22.5.2 DEM, DSM, DTM, Generation Using LiDAR, LIDAR, Laser Data

Chapter Contents (Back)
DEM. DSM. Digital Elevation Map.

Cowen, D.J.[David J.], Jensen, J.R.[John R.], Hendrix, C.[Chad], Hodgson, M.E.[Mike E.], Schill, S.R.[Steven R.], Macchiaverna, F.[Frank],
A GIS-Assisted Rail Construction Econometric Model that Incorporates LIDAR Data,
PhEngRS(66), No. 11, November 2000, pp. 1323-1328. Remote sensing and GIS-assisted railroad route selection using LIDAR data. 0011

Lloyd, C.D., Atkinson, P.M.,
Deriving DSMs from LiDAR data with kriging,
JRS(23), No. 12, June 2002, pp. 2519-2524. 0208

Zhang, K.Q.[Ke-Qi], Chen, S.C.[Shu-Ching], Whitman, D., Shyu, M.L.[Mei-Ling], Yan, J.H.[Jian-Hua], Zhang, C.C.[Cheng-Cui],
A progressive morphological filter for removing nonground measurements from airborne LIDAR data,
GeoRS(41), No. 4, April 2003, pp. 872-882.
IEEE Abstract. 0307

Lee, H.S., Younan, N.H.,
DTM extraction of Lidar returns via adaptive processing,
GeoRS(41), No. 9, September 2003, pp. 2063-2069.
IEEE Abstract. 0310

Shan, J.[Jie], Sampath, A.[Aparajithan],
Urban DEM Generation from Raw Lidar Data: A Labeling Algorithm and its Performance,
PhEngRS(71), No. 2, February 2005, pp. 217.
WWW Link. An efficient one-dimensional, bi-directional labeling approach for generating bald ground DEM from raw lidar data in complex urban areas. 0509
See also Building Boundary Tracing and Regularization from Airborne Lidar Point Clouds. BibRef

Hu, Y.[Yong], Tao, C.V.[C. Vincent],
Hierarchical Recovery of Digital Terrain Models from Single and Multiple Return Lidar Data,
PhEngRS(71), No. 4, April 2005, pp. 425.
WWW Link. DTM from lidar data with varying point densities and scene complexity by processing the image pyramid and adaptive filtering. 0509

Brzank, A.[Alexander], Heipke, C.[Christian], Goepfert, J.[Jens], Soergel, U.[Uwe],
Aspects of generating precise digital terrain models in the Wadden Sea from lidar-water classification and structure line extraction,
PandRS(63), No. 5, September 2008, pp. 510-528.
Elsevier DOI 0804
Lidar; Laser scanning; DTM; Classification; Structure lines BibRef

Brzank, A.[Alexander], Heipke, C.[Christian],
Classification of Lidar Data into Water and Land Points in Coastal Areas,
PDF File. 0609

Meng, X.L.[Xue-Lian], Wang, L.[Le], Silvan-Cardenas, J.L.[Jose Luis], Currit, N.[Nate],
A multi-directional ground filtering algorithm for airborne LIDAR,
PandRS(64), No. 1, January 2009, pp. 117-124.
Elsevier DOI 0804
LIDAR; Ground filtering; Multi-directional See also Morphology-Based Building Detection from Airborne Lidar Data. BibRef

Meng, X.L.[Xue-Lian], Currit, N.[Nate], Zhao, K.,
Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues,
RS(2), No. 3, March 2010, pp. 833-860.
DOI Link 1203

Bretar, F.[Frédéric], Chehata, N.[Nesrine],
Terrain Modeling From Lidar Range Data in Natural Landscapes: A Predictive and Bayesian Framework,
GeoRS(48), No. 3, March 2010, pp. 1568-1578.
Earlier: A2, A1:
Terrain modeling from Lidar data: Hierarchical K-means filtering and Markovian regularization,
Earlier: A1, A2:
Digital Terrain Model on Vegetated Areas: Joint Use of Airborne LIDAR Data and Optical Images,
PDF File. 0711
See also Recognition of Building Roof Facets by Merging Aerial Images and 3D Lidar Data in a Hierarchical Segmentation Framework. BibRef

Demantke, J.[Jerome], Mallet, C.[Clement], David, N.[Nicolas], Vallet, B.[Bruno],
Dimensionality Based Scale Selection in 3D LIDAR Point Clouds,
DOI Link 1109

Chehata, N.[Nesrine], David, N.[Nicolas], Bretar, F.[Frédéric],
LIDAR Data Classification Using Hierarchical K-Means Clustering,
ISPRS08(B3b: 325 ff).
PDF File. 0807

Bretar, F.[Frederic],
Processing Fine Digital Terrain Models by Markovian Regularization from 3D Airborne Lidar Data,
ICIP07(IV: 125-128).

Mongus, D.[Domen], Žalik, B.[Borut],
Parameter-free ground filtering of LiDAR data for automatic DTM generation,
PandRS(67), No. 1, January 2012, pp. 1-12.
Elsevier DOI 1202
LiDAR; Digital terrain model; Classification BibRef

Mongus, D.[Domen], Lukac, N.[Niko], Žalik, B.[Borut],
Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces,
PandRS(93), No. 1, 2014, pp. 145-156.
Elsevier DOI 1407
LiDAR BibRef

Sharma, M., Paige, G., Miller, S.,
DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects,
RS(2), No. 11, November 2010, pp. 2629-2642.
DOI Link 1203

Susaki, J.,
Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation,
RS(4), No. 6, June 2012, pp. 1804-1819.
DOI Link 1208
See also Segmentation of Shadowed Buildings in Dense Urban Areas from Aerial Photographs. BibRef

Susaki, J.[Junichi],
Knowledge-Based Modeling of Buildings in Dense Urban Areas by Combining Airborne LiDAR Data and Aerial Images,
RS(5), No. 11, 2013, pp. 5944-5968.
DOI Link 1312

Chen, Z.Y.[Zi-Yue], Devereux, B.[Bernard], Gao, B.B.[Bing-Bo], Amable, G.[Gabriel],
Upward-fusion urban DTM generating method using airborne Lidar data,
PandRS(72), No. 1, August 2012, pp. 121-130.
Elsevier DOI 1209
Airborne Lidar; Upward-fusion; GIS; Generation; DTM; Urban BibRef

Toutin, T., Wang, H.[Huili], Chomaz, P., Pottier, E.,
Orthorectification of Full-Polarimetric Radarsat-2 Data Using Accurate LIDAR DSM,
GeoRS(51), No. 12, 2013, pp. 5252-5258.
digital elevation models BibRef

Doneus, M.[Michael],
Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models,
RS(5), No. 12, 2013, pp. 6427-6442.
DOI Link 1412

Herzfeld, U.C., McDonald, B.W., Wallin, B.F., Neumann, T.A., Markus, T., Brenner, A., Field, C.,
Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,
GeoRS(52), No. 4, April 2014, pp. 2109-2125.
eigenvalues and eigenfunctions BibRef

Hu, H.[Han], Ding, Y.L.[Yu-Lin], Zhu, Q.[Qing], Wu, B.[Bo], Lin, H.[Hui], Du, Z.Q.[Zhi-Qiang], Zhang, Y.T.[Ye-Ting], Zhang, Y.S.[Yun-Sheng],
An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy,
PandRS(92), No. 1, 2014, pp. 98-111.
Elsevier DOI 1407
Airborne laser scanning BibRef

Maguya, A.S.[Almasi S.], Junttila, V.[Virpi], Kauranne, T.[Tuomo],
Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data,
RS(6), No. 7, 2014, pp. 6524-6548.
DOI Link 1408

Li, Y.[Yong], Yong, B.[Bin], Wu, H.[Huayi], An, R.[Ru], Xu, H.[Hanwei],
An Improved Top-Hat Filter with Sloped Brim for Extracting Ground Points from Airborne Lidar Point Clouds,
RS(6), No. 12, 2014, pp. 12885-12908.
DOI Link 1412

Chen, C.F.[Chuan-Fa], Yan, C.Q.[Chang-Qing], Cao, X.W.[Xue-Wei], Guo, J.Y.[Jin-Yun], Dai, H.L.[Hong-Lei],
A greedy-based multiquadric method for LiDAR-derived ground data reduction,
PandRS(102), No. 1, 2015, pp. 110-121.
Elsevier DOI 1503
LiDAR BibRef

Nćsset, E.[Erik],
Vertical Height Errors in Digital Terrain Models Derived from Airborne Laser Scanner Data in a Boreal-Alpine Ecotone in Norway,
RS(7), No. 4, 2015, pp. 4702-4725.
DOI Link 1505

Hu, X.Y.[Xiang-Yun], Ye, L.Z.[Li-Zhi], Pang, S.Y.[Shi-Yan], Shan, J.[Jie],
Semi-Global Filtering of Airborne LiDAR Data for Fast Extraction of Digital Terrain Models,
RS(7), No. 8, 2015, pp. 10996.
DOI Link 1509

Su, Y.J.[Yan-Jun], Guo, Q.H.[Qing-Hua], Ma, Q.[Qin], Li, W.[Wenkai],
SRTM DEM Correction in Vegetated Mountain Areas through the Integration of Spaceborne LiDAR, Airborne LiDAR, and Optical Imagery,
RS(7), No. 9, 2015, pp. 11202.
DOI Link 1511

Rodríguez-Caballero, E.[Emilio], Afana, A., Chamizo, S., Solé-Benet, A., Cantón, Y.[Yolanda],
A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography,
PandRS(117), No. 1, 2016, pp. 141-148.
Elsevier DOI 1605
Terrestrial laser scanning (TLS). Terrestrial laser data is different from areial so it needs different filtering. BibRef

Kolzenburg, S., Favalli, M., Fornaciai, A., Isola, I., Harris, A.J.L., Nannipieri, L., Giordano, D.,
Rapid Updating and Improvement of Airborne LIDAR DEMs Through Ground-Based SfM 3-D Modeling of Volcanic Features,
GeoRS(54), No. 11, November 2016, pp. 6687-6699.
Atmospheric modeling BibRef

Hu, X.Y.[Xiang-Yun], Yuan, Y.[Yi],
Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud,
RS(8), No. 9, 2016, pp. 730.
DOI Link 1610

Stoker, J.M.[Jason M.], Abdullah, Q.A.[Qassim A.], Nayegandhi, A.[Amar], Winehouse, J.[Jayna],
Evaluation of Single Photon and Geiger Mode Lidar for the 3D Elevation Program,
RS(8), No. 9, 2016, pp. 767.
DOI Link 1610

Hu, B.X.[Bao-Xin], Gumerov, D.[Damir], Wang, J.G.[Jian-Guo], Zhang, W.[Wen],
An Integrated Approach to Generating Accurate DTM from Airborne Full-Waveform LiDAR Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
Earlier: A1, A2, A3, Only:
An Integrated Approach To Accurate DEM Generartion Using Airborne Full Waveform Lidar Data,
DOI Link 1109

Muir, J.[Jasmine], Goodwin, N.[Nicholas], Armston, J.[John], Phinn, S.[Stuart], Scarth, P.[Peter],
An Accuracy Assessment of Derived Digital Elevation Models from Terrestrial Laser Scanning in a Sub-Tropical Forested Environment,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708

Didier, D.[David], Bernatchez, P.[Pascal], Augereau, E.[Emmanuel], Caulet, C.[Charles], Dumont, D.[Dany], Bismuth, E.[Eliott], Cormier, L.[Louis], Floch, F.[France], Delacourt, C.[Christophe],
LiDAR Validation of a Video-Derived Beachface Topography on a Tidal Flat,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708

Landry, D.[David], Gigučre, P.[Philippe],
Automating Node Pruning for LiDAR-Based Topometric Maps in the Context of Teach-and-Repeat,

Tyagur, N., Hollaus, M.,
Digital Terrain Models From Mobile Laser Scanning Data In Moravian Karst,
ISPRS16(B3: 387-394).
DOI Link 1610

Tang, D.[Dejin], Zhou, X.M.[Xiao-Ming], Jiang, J.[Jie], Li, C.[Caiping],
A Segment-based Approach For Dtm Derivation Of Airborne Lidar Data,
ISPRS16(B1: 115-120).
DOI Link 1610

Lau, C.L., Halim, S., Zulkepli, M., Azwan, A.M., Tang, W.L., Chong, A.K.,
Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information,
DOI Link 1602

Deng, S.S., Shi, W.Z.,
Integration of Different Filter Algorithms for Improving the Ground Surface Extraction from Airborne LIDAR Data,
HTML Version. 1311

Li, Y.,
Filtering Airborne LIDAR Data by an Improved Morphological Method Based on Multi-Gradient Analysis,
DOI Link 1308
Bare ground extraction. BibRef

Chen, H., Cheng, M., Li, J., Liu, Y.,
An Iterative Terrain Recovery Approach to Automated DTM Generation from Airborne Lidar Point Clouds,
DOI Link 1209

Gu, L.[Linyu], Li, Y.C.[Ying-Cheng], Liu, P.[Pei], Teng, C.S.[Chang-Sheng], Li, Y.[Ying],
A Shading Method for DSM Based on Classification Information of Airborne LiDAR Point Cloud,

Aktaruzzaman, M.D., Schmitt, T.[Theo],
LiDAR-data: automatic object detection for urban flooding models.,
PDF File. 1006
Detailed Digital Surface Model (DSM) Generation and Automatic Object Detection to Facilitate Modelling of Urban Flooding,
PDF File. 0906

Papasaika, H., Baltsavias, E.,
Fusion of lidar and photogrammetric generated Digital Elevation Models,
PDF File. 0906

Liu, X., Zhang, Z.,
LIDAR Data Reduction for Efficient and High Quality DEM Generation,
ISPRS08(B3b: 173 ff).
PDF File. 0807

Akel, N.A.[Nizar Abo], Kremeike, K., Filin, S., Sester, M., Doytsher, Y.,
Dense DTM generalization aided by roads extracted from LiDAR data,
PDF File. 0509
See also Reconstruction of Complex Shape Buildings from Lidar Data Using Free Form Surfaces. BibRef

Schenk, T.[Toni], Csathó, B.[Bea],
Fusion of LIDAR Data and Aerial Imagery for a More Complete Surface Description,
PCV02(A: 310). 0305

Crombaghs, M.[Marc], Elberink, S.O.[Sander Oude], Brügelmann, R.[Regine], de Min, E.[Erik],
Assessing Height Precision of Laser Altimetry DEMs,
PCV02(A: 85). 0305

Chapter on Cartography, Aerial Images, Remote Sensing, Buildings, Roads, Terrain, ATR continues in
DEM, DSM, DTM, Evaluations, Valdiation, Surveys, Overviews .

Last update:Sep 25, 2017 at 16:36:46