Srivastava, G.[Gargi],
Srivastava, R.[Rajeev],
User-interactive salient object detection using YOLOv2, lazy snapping,
and gabor filters,
MVA(31), No. 3, March 2020, pp. Article17.
WWW Link.
2004
BibRef
Kim, M.[Munhyeong],
Jeong, J.[Jongmin],
Kim, S.[Sungho],
ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object
Detection in Aerial Image,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Hui, T.[Tian],
Xu, Y.L.[Yue-Lei],
Jarhinbek, R.[Rasol],
Detail texture detection based on YOLOV4-tiny combined with attention
mechanism and bicubic interpolation,
IET-IPR(15), No. 12, 2021, pp. 2736-2748.
DOI Link
2109
BibRef
Zhang, M.H.[Ming-Hua],
Xu, S.[Shubo],
Song, W.[Wei],
He, Q.[Qi],
Wei, Q.[Quanmiao],
Lightweight Underwater Object Detection Based on YOLO v4 and
Multi-Scale Attentional Feature Fusion,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Amudhan, A.N.,
Sudheer, A.P.,
Lightweight and computationally faster Hypermetropic Convolutional
Neural Network for small size object detection,
IVC(119), 2022, pp. 104396.
Elsevier DOI
2202
Small-size object detection, Real-time, YOLO, Robotic vision,
Faster RCNN, Light-weight models
BibRef
Wang, G.B.[Guan-Bo],
Ding, H.W.[Hong-Wei],
Li, B.[Bo],
Nie, R.C.[Ren-Can],
Zhao, Y.F.[Yi-Fan],
Trident-YOLO: Improving the precision and speed of mobile device
object detection,
IET-IPR(16), No. 1, 2022, pp. 145-157.
DOI Link
2112
BibRef
Xing, Z.Q.[Zhi-Qiang],
Chen, X.[Xi],
Pang, F.Q.[Feng-Qian],
DD-YOLO: An object detection method combining knowledge distillation
and Differentiable Architecture Search,
IET-CV(16), No. 5, 2022, pp. 418-430.
DOI Link
2207
DARTS, high-efficiency detection, knowledge distillation, YOLOv4
BibRef
Wang, L.[Lili],
Ni, Q.H.[Qing-Hang],
Chen, C.[Chen],
Yang, H.[Hailu],
Lightweight target detection algorithm based on improved YOLOv4,
IET-IPR(16), No. 14, 2022, pp. 3805-3813.
DOI Link
2212
BibRef
Gong, H.[Hang],
Mu, T.K.[Ting-Kui],
Li, Q.X.[Qiu-Xia],
Dai, H.S.[Hai-Shan],
Li, C.L.[Chun-Lai],
He, Z.P.[Zhi-Ping],
Wang, W.J.[Wen-Jing],
Han, F.[Feng],
Tuniyazi, A.[Abudusalamu],
Li, H.Y.[Hao-Yang],
Lang, X.C.[Xue-Chan],
Li, Z.Y.[Zhi-Yuan],
Wang, B.[Bin],
Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small
Object Detection on Satellite Images,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, X.[Xiang],
Deng, J.Y.[Jing-Yu],
Fang, Y.[Yi],
Few-Shot Object Detection on Remote Sensing Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Object detection, Feature extraction, Remote sensing, Proposals,
Learning systems, Computer architecture, Training,
You-Only-Look-Once (YOLO)
BibRef
Wang, G.B.[Guan-Bo],
Ding, H.W.[Hong-Wei],
Yang, Z.J.[Zhi-Jun],
Li, B.[Bo],
Wang, Y.H.[Yi-Hao],
Bao, L.Y.[Li-Yong],
TRC-YOLO: A real-time detection method for lightweight targets based
on mobile devices,
IET-CV(16), No. 2, 2022, pp. 126-142.
DOI Link
2202
CBAM, dilated convolution, object detection,
receptive field block (RFB), TridentNet, YOLO
BibRef
Qu, Z.[Zhong],
Gao, L.Y.[Le-Yuan],
Wang, S.Y.[Sheng-Ye],
Yin, H.N.[Hao-Nan],
Yi, T.M.[Tu-Ming],
An improved YOLOv5 method for large objects detection with
multi-scale feature cross-layer fusion network,
IVC(125), 2022, pp. 104518.
Elsevier DOI
2208
Object detection, Feature extraction, Feature fusion, , Autoanchor mechanism
BibRef
Qu, Z.[Zhong],
Shang, X.[Xue],
Xia, S.F.[Shu-Fang],
Yi, T.M.[Tu-Ming],
Zhou, D.Y.[Dong-Yang],
A method of single-shot target detection with multi-scale feature
fusion and feature enhancement,
IET-IPR(16), No. 6, 2022, pp. 1752-1763.
DOI Link
2204
BibRef
Tian, D.X.[Da-Xin],
Lin, C.M.[Chun-Mian],
Zhou, J.S.[Jian-Shan],
Duan, X.T.[Xu-Ting],
Cao, Y.[Yue],
Zhao, D.Z.[De-Zong],
Cao, D.[Dongpu],
SA-YOLOv3: An Efficient and Accurate Object Detector Using
Self-Attention Mechanism for Autonomous Driving,
ITS(23), No. 5, May 2022, pp. 4099-4110.
IEEE DOI
2205
Detectors, Feature extraction, Object detection, Convolution,
Computer architecture, Autonomous vehicles, Visualization,
intelligent transportation systems
BibRef
Lan, Y.[Yubin],
Lin, S.M.[Shao-Ming],
Du, H.[Hewen],
Guo, Y.Q.[Ya-Qi],
Deng, X.L.[Xiao-Ling],
Real-Time UAV Patrol Technology in Orchard Based on the Swin-T YOLOX
Lightweight Model,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xia, R.Y.[Rui-Yang],
Li, G.Q.[Guo-Quan],
Huang, Z.W.[Zheng-Wen],
Meng, H.Y.[Hong-Ying],
Pang, Y.[Yu],
Bi-path Combination YOLO for Real-time Few-shot Object Detection,
PRL(165), 2023, pp. 91-97.
Elsevier DOI
2301
Few-shot object detection, Transfer learning, Real-time,
Bi-path Combination, You Only Look Once, Attentive DropBlock
BibRef
Zhao, Z.P.[Zuo-Peng],
He, C.[Chen],
Zhao, G.M.[Guang-Ming],
Zhou, J.[Jie],
Hao, K.[Kai],
RA-YOLOX: Re-parameterization align decoupled head and novel label
assignment scheme based on YOLOX,
PR(140), 2023, pp. 109579.
Elsevier DOI
WWW Link.
2305
Object detection, YOLO series, Decoupled head, Label assignment
BibRef
Wan, D.H.[Da-Hang],
Lu, R.S.[Rong-Sheng],
Wang, S.L.[Sai-Lei],
Shen, S.Y.[Si-Yuan],
Xu, T.[Ting],
Lang, X.L.[Xian-Li],
YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution
Optical Remote Sensing Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, M.[Min],
Yang, W.Z.[Wen-Zhong],
Wang, L.[Liejun],
Chen, D.[Danny],
Wei, F.Y.[Fu-Yuan],
KeZiErBieKe, H.[HaiLaTi],
Liao, Y.Y.[Yuan-Yuan],
FE-YOLOv5: Feature enhancement network based on YOLOv5 for small
object detection,
JVCIR(90), 2023, pp. 103752.
Elsevier DOI
2301
Small object detection, Feature enhancement, Spatial-aware
BibRef
Zhao, Q.[Qi],
Liu, B.[Binghao],
Lyu, S.C.[Shu-Chang],
Wang, C.L.[Chun-Lei],
Zhang, H.[Hong],
TPH-YOLOv5++: Boosting Object Detection on Drone-Captured Scenarios
with Cross-Layer Asymmetric Transformer,
RS(15), No. 6, 2023, pp. 1687.
DOI Link
2304
BibRef
Mahaur, B.[Bharat],
Mishra, K.K.,
Small-object detection based on YOLOv5 in autonomous driving systems,
PRL(168), 2023, pp. 115-122.
Elsevier DOI
2304
Architectural changes, Deep learning, Autonomous driving,
Small object detection, YOLOv5
BibRef
Hnewa, M.[Mazin],
Radha, H.[Hayder],
Integrated Multiscale Domain Adaptive YOLO,
IP(32), 2023, pp. 1857-1867.
IEEE DOI
2303
BibRef
Earlier:
Multiscale Domain Adaptive YOLO for Cross-Domain Object Detection,
ICIP21(3323-3327)
IEEE DOI
2201
Detectors, Feature extraction, Object detection, Training,
Adaptive systems, Proposals, Object detection, domain adaptation,
multiscale.
Training, Instruments, Feature extraction, Real-time systems, Domain shift
BibRef
Li, W.S.[Wei-Sheng],
Huang, L.[Lin],
YOLOSA:
Object detection based on 2D local feature superimposed self-attention,
PRL(168), 2023, pp. 86-92.
Elsevier DOI
2304
BibRef
Bacea, D.S.[Dan-Sebastian],
Oniga, F.[Florin],
Single stage architecture for improved accuracy real-time object
detection on mobile devices,
IVC(130), 2023, pp. 104613.
Elsevier DOI
2301
Deep learning, Convolutional neural networks,
Lightweight object detectors, YOLO, Mobile devices
BibRef
Jiang, Y.[Yue],
Li, W.J.[Wen-Jing],
Zhang, J.[Jun],
Li, F.[Fang],
Wu, Z.C.[Zhong-Cheng],
YOLOv4-dense: A smaller and faster YOLOv4 for real-time edge-device
based object detection in traffic scene,
IET-IPR(17), No. 2, 2023, pp. 570-580.
DOI Link
2302
BibRef
Cheng, Y.[Yong],
Wang, W.[Wei],
Zhang, W.J.[Wen-Jie],
Yang, L.[Ling],
Wang, J.[Jun],
Ni, H.[Huan],
Guan, T.Z.[Ting-Zhao],
He, J.X.[Jia-Xin],
Gu, Y.K.[Ya-Kang],
Tran, N.N.[Ngoc Nguyen],
A Multi-Feature Fusion and Attention Network for Multi-Scale Object
Detection in Remote Sensing Images,
RS(15), No. 8, 2023, pp. 2096.
DOI Link
2305
BibRef
Xie, T.Y.[Tian-Yi],
Han, W.[Wen],
Xu, S.[Sheng],
YOLO-RS: A More Accurate and Faster Object Detection Method for
Remote Sensing Images,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhao, X.F.[Xiao-Feng],
Xia, Y.T.[Yu-Ting],
Zhang, W.W.[Wen-Wen],
Zheng, C.[Chao],
Zhang, Z.[Zhili],
YOLO-ViT-Based Method for Unmanned Aerial Vehicle Infrared Vehicle
Target Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Cao, F.[Feng],
Xing, B.[Bing],
Luo, J.C.[Jian-Cheng],
Li, D.Y.[De-Yu],
Qian, Y.H.[Yu-Hua],
Zhang, C.[Chao],
Bai, H.X.[He-Xiang],
Zhang, H.[Hu],
An Efficient Object Detection Algorithm Based on Improved YOLOv5 for
High-Spatial-Resolution Remote Sensing Images,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Nanlin, W.[Wei],
Wei, H.[Huang],
Research on Unmanned Vehicle Detection Method Based on Improved
YOLOv4_Tiny,
ICRVC22(129-135)
IEEE DOI
2301
Training, Image segmentation, Computational modeling, Data models,
Automobiles, Autonomous vehicles, YOLOv4_Tiny, data augmentation, feature scale
BibRef
Wang, Y.Z.[Yun-Zhen],
Ma, H.B.[Hong-Bing],
Li, L.L.[Liang-Liang],
Road Traffic Vehicle Detection Method Using Lightweight YOLOv5 and
Attention Mechanism,
ICIVC22(201-207)
IEEE DOI
2301
Convolution, Computational modeling, Roads, Object detection,
Data models, Intelligent transportation systems, Testing,
depthwise separable convolution
BibRef
Cao, K.Y.[Kai-Yang],
Cui, X.[Xu],
Piao, J.C.[Jin-Chun],
Smaller Target Detection Algorithms Based on YOLOv5 in Safety Helmet
Wearing Detection,
ICRVC22(154-158)
IEEE DOI
2301
Head, Computational modeling, Robot kinematics, Object detection,
Safety, Task analysis, Deep learning, Activation function
BibRef
Han, R.[Rong],
Liu, X.H.[Xiao-Hong],
Chen, T.[Ting],
Yolo-SG: Salience-Guided Detection Of Small Objects In Medical Images,
ICIP22(4218-4222)
IEEE DOI
2211
Deep learning, Analytical models, Image resolution,
Object detection, Medical services, Lesions, Data mining, object detection
BibRef
Wang, C.Z.[Chun-Zhi],
Tong, X.[Xin],
Zhu, J.H.[Jia-Hui],
Gao, R.[Rong],
Ghost-YOLOX: A Lightweight and Efficient Implementation of Object
Detection Model,
ICPR22(4552-4558)
IEEE DOI
2212
Training, Image segmentation, Costs, Convolution, Fuses,
Computational modeling, Object detection, Object detection,
Multi-scale pyramidal convolution
BibRef
Ganesh, P.[Prakhar],
Chen, Y.[Yao],
Yang, Y.[Yin],
Chen, D.[Deming],
Winslett, M.[Marianne],
YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge
GPUs,
WACV22(1311-1321)
IEEE DOI
2202
Performance evaluation, Deep learning,
Image edge detection, Transfer learning, Neural networks,
Object Detection/Recognition/Categorization Vision Systems and Applications
BibRef
Javed, M.G.[Muhammad Gohar],
Raza, M.[Minahil],
Ghaffar, M.M.[Muhammad Mohsin],
Weis, C.[Christian],
Wehn, N.[Norbert],
Shahzad, M.[Muhammad],
Shafait, F.[Faisal],
QuantYOLO: A High-Throughput and Power-Efficient Object Detection
Network for Resource and Power Constrained UAVs,
DICTA21(01-08)
IEEE DOI
2201
Quantization (signal), Power demand, Network topology,
Object detection, Throughput, Topology,
Real-Time and Power-Efficient Architecture
BibRef
Li, J.Q.[Jia-Qi],
Zhao, Y.[Yanan],
Gao, L.[Li],
Cui, F.[Feng],
Compression of YOLOv3 via Block-Wise and Channel-Wise Pruning for
Real-Time and Complicated Autonomous Driving Environment Sensing
Applications,
ICPR21(5107-5114)
IEEE DOI
2105
Training, Solid modeling, Visualization, Pipelines, Object detection,
Real-time systems, Sensors
BibRef
Wang, Y.[Ya],
Zell, A.[Andreas],
Yolo+FPN: 2D and 3D Fused Object Detection With an RGB-D Camera,
ICPR21(4657-4664)
IEEE DOI
2105
Training, Visualization, Fuses,
Object detection, Benchmark testing, Cameras
BibRef
Li, L.W.[Long-Wei],
Xi, J.B.[Jiang-Bo],
Jiang, W.D.[Wan-Dong],
Cong, M.[Ming],
Han, L.[Ling],
Yang, Y.[Yun],
Multi-scale Fast Detection of Objects in High Resolution Remote
Sensing Images,
ICIVC20(5-10)
IEEE DOI
2009
Remote sensing, Feature extraction, Image resolution,
Object detection, Machine learning, Data models,
YOLOv3
BibRef
Koksal, A.,
Ince, K.G.,
Alatan, A.A.[A. Aydin],
Effect of Annotation Errors on Drone Detection with YOLOv3,
Anti-UAV20(4439-4447)
IEEE DOI
2008
Detectors, Training, Feature extraction, Labeling, Real-time systems,
Measurement, Drones
BibRef
Choi, J.,
Chun, D.,
Kim, H.,
Lee, H.,
Gaussian YOLOv3: An Accurate and Fast Object Detector Using
Localization Uncertainty for Autonomous Driving,
ICCV19(502-511)
IEEE DOI
2004
object detection, road safety, traffic engineering computing,
object detection algorithms, Gaussian YOLOv3, Feature extraction
BibRef
Simon, M.[Martin],
Milz, S.[Stefan],
Amende, K.[Karl],
Gross, H.M.[Horst-Michael],
Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object
Detection on Point Clouds,
CVRoads18(I:197-209).
Springer DOI
1905
Lidar, automated driving.
BibRef
Redmon, J.[Joseph],
Farhadi, A.[Ali],
YOLO9000: Better, Faster, Stronger,
CVPR17(6517-6525)
IEEE DOI
1711
Award, CVPR, HM. Detectors, Feature extraction, Image resolution, Object detection,
Real-time systems, Training
Real time, 9000 object categories.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Semi-Supervised Object Detection .