X.], Zhang, H.[Hao], Malik, J.[Jitendra],
Inferring spatial layout from a single image via depth-ordered grouping,
Tensor08(1-7).
IEEE DOI 0806
BibRef

Yu, S.X.[Stella X.],
Segmentation Induced by Scale Invariance,
CVPR05(I: 444-451).
IEEE DOI 0507
BibRef
Earlier:
Segmentation using multiscale cues,
CVPR04(I: 247-254).
IEEE DOI 0408
handle texture and contours through scales. BibRef

Yu, S.X.[Stella X.], and Shi, J.B.[Jian-Bo],
Understanding Popout through Repulsion,
CVPR01(II:752-757).
IEEE DOI 0110
BibRef
And:
Understanding Popout: Pre-attentive Segmentation through Nondirectional Repulsion,
CMU-RI-TR-01-20, July, 2001.
PDF File. 0205
BibRef
And:
Perceiving Shapes through Region and Boundary Interaction,
CMU-RI-TR-01-21, July, 2001.
PDF File. 0205
BibRef

Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Three-Dimensional Reconstruction from Different Views .


Last update:Sep 10, 2025 at 12:00:25