Bar-Shalom, Y.,
Chang, K.C., and
Blom, H.A.,
Tracking a Maneuvering Target Using Input Estimation Versus the
Interacting Multiple Model Algorithm,
AeroSys(25), No. 2, 1989, pp. 296-300.
See also Tracking Maneuvering Targets with Multiple Sensors: Does More Data Always Mean Better Estimates?.
BibRef
8900
Chang, K.C.,
Fung, R.,
Target Identification with Bayesian Networks in a
Multiple Hypothesis Tracking System,
OptEng(36), No. 3, March 1997, pp. 684-691.
9704
BibRef
Cox, I.J.[Ingemar J.],
Leonard, J.J.[John J.],
Modeling a Dynamic Environment Using a Multiple Hypothesis Approach,
AI(66), No. 2, March 1994, pp. 311-344.
Elsevier DOI
BibRef
9403
Tissainayagam, P.,
Suter, D.,
Visual Tracking with Automatic Motion Model Switching,
PR(34), No. 3, March 2001, pp. 641-660.
Elsevier DOI
0101
BibRef
Earlier:
Visual Tracking of Multiple Objects with
Automatic Motion Model Switching,
ICPR00(Vol III: 1134-1137).
IEEE DOI
0009
BibRef
Earlier:
Visual Tracking and Motion Determination Using the IMM Algorithm,
ICPR98(Vol I: 289-291).
IEEE DOI
9808
BibRef
Earlier:
Visual Feature Tracking with Automatic Motion Model Switching,
MVA98(xx-yy).
BibRef
Tissainayagam, P.,
Suter, D.,
Performance Prediction Analysis of a Point Feature Tracker Based on
Different Motion Models,
CVIU(84), No. 1, October 2001, pp. 104-125.
DOI Link
0203
BibRef
Tissainayagam, P.[Prithiraj],
Suter, D.[David],
Object tracking in image sequences using point features,
PR(38), No. 1, January 2005, pp. 105-113.
Elsevier DOI
0410
BibRef
Tissainayagam, P.[Prithiraj],
Suter, D.[David],
Performance Measures For Assessing Contour Trackers,
IJIG(2), No. 2, April 2002, pp. 343-359.
0204
BibRef
Earlier:
Empirical Evaluation on the Performance of Contour Trackers,
EEMCV01(xx-yy).
0110
BibRef
Tissainayagam, P.[Prithiraj],
Suter, D.[David],
Contour tracking with automatic motion model switching,
PR(36No. 10, October 2003, pp. 2411-2427.
Elsevier DOI
0308
BibRef
Tissainayagam, P.[Prithiraj],
Suter, D.[David],
Assessing the performance of corner detectors for point feature
tracking applications,
IVC(22), No. 8, August 2004, pp. 663-679.
Elsevier DOI
0405
Corner Detector.
BibRef
Shearer, K.[Kim],
Wong, K.D.[Kirrily D.],
Venkatesh, S.[Svetha],
Combining multiple tracking algorithms for improved general performance,
PR(34), No. 6, June 2001, pp. 1257-1269.
Elsevier DOI
0103
BibRef
McCane, B.[Brendan],
Galvin, B.[Ben],
Novins, K.[Kevin],
Algorithmic Fusion for More Robust Feature Tracking,
IJCV(49), No. 1, August 2002, pp. 79-89.
DOI Link
0209
BibRef
Toyama, K.[Kentaro],
Horvitz, E.J.[Eric J.],
Modality fusion for object tracking with training system and method,
US_Patent6,502,082, Dec 31, 2002
WWW Link.
BibRef
0212
Dawoud, A.,
Alam, M.S.,
Bal, A.,
Loo, C.,
Target Tracking in Infrared Imagery Using Weighted Composite Reference
Function-Based Decision Fusion,
IP(15), No. 2, February 2006, pp. 404-410.
IEEE DOI
0602
BibRef
Wu, Y.[Ying],
Huang, T.S.[Thomas S.],
Robust Visual Tracking by Integrating Multiple Cues Based on
Co-Inference Learning,
IJCV(58), No. 1, June 2004, pp. 55-71.
DOI Link
0403
BibRef
Earlier:
A Co-inference Approach to Robust Visual Tracking,
ICCV01(II: 26-33).
IEEE DOI
0106
BibRef
Hua, G.[Gang],
Wu, Y.[Ying],
Variational Maximum A Posteriori by Annealed Mean Field Analysis,
PAMI(27), No. 11, November 2005, pp. 1747-1761.
IEEE DOI
0510
BibRef
Earlier:
Multi-scale visual tracking by sequential belief propagation,
CVPR04(I: 826-833).
IEEE DOI
0408
Overcome abrupt changes in motion.
BibRef
Hua, G.[Gang],
Wu, Y.[Ying],
Sequential mean field variational analysis of structured deformable
shapes,
CVIU(101), No. 2, February 2005, pp. 87-99.
Elsevier DOI
0512
BibRef
Hua, G.[Gang],
Wu, Y.[Ying],
Measurement integration under inconsistency for robust tracking,
CVPR06(I: 650-657).
IEEE DOI
0606
BibRef
Veeraraghavan, H.[Harini],
Schrater, P.[Paul],
Papanikolopoulos, N.P.[Nikos P.],
Robust target detection and tracking through integration of motion,
color, and geometry,
CVIU(103), No. 2, August 2006, pp. 121-138.
Elsevier DOI
0608
Multiple cue combination; Measurement error estimation;
Expectation maximization; Data association
BibRef
Brasnett, P.[Paul],
Mihaylova, L.[Lyudmila],
Bull, D.R.[David R.],
Canagarajah, C.N.[C. Nishan],
Sequential Monte Carlo tracking by fusing multiple cues in video
sequences,
IVC(25), No. 8, 1 August 2007, pp. 1217-1227.
Elsevier DOI
0706
Particle filtering; Tracking in video sequences; Colour; Texture;
Edges; Multiple cues; Bhattacharyya distance
See also Structural similarity-based object tracking in multimodality surveillance videos.
BibRef
Vemula, M.[Mahesh],
Bugallo, M.F.[Mónica F.],
Djuric, P.M.[Petar M.],
Target tracking by fusion of random measures,
SIViP(1), No. 2, June 2007, pp. 149-161.
Springer DOI
0707
BibRef
Jia, Z.[Zhen],
Balasuriya, A.[Arjuna],
Challa, S.[Subhash],
Visual information fusion for object-based video image segmentation
using unsupervised Bayesian online learning,
IET-IPR(1), No. 2, June 2007, pp. 168-181.
DOI Link
0905
BibRef
Olson, T.L.P.[Teresa Lorae Pace],
Slaski, J.J.[James Joseph],
Sanford, C.W.[Carl William],
Han, R.Y.[Ruey-Yuan],
Contini, C.L.[Casey Leonard],
Reinig, R.R.[Robert Russell],
Real-time multi-stage infrared image-based tracking system,
US_Patent7,177,447, Feb 13, 2007
WWW Link. multiple trackers
BibRef
0702
Tsechpenakis, C.,
Metaxas, D.N.,
Neidle, C.,
Combining Discrete and Continuous 3D Trackers,
HumMotBook08(6).
0802
BibRef
Jia, Z.[Zhen],
Balasuriya, A.[Arjuna],
Challa, S.[Subhash],
Vision based data fusion for autonomous vehicles target tracking using
interacting multiple dynamic models,
CVIU(109), No. 1, January 2008, pp. 1-21.
Elsevier DOI
0801
BibRef
Earlier:
Camera motion and visual information fusion for 3D target tracking,
ICARCV04(III: 2297-2302).
IEEE DOI
0412
BibRef
Earlier: A1, A2, Only:
Motion based 3D Target Tracking with Interacting Multiple Linear
Dynamic Models,
BMVC04(xx-yy).
HTML Version.
0508
Optical flow; Extended Kalman Filtering; Image segmentation and
clustering; Stereo vision; Target tracking; Autonomous vehicles;
Linear dynamics model; Kinematic model; Interacting multiple models
(IMM); Pinhole camera projection model; Template matching and
updating; Sensor data fusion
BibRef
Leichter, I.[Ido],
Lindenbaum, M.[Michael],
Rivlin, E.[Ehud],
A General Framework for Combining Visual Trackers:
The Black Boxes Approach,
IJCV(67), No. 3, May 2006, pp. 343-363.
Springer DOI
0606
BibRef
Earlier:
A probabilistic framework for combining tracking algorithms,
CVPR04(II: 445-451).
IEEE DOI
0408
BibRef
And:
A probabilistic cooperation between trackers of coupled objects,
ICIP04(II: 1045-1048).
IEEE DOI
0505
Formalized combination of multiple tracking results.
BibRef
Leichter, I.[Ido],
Lindenbaum, M.[Michael],
Rivlin, E.[Ehud],
Bittracker: A Bitmap Tracker for Visual Tracking under Very General
Conditions,
PAMI(30), No. 9, September 2008, pp. 1572-1588.
IEEE DOI
0808
Approximate a PDF for the object bitmap in each frame, and estimate the
maximum change.
No assumptions on motion of object or camera.
BibRef
Leichter, I.[Ido],
Lindenbaum, M.[Michael],
Rivlin, E.[Ehud],
Tracking by Affine Kernel Transformations Using Color and Boundary Cues,
PAMI(31), No. 1, January 2009, pp. 164-171.
IEEE DOI
0812
BibRef
Earlier:
Visual Tracking by Affine Kernel Fitting Using Color and Object
Boundary,
ICCV07(1-6).
IEEE DOI
0710
BibRef
Leichter, I.[Ido],
Lindenbaum, M.[Michael],
Rivlin, E.[Ehud],
The Cues in 'Dependent Multiple Cue Integration for Robust Tracking'
Are Independent,
PAMI(36), No. 3, March 2014, pp. 620-621.
IEEE DOI
1403
See also Dependent Multiple Cue Integration for Robust Tracking. object tracking
BibRef
Leichter, I.[Ido],
Lindenbaum, M.[Michael],
Rivlin, E.[Ehud],
Mean Shift tracking with multiple reference color histograms,
CVIU(114), No. 3, March 2010, pp. 400-408.
Elsevier DOI
1003
Visual tracking; Mean Shift; Multiple references
BibRef
Leichter, I.[Ido],
Mean Shift Trackers with Cross-Bin Metrics,
PAMI(34), No. 4, April 2012, pp. 695-706.
IEEE DOI
1203
Cross-bin metrics rather than bin-by-bin metrics for histogram matching.
BibRef
Luo, X.Y.[Xiao-Yuan],
Li, S.B.[Shao-Bao],
Guan, X.P.[Xin-Ping],
Flocking algorithm with multi-target tracking for multi-agent systems,
PRL(31), No. 9, 1 July 2010, pp. 800-805.
Elsevier DOI
1004
Multi-agent; Multi-target; Potential function; Flocking algorithm
BibRef
Kim, J.H.[Jung-Ho],
Min, J.H.[Ji-Hong],
Kweon, I.S.[In So],
Lin, Z.[Zhe],
Fusing Multiple Independent Estimates via Spectral Clustering for
Robust Visual Tracking,
SPLetters(19), No. 8, August 2012, pp. 527-530.
IEEE DOI
1208
BibRef
Zhao, P.,
Zhu, H.B.,
Li, H.,
Shibata, T.,
A Directional-Edge-Based Real-Time Object Tracking System Employing
Multiple Candidate-Location Generation,
CirSysVideo(23), No. 3, March 2013, pp. 503-517.
IEEE DOI
1303
BibRef
Zhu, H.B.[Hong-Bo],
Shibata, T.,
A Real-Time Motion-Feature-Extraction VLSI Employing
Digital-Pixel-Sensor-Based Parallel Architecture,
CirSysVideo(24), No. 10, October 2014, pp. 1787-1799.
IEEE DOI
1411
CMOS image sensors
BibRef
Zhong, B.N.[Bi-Neng],
Yao, H.X.[Hong-Xun],
Chen, S.[Sheng],
Ji, R.R.[Rong-Rong],
Chin, T.J.[Tat-Jun],
Wang, H.Z.[Han-Zi],
Visual tracking via weakly supervised learning from multiple
imperfect oracles,
PR(47), No. 3, 2014, pp. 1395-1410.
Elsevier DOI
1312
Visual tracking
BibRef
Chen, Y.[Yan],
Yang, X.N.[Xiang-Nan],
Zhong, B.N.[Bi-Neng],
Zhang, H.Z.[Hui-Zhen],
Lin, C.L.[Chang-Long],
Network in network based weakly supervised learning for visual
tracking,
JVCIR(37), No. 1, 2016, pp. 3-13.
Elsevier DOI
1603
Little supervision
BibRef
Zhong, B.N.[Bi-Neng],
Yao, H.X.[Hong-Xun],
Chen, S.[Sheng],
Ji, R.R.[Rong-Rong],
Yuan, X.T.[Xiao-Tong],
Liu, S.H.[Shao-Hui],
Gao, W.[Wen],
Visual tracking via weakly supervised learning from multiple imperfect
oracles 1,
CVPR10(1323-1330).
IEEE DOI
1006
BibRef
Nascimento, J.C.[Jacinto C.],
Silva, J.G.[Jorge G.],
Marques, J.S.[Jorge S.],
Lemos, J.M.[Joao M.],
Manifold Learning for Object Tracking With Multiple Nonlinear Models,
IP(23), No. 4, April 2014, pp. 1593-1605.
IEEE DOI
1404
BibRef
Earlier: A1, A2, Only:
Manifold Learning for Object Tracking with Multiple Motion Dynamics,
ECCV10(III: 172-185).
Springer DOI
1009
Gaussian processes
BibRef
Feldman-Haber, S.,
Keller, Y.,
A Probabilistic Graph-Based Framework for Plug-and-Play Multi-Cue
Visual Tracking,
IP(23), No. 5, May 2014, pp. 2291-2301.
IEEE DOI
1405
Markov processes
BibRef
Chiou, Y.,
Tsai, F.,
A Reduced-Complexity Data-Fusion Algorithm Using Belief Propagation
for Location Tracking in Heterogeneous Observations,
Cyber(44), No. 6, June 2014, pp. 922-935.
IEEE DOI
1406
Accuracy
BibRef
Davey, S.J.,
Efficient Histogram PMHT Via Single Target Chip Processing,
SPLetters(22), No. 5, May 2015, pp. 569-572.
IEEE DOI
1411
Approximation methods
BibRef
Vu, H.X.,
Davey, S.J.,
Track-Before-Detect Using Histogram PMHT and Dynamic Programming,
DICTA12(1-8).
IEEE DOI
1303
Probabilistic Multi-Hypothesis Tracker.
BibRef
Bozorgtabar, B.[Behzad],
Goecke, R.[Roland],
Efficient multi-target tracking via discovering dense subgraphs,
CVIU(144), No. 1, 2016, pp. 205-216.
Elsevier DOI
1604
BibRef
Earlier:
Enhanced Laplacian Group Sparse Learning with Lifespan Outlier
Rejection for Visual Tracking,
ACCV14(V: 564-578).
Springer DOI
1504
BibRef
And:
Joint sparsity-based robust visual tracking,
ICIP14(4927-4931)
IEEE DOI
1502
BibRef
Earlier:
Robust Visual Tracking via Rank-Constrained Sparse Learning,
DICTA14(1-7)
IEEE DOI
1502
BibRef
And:
Discriminative Multi-Task Sparse Learning for Robust Visual Tracking
Using Conditional Random Field,
DICTA14(1-8)
IEEE DOI
1502
BibRef
Earlier:
Robust Visual Vocabulary Tracking Using Hierarchical Model Fusion,
DICTA13(1-8)
IEEE DOI
1402
Multi-target tracking.
learning (artificial intelligence);
computational complexity.
Gaussian processes.
Combine 2 trackers
BibRef
Yoon, J.H.[Ju Hong],
Yang, M.H.[Ming-Hsuan],
Yoon, K.J.[Kuk-Jin],
Interacting Multiview Tracker,
PAMI(38), No. 5, May 2016, pp. 903-917.
IEEE DOI
1604
Algorithm design and analysis.
BibRef
Ma, B.,
Hu, H.,
Shen, J.,
Liu, Y.,
Shao, L.,
Generalized Pooling for Robust Object Tracking,
IP(25), No. 9, September 2016, pp. 4199-4208.
IEEE DOI
1609
Gaussian processes
BibRef
Ma, B.[Bo],
Shen, J.B.[Jian-Bing],
Liu, Y.B.[Yang-Biao],
Hu, H.W.[Hong-Wei],
Shao, L.[Ling],
Li, X.L.[Xue-Long],
Visual Tracking Using Strong Classifier and Structural Local Sparse
Descriptors,
MultMed(17), No. 10, October 2015, pp. 1818-1828.
IEEE DOI
1511
compressed sensing
BibRef
Ma, B.[Bo],
Huang, L.,
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Discriminative Tracking Using Tensor Pooling,
Cyber(46), No. 11, November 2016, pp. 2411-2422.
IEEE DOI
1609
computer vision
BibRef
Liu, Y.B.[Yang-Biao],
Ma, B.[Bo],
Hu, H.W.[Hong-Wei],
Han, Y.[Yin],
Boosting-Based Visual Tracking Using Structural Local Sparse
Descriptors,
ACCV14(V: 522-533).
Springer DOI
1504
BibRef
Gu, S.,
Ma, Z.,
Xie, M.,
Chen, Z.,
Online learning of mixture experts for real-time tracking,
IET-CV(10), No. 6, 2016, pp. 585-592.
DOI Link
1609
approximation theory
BibRef
Vojir, T.[Tomas],
Matas, J.G.[Jiri G.],
Noskova, J.[Jana],
Online adaptive hidden Markov model for multi-tracker fusion,
CVIU(153), No. 1, 2016, pp. 109-119.
Elsevier DOI
1612
Visual tracking
BibRef
Barath, D.[Daniel],
Matas, J.G.[Jiri G.],
Noskova, J.[Jana],
MAGSAC: Marginalizing Sample Consensus,
CVPR19(10189-10197).
IEEE DOI
2002
BibRef
Tian, X.L.[Xiao-Lin],
Zhao, S.[Sujie],
Jiao, L.C.[Li-Cheng],
Gan, Z.P.[Zhi-Peng],
Nonnegative coding based ensemble tracking,
JVCIR(41), No. 1, 2016, pp. 166-175.
Elsevier DOI
1612
Object tracking
BibRef
Li, Y.,
Jha, D.K.,
Ray, A.,
Wettergren, T.A.,
Information Fusion of Passive Sensors for Detection of Moving Targets
in Dynamic Environments,
Cyber(47), No. 1, January 2017, pp. 93-104.
IEEE DOI
1612
Feature extraction
BibRef
Li, J.,
Deng, C.,
Xu, R.Y.D.[Richard Yi Da],
Tao, D.,
Zhao, B.,
Robust Object Tracking With Discrete Graph-Based Multiple Experts,
IP(26), No. 6, June 2017, pp. 2736-2750.
IEEE DOI
1705
optimisation, regression analysis, state estimation,
support vector machines, TB-100, TB-50, VOT2015, base trackers,
binary compatibility graph score, budget algorithm,
current-tracker, deep convolutional neural network features,
BibRef
Khalid, O.,
SanMiguel, J.C.,
Cavallaro, A.,
Multi-Tracker Partition Fusion,
CirSysVideo(27), No. 7, July 2017, pp. 1527-1539.
IEEE DOI
1707
Correlation, Fuses, Performance evaluation, Target tracking,
Trajectory, Uncertainty, Decision Fusion,
online performance evaluation, tracker correlation, visual, tracking
BibRef
Hua, Y.,
Dong, X.,
Li, Q.,
Ren, Z.,
Distributed Time-Varying Formation Robust Tracking for General Linear
Multiagent Systems With Parameter Uncertainties and External
Disturbances,
Cyber(47), No. 8, August 2017, pp. 1959-1969.
IEEE DOI
1708
Multi-agent systems, Protocols, Robustness, Target tracking,
Time-varying systems, Trajectory, Uncertain systems,
Adaptive control, external disturbance, multiagent system,
parameter uncertainty, time-varying, formation tracking
BibRef
Quan, W.[Wei],
Li, T.R.[Tian-Rui],
Gao, S.B.[Shi-Bin],
Chen, J.X.[Jim X.],
Visual tracking with multiple Hough detectors,
IVC(66), No. 1, 2017, pp. 15-25.
Elsevier DOI
1710
Visual, tracking
BibRef
Leang, I.[Isabelle],
Herbin, S.[Stéphane],
Girard, B.[Benoît],
Droulez, J.[Jacques],
On-line fusion of trackers for single-object tracking,
PR(74), No. 1, 2018, pp. 459-473.
Elsevier DOI
1711
Visual object tracking
BibRef
Yoon, J.H.[Ju Hong],
Kim, J.[Jungho],
Hwang, Y.B.[Young-Bae],
Real-Time Object Tracking via Fusion of Global and Local Appearance
Models,
IEICE(E100-D), No. 11, November 2017, pp. 2738-2743.
WWW Link.
1711
BibRef
Chen, B.[Boyu],
Li, P.X.[Pei-Xia],
Sun, C.[Chong],
Wang, D.[Dong],
Yang, G.[Gang],
Lu, H.C.[Hu-Chuan],
Multi attention module for visual tracking,
PR(87), 2019, pp. 80-93.
Elsevier DOI
1812
Visual tracking, Deep neural network, Attention model, Long short term memory
BibRef
Wang, J.[Jun],
Liu, W.B.[Wei-Bin],
Xing, W.W.[Wei-Wei],
Zhang, S.L.[Shun-Li],
A framework of tracking by multi-trackers with multi-features in a
hybrid cascade way,
SP:IC(78), 2019, pp. 306-321.
Elsevier DOI
1909
Visual tracking, Multi-trackers and multi-features,
Weighted voting strategy, PageRank, Decision vector
BibRef
Li, Z.T.[Zhe-Tao],
Wei, W.[Wei],
Zhang, T.Z.[Tian-Zhu],
Wang, M.[Meng],
Hou, S.J.[Su-Juan],
Peng, X.[Xin],
Online Multi-Expert Learning for Visual Tracking,
IP(29), No. 1, 2020, pp. 934-946.
IEEE DOI
1910
Target tracking, Correlation, Visualization, Hidden Markov models,
Computational modeling, Object tracking, Object tracking,
minimum entropy criterion
BibRef
Gao, M.[Ming],
Jin, L.S.[Li-Sheng],
Jiang, Y.Y.[Yu-Ying],
Guo, B.C.[Bai-Cang],
Manifold Siamese Network:
A Novel Visual Tracking ConvNet for Autonomous Vehicles,
ITS(21), No. 4, April 2020, pp. 1612-1623.
IEEE DOI
2004
Manifolds, Visualization, Correlation, Semantics, Target tracking,
Autonomous vehicles, Computational modeling, Autonomous vehicles,
visual tracking
BibRef
Li, M.H.[Mei-Hui],
Peng, L.B.[Ling-Bing],
Wu, T.F.[Tian-Fu],
Peng, Z.M.[Zhen-Ming],
A Bottom-Up and Top-Down Integration Framework for Online Object
Tracking,
MultMed(23), 2021, pp. 105-119.
IEEE DOI
2012
Target tracking, Correlation, Encoding, Object tracking,
Benchmark testing, Visualization, Online object tracking,
alternating direction method of multipliers
BibRef
LaHaye, N.[Nicholas],
Garay, M.J.[Michael J.],
Bue, B.D.[Brian D.],
El-Askary, H.[Hesham],
Linstead, E.[Erik],
A Quantitative Validation of Multi-Modal Image Fusion and
Segmentation for Object Detection and Tracking,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Liu, X.H.[Xiao-Hu],
Luo, Y.C.[Yi-Chuang],
Yan, K.[Keding],
Chen, J.F.[Jian-Fei],
Lei, Z.Y.[Zhi-Yong],
CMC2R: Cross-modal collaborative contextual representation for RGBT
tracking,
IET-IPR(16), No. 5, 2022, pp. 1500-1510.
DOI Link
2203
BibRef
Yang, Y.J.[Yi-Jin],
Gu, X.D.[Xiao-Dong],
Joint Correlation and Attention Based Feature Fusion Network for
Accurate Visual Tracking,
IP(32), 2023, pp. 1705-1715.
IEEE DOI
2303
Target tracking, Correlation, Semantics, Visualization,
Feature extraction, Training, Benchmark testing,
sample updating and filtering
BibRef
Wang, X.J.[Xin-Jun],
Cao, Y.[Ye],
Niu, B.[Ben],
Song, Y.D.[Yong-Duan],
A Novel Bipartite Consensus Tracking Control for Multiagent Systems
Under Sensor Deception Attacks,
Cyber(53), No. 9, September 2023, pp. 5984-5993.
IEEE DOI
2309
BibRef
Nai, K.[Ke],
Chen, S.[Shaomiao],
Learning a Novel Ensemble Tracker for Robust Visual Tracking,
MultMed(26), 2024, pp. 3194-3206.
IEEE DOI
2402
Target tracking, Robustness, Object tracking, Correlation,
Visualization, Computational modeling, Training, Object tracking,
online weight assign algorithm
BibRef
Chen, D.S.[Deng-Sheng],
Wei, X.M.[Xiao-Ming],
Wei, X.L.[Xiao-Lin],
Animating General Image with Large Visual Motion Model,
CVPR24(7131-7140)
IEEE DOI Code:
WWW Link.
2410
Visualization, Analytical models, Computational modeling, Dynamics,
Predictive models, AIGC, LVMM
BibRef
Shrivastava, G.[Gaurav],
Shrivastava, A.[Abhinav],
Video Prediction by Modeling Videos as Continuous Multi-Dimensional
Processes,
CVPR24(7236-7245)
IEEE DOI
2410
Training, Technological innovation, Image synthesis, Coherence,
Predictive models, Benchmark testing, Video Prediction,
Frame-conditional video generation
BibRef
Zhu, J.[Jiawen],
Lai, S.[Simiao],
Chen, X.[Xin],
Wang, D.[Dong],
Lu, H.C.[Hu-Chuan],
Visual Prompt Multi-Modal Tracking,
CVPR23(9516-9526)
IEEE DOI
2309
BibRef
Xiao, Y.H.[Yu-Hua],
Zhang, Y.F.[Yi-Feng],
Ni, P.Y.[Peng-Yu],
Ensemble Long Short-Term Tracking with ConvNeXt and Transformer,
ICIVC22(688-693)
IEEE DOI
2301
Measurement, Visualization, Target tracking, Video sequences,
Network architecture, Transformers, object tracking, ensemble
BibRef
Kawanishi, Y.[Yasutomo],
Label-based Multiple Object Ensemble Tracking with Randomized Frame
Dropping,
ICPR22(900-906)
IEEE DOI
2212
Target tracking, Aggregates, Benchmark testing,
Image sequences, Computational efficiency, Object tracking
BibRef
Zhou, Z.[Zikun],
Chen, J.Q.[Jian-Qiu],
Pei, W.J.[Wen-Jie],
Mao, K.[Kaige],
Wang, H.P.[Hong-Peng],
He, Z.Y.[Zhen-Yu],
Global Tracking via Ensemble of Local Trackers,
CVPR22(8751-8760)
IEEE DOI
2210
Deep learning, Target tracking,
Benchmark testing, Context modeling,
Video analysis and understanding
BibRef
Zhong, Y.Q.[Yi-Qi],
You, S.[Suya],
Neumann, U.[Ulrich],
Modeling Cross-modal Interaction in a Multi-detector, Multi-modal
Tracking Framework,
ACCV20(II:683-699).
Springer DOI
2103
BibRef
Meshgi, K.[Kourosh],
Mirzaei, M.S.[Maryam Sadat],
Adversarial Semi-supervised Multi-domain Tracking,
ACCV20(II:612-630).
Springer DOI
2103
BibRef
Dunnhofer, M.[Matteo],
Martinel, N.[Niki],
Micheloni, C.[Christian],
Tracking-by-trackers with a Distilled and Reinforced Model,
ACCV20(II:631-650).
Springer DOI
2103
BibRef
Tao, C.F.[Chao-Fan],
Jiang, Q.H.[Qin-Hong],
Duan, L.X.[Li-Xin],
Luo, P.[Ping],
Dynamic and Static Context-aware Lstm for Multi-agent Motion Prediction,
ECCV20(XXI:547-563).
Springer DOI
2011
BibRef
Meshgi, K.[Kourosh],
Mirzaei, M.S.,
Oba, S.[Shigeyuki],
Long and Short Memory Balancing in Visual Co-Tracking Using
Q-Learning,
ICIP19(3970-3974)
IEEE DOI
1910
visual co-tracking, active learning, Q-learning, long-short memory
BibRef
Meshgi, K.[Kourosh],
Oba, S.[Shigeyuki],
Ishii, S.,
Efficient Diverse Ensemble for Discriminative Co-tracking,
CVPR18(4814-4823)
IEEE DOI
1812
Target tracking, Training, Boosting, Diversity reception,
Training data, Adaptation models, Object detection
BibRef
Wang, Y.,
Cavallaro, A.,
Active visual tracking in multi-agent scenarios,
AVSS17(1-6)
IEEE DOI
1806
adaptive control, cameras, collision avoidance,
image motion analysis, mobile robots, motion control,
Visualization
BibRef
Fang, J.,
Li, Z.,
Xue, J.,
Spatial-sequential-spectral context awareness tracking,
ICIP17(2582-2586)
IEEE DOI
1803
Context modeling, Correlation, Target tracking, Trajectory, Videos,
Visualization, Visual tracking, context understanding,
trajectory regression
BibRef
Han, B.H.[Bo-Hyung],
Sim, J.[Jack],
Adam, H.[Hartwig],
BranchOut: Regularization for Online Ensemble Tracking with
Convolutional Neural Networks,
CVPR17(521-530)
IEEE DOI
1711
Correlation, Neural networks, Robustness, Stochastic processes,
Target tracking, Training, Visualization
BibRef
Borsuk, V.[Vasyl],
Vei, R.[Roman],
Kupyn, O.[Orest],
Martyniuk, T.[Tetiana],
Krashenyi, I.[Igor],
Matas, J.G.[Jiri G.],
FEAR: Fast, Efficient, Accurate and Robust Visual Tracker,
ECCV22(XXII:644-663).
Springer DOI
2211
BibRef
Kim, M.J.[Min-Ji],
Lee, S.[Seungkwan],
Ok, J.[Jungseul],
Han, B.H.[Bo-Hyung],
Cho, M.S.[Min-Su],
Towards Sequence-Level Training for Visual Tracking,
ECCV22(XXII:534-551).
Springer DOI
2211
BibRef
Son, J.[Jeany],
Baek, M.[Mooyeol],
Cho, M.S.[Min-Su],
Han, B.H.[Bo-Hyung],
Multi-object Tracking with Quadruplet Convolutional Neural Networks,
CVPR17(3786-3795)
IEEE DOI
1711
Feature extraction, Machine learning, Neural networks, Robustness,
Target, tracking
BibRef
Shin, H.[Hyunhak],
Cho, C.[Chuljin],
Ko, H.S.[Han-Seok],
Single object tracking based on active and passive detection
information in distributed heterogeneous sensor network,
AVSS16(444-449)
IEEE DOI
1611
Mathematical model
BibRef
Ma, L.,
Lu, J.W.[Ji-Wen],
Feng, J.J.[Jian-Jiang],
Zhou, J.[Jie],
Multiple Feature Fusion via Weighted Entropy for Visual Tracking,
ICCV15(3128-3136)
IEEE DOI
1602
Computational modeling
BibRef
Moujtahid, S.[Salma],
Duffner, S.[Stefan],
Baskurt, A.[Atilla],
Classifying Global Scene Context for On-line Multiple Tracker Selection,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Demir, H.S.[H. Seckin],
Cetin, A.E.,
Co-difference based object tracking algorithm for infrared videos,
ICIP16(434-438)
IEEE DOI
1610
Covariance matrices
BibRef
Lee, D.Y.[Dae-Youn],
Sim, J.Y.[Jae-Young],
Kim, C.S.[Chang-Su],
Multihypothesis trajectory analysis for robust visual tracking,
CVPR15(5088-5096)
IEEE DOI
1510
BibRef
Wang, X.,
Valstar, M.F.[Michel F.],
Martinez, B.,
Khan, M.H.[Muhammad H.],
Pridmore, T.P.[Tony P.],
TRIC-track:
Tracking by Regression with Incrementally Learned Cascades,
ICCV15(4337-4345)
IEEE DOI
1602
Adaptation models
BibRef
Khan, M.H.[Muhammad H.],
Valstar, M.F.[Michel F.],
Pridmore, T.P.[Tony P.],
A Generalized Search Method for Multiple Competing Hypotheses in
Visual Tracking,
ICPR14(2245-2250)
IEEE DOI
1412
Accuracy
BibRef
Nguyen, T.[Tuan],
Pridmore, T.P.[Tony P.],
Tracking Using Multiple Linear Searches and Motion Direction Sampling,
ICPR14(2191-2196)
IEEE DOI
1412
Adaptation models
BibRef
Bailer, C.[Christian],
Stricker, D.[Didier],
Bailer, C.,
Stricker, D.,
Tracker Fusion on VOT Challenge: How Does It Perform and What Can We
Learn about Single Trackers?,
VOT15(630-638)
IEEE DOI
1602
Buildings
BibRef
Bailer, C.[Christian],
Pagani, A.[Alain],
Stricker, D.[Didier],
A Superior Tracking Approach: Building a Strong Tracker through Fusion,
ECCV14(VII: 170-185).
Springer DOI
1408
BibRef
Reyna-Ayala, E.[Edgar],
Conant-Pablos, S.E.[Santiago E.],
Terashima-Marín, H.[Hugo],
Assembling Similar Tracking Approaches in Order
to Strengthen Performance,
MCPR14(201-210).
Springer DOI
1407
BibRef
Chau, D.P.[Duc Phu],
Bremond, F.[Francois],
Thonnat, M.[Monique],
Automatic tracker selection w.r.t object detection performance,
WACV14(870-876)
IEEE DOI
1406
Color
BibRef
Chen, W.H.[Wei-Hua],
Cao, L.J.[Li-Jun],
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
An Adaptive Combination of Multiple Features for Robust Tracking in
Real Scene,
VOT13(129-136)
IEEE DOI
1403
feature extraction
BibRef
Qin, L.[Lei],
Snoussi, H.[Hichem],
Abdallah, F.[Fahed],
Cascaded Generative and Discriminative Learning for Visual Tracking,
ICIAR13(397-406).
Springer DOI
1307
BibRef
Li, Q.N.[Quan-Nan],
Wang, X.G.[Xing-Gang],
Wang, W.[Wei],
Jiang, Y.[Yuan],
Zhou, Z.H.[Zhi-Hua],
Tu, Z.W.[Zhuo-Wen],
Disagreement-Based Multi-system Tracking,
DTCE12(II:320-334).
Springer DOI
1304
BibRef
Lyu, C.X.[Chao-Xin],
Yan, Y.[Yan],
Wang, H.Z.[Han-Zi],
Robust visual tracking with the cross-bin metric,
ICPR12(2120-2123).
WWW Link.
1302
BibRef
Patzold, M.[Michael],
Evangelio, R.H.[Ruben Heras],
Sikora, T.[Thomas],
Boosting Multi-hypothesis Tracking by Means of Instance-Specific Models,
AVSS12(416-421).
IEEE DOI
1211
BibRef
Yan, X.[Xu],
Wu, X.[Xuqing],
Kakadiaris, I.A.[Ioannis A.],
Shah, S.K.[Shishir K.],
To Track or To Detect? An Ensemble Framework for Optimal Selection,
ECCV12(V: 594-607).
Springer DOI
1210
BibRef
Park, M.G.[Min-Gyu],
Yoon, K.J.[Kuk-Jin],
Efficient Point Feature Tracking based on Self-aware Distance Transform,
BMVC12(32).
DOI Link
1301
BibRef
Yoon, J.H.[Ju Hong],
Kim, D.Y.[Du Yong],
Yoon, K.J.[Kuk-Jin],
Visual Tracking via Adaptive Tracker Selection with Multiple Features,
ECCV12(IV: 28-41).
Springer DOI
1210
BibRef
García, G.M.[Germán Martín],
Klein, D.A.[Dominik Alexander],
Stückler, J.[Jörg],
Frintrop, S.[Simone],
Cremers, A.B.[Armin B.],
Adaptive Multi-Cue 3D Tracking of Arbitrary Objects,
DAGM12(357-366).
Springer DOI
1209
BibRef
Gu, X.[Xin],
Wang, H.T.[Hai-Tao],
Wang, L.F.[Ling-Feng],
Pan, C.H.[Chun-Hong],
Adaptive multi-cue fusion for visual target tracking based on
uncertainly measure,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Wilk, S.[Stefan],
Kopf, S.[Stephan],
Effelsberg, W.[Wolfgang],
Robust tracking for interactive social video,
WACV12(105-110).
IEEE DOI
1203
In interactive multimedia systems. Combined 3 distinct tracking
techniques.
See also Histogram-based image registration for real-time high dynamic range videos.
BibRef
Lakshman, H.[Haricharan],
Schwarz, H.[Heiko],
Wiegand, T.[Thomas],
Adaptive motion model selection using a cubic spline based estimation
framework,
ICIP10(805-808).
IEEE DOI
1009
BibRef
Li, M.[Mu],
Kwok, J.T.[James T.],
Lu, B.L.[Bao-Liang],
Online multiple instance learning with no regret,
CVPR10(1395-1401).
IEEE DOI
1006
Adapt a batch approach to an iterative approach for tracking.
BibRef
Lin, F.[Feng],
Chen, B.M.[Ben M.],
Lee, T.H.[Tong H.],
Robust Vision-Based Target Tracking Control System for an Unmanned
Helicopter Using Feature Fusion,
MVA09(398-).
PDF File.
0905
BibRef
Streib, K.[Kevin],
Davis, J.W.[James W.],
Exploiting Multiple Cameras for Environmental Pathlets,
ISVC10(III: 613-624).
Springer DOI
1011
BibRef
And:
Extracting Pathlets from Weak Tracking Data,
AVSS10(353-360).
IEEE DOI
1009
See also Summarizing high-level scene behavior.
BibRef
Strandmark, P.[Petter],
Gu, I.Y.H.[Irene Y. H.],
Joint Random Sample Consensus and Multiple Motion Models for Robust
Video Tracking,
SCIA09(450-459).
Springer DOI
0906
BibRef
Yin, Z.Z.[Zhao-Zheng],
Porikli, F.M.[Fatih M.],
Collins, R.T.[Robert T.],
Likelihood Map Fusion for Visual Object Tracking,
WACV08(1-7).
IEEE DOI
0801
BibRef
Chen, J.X.[Ji-Xu],
Ji, Q.A.[Qi-Ang],
Online Spatial-temporal Data Fusion for Robust Adaptive Tracking,
Learning07(1-8).
IEEE DOI
0706
BibRef
Lacey, A.J.,
Thacker, N.A.,
Seed, N.L.,
Feature Tracking and Motion Classification Using a Switchable Model
Kalman Filter,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Target Tracking Techniques, Occlusions, Clutter .