Kaminuma, T.[Tsuguchika],
Watanabe, S.[Satosi],
Fast-converging adaptive algorithms for well-balanced separating linear
classifier,
PR(4), No. 3, October 1972, pp. 289-305.
Elsevier DOI
0309
BibRef
Warnekar, C.S.,
Krishna, G.,
A heuristic clustering algorithm using union of overlapping
pattern-cells,
PR(11), No. 2, 1979, pp. 85-93.
Elsevier DOI
0309
BibRef
Warnekar, C.S.,
Krishna, G.,
An algorithm to detect linearly separable clusters of binary patterns,
PR(11), No. 2, 1979, pp. 109-114.
Elsevier DOI
0309
BibRef
Murty, M.N.[M. Narasimha],
Krishna, G.,
A computationally efficient technique for data-clustering,
PR(12), No. 3, 1980, pp. 153-158.
Elsevier DOI
0309
BibRef
Dimitriadis, B.[Basile],
Kazakos, D.[Dimitri],
On an optimal linear pattern classification procedure,
PR(12), No. 2, 1980, pp. 69-74.
Elsevier DOI
0309
BibRef
Niemann, H.[Heinrich],
Linear and nonlinear mapping of patterns,
PR(12), No. 2, 1980, pp. 83-87.
Elsevier DOI
0309
BibRef
James, M.,
Feature detection using the general linear model,
PR(12), No. 3, 1980, pp. 137-140.
Elsevier DOI
0309
BibRef
Jówik, A.[Adam],
A recursive method for the investigation of the linear separability of
two sets,
PR(16), No. 4, 1983, pp. 429-431.
Elsevier DOI
0309
BibRef
Bruckstein, A.M., and
Cover, T.M.,
Monotonicity of Linear Separability under Translation,
PAMI(7), No. 3, May 1985, pp. 355-358.
BibRef
8505
Bobrowski, L.[Leon],
Linear discrimination with symmetrical models,
PR(19), No. 1, 1986, pp. 101-109.
Elsevier DOI
0309
BibRef
Bobrowski, L.[Leon],
Design of piecewise linear classifiers from formal neurons by a basis
exchange technique,
PR(24), No. 9, 1991, pp. 863-870.
Elsevier DOI
0401
BibRef
And:
Piecewise-Linear Classifiers, Formal Neurons and Separability of
the Learning Sets,
ICPR96(IV: 224-228).
IEEE DOI
9608
(Polish Academy of Sciences, PL)
BibRef
Herman, G.T.[Gabor T.],
Yeung, K.T.D.[K. T. Daniel],
On Piecewise-Linear Classification,
PAMI(14), No. 7, July 1992, pp. 782-786.
IEEE DOI
BibRef
9207
Cucka, P.[Peter],
Rosenfeld, A.[Azriel],
Linear Feature Compatibility for Pattern-Matching Relaxation,
PR(25), No. 2, February 1992, pp. 189-196.
Elsevier DOI
BibRef
9202
Tsai, D.M.,
Chen, M.F.,
Object Recognition By a Linear Weight Classifier,
PRL(16), No. 6, June 1995, pp. 591-600.
BibRef
9506
Barlach, F.[Flemming],
A linear classifier design approach,
PR(24), No. 9, 1991, pp. 871-877.
Elsevier DOI
0401
BibRef
Tenmoto, H.[Hiroshi],
Kudo, M.[Mineichi],
Shimbo, M.[Masaru],
Piecewise linear classifiers with an appropriate number of hyperplanes,
PR(31), No. 11, November 1998, pp. 1627-1634.
Elsevier DOI
BibRef
9811
Abrishami-Moghaddam, H.,
Amiri Zadeh, K.,
Fast adaptive algorithms and networks for class-separability features,
PR(36), No. 8, August 2003, pp. 1695-1702.
Elsevier DOI
0304
BibRef
Earlier:
Fast linear discriminant analysis for on-line pattern recognition
applications,
ICPR02(II: 64-67).
IEEE DOI
0211
BibRef
Abrishami-Moghaddam, H.,
Matinfar, M.,
Sajad Sadough, S.M.,
Amiri Zadeh, K.,
Algorithms and networks for accelerated convergence of adaptive LDA,
PR(38), No. 4, April 2005, pp. 473-483.
Elsevier DOI
0501
BibRef
Abrishami-Moghaddam, H.,
Matinfar, M.,
Fast adaptive LDA using quasi-Newton algorithm,
PRL(28), No. 5, 1 April 2007, pp. 613-621.
Elsevier DOI
0703
Adaptive linear discriminant analysis; Gradient descent optimization;
Newton-Raphson optimization; Secant method; Self-organizing neural network
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Abrishami-Moghaddam, H.[Hamid],
Adaptive algorithms and networks for optimal feature extraction from
Gaussian data,
PRL(31), No. 11, 1 August 2010, pp. 1331-1341.
Elsevier DOI
1008
Adaptive learning algorithm; Feature extraction; Multidimensional gaussian data
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Rudzicz, F.[Frank],
Abrishami-Moghaddam, H.[Hamid],
Fast adaptive algorithms for optimal feature extraction from Gaussian
data,
PRL(70), No. 1, 2016, pp. 73-79.
Elsevier DOI
1602
Gaussian sequence
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Rudzicz, F.[Frank],
Modified mean shift algorithm,
IET-IPR(12), No. 12, December 2018, pp. 2172-2177.
DOI Link
1812
BibRef
Jing, X.Y.[Xiao-Yuan],
Tang, Y.Y.[Yuan-Yan],
Zhang, D.[David],
A Fourier-LDA approach for image recognition,
PR(38), No. 3, March 2005, pp. 453-457.
Elsevier DOI
0412
Select appropriate Fourier frequency bands with favorable linear
separability by using a two-dimensional separability judgment
BibRef
Wan, S.J.,
Wong, S.K.M.,
A partially supervised learning algorithm for linearly separable
systems,
PAMI(14), No. 10, October 1992, pp. 1052-1056.
IEEE DOI
0401
BibRef
Kostin, A.[Alexander],
A simple and fast multi-class piecewise linear pattern classifier,
PR(39), No. 11, November 2006, pp. 1949-1962.
Elsevier DOI
0608
Multi-class piecewise linear classifiers; Decision trees
BibRef
Chen, S.C.[Song-Can],
Wang, Z.[Zhe],
Tian, Y.J.[Yong-Jun],
Matrix-pattern-oriented Ho-Kashyap classifier with regularization
learning,
PR(40), No. 5, May 2007, pp. 1533-1543.
Elsevier DOI
0702
Linear classifier; Matrix pattern; Vector pattern;
Modified Ho-Kashyap with squared approximation
of the misclassification errors (MHKS); Regularization; Pattern recognition
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
Wang, Z.[Zhe],
Chen, S.C.[Song-Can],
Matrix-pattern-oriented least squares support vector classifier with
AdaBoost,
PRL(29), No. 6, 15 April 2008, pp. 745-753.
Elsevier DOI
0803
Matrix pattern; Least squares support vector classifier (LSSVC);
AdaBoost; Classifier design; Ensemble system; Pattern recognition
BibRef
Li, Y.J.[Yu-Jian],
Leng, Q.[Qiangkui],
Alternating multiconlitron:
A novel framework for piecewise linear classification,
PR(48), No. 3, 2015, pp. 968-975.
Elsevier DOI
1412
Multiconlitron
BibRef
Lee, H.S.[Hung-Shin],
Wang, H.M.[Hsin-Min],
Chen, B.[Berlin],
A Discriminative and Heteroscedastic Linear Feature Transformation for
Multiclass Classification,
ICPR10(690-693).
IEEE DOI
1008
BibRef
Zhu, Y.H.[Yu-Hua],
Wu, Y.M.[Yi-Ming],
Liu, X.W.[Xiu-Wen],
Mio, W.[Washington],
Transductive optimal component analysis,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Vidal-Naquet, M.,
Ullman, S.,
Object recognition with informative features and linear classification,
ICCV03(281-288).
IEEE DOI
0311
BibRef
Chernov, V.M.[Vladimir M.],
The 'Modular Perceptron':
A Linear Classes Separability in the Non-Archimedean Features Spaces,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Hoekstra, A.,
Duin, R.P.W.,
On the Nonlinearity of Pattern Classifiers,
ICPR96(IV: 271-275).
IEEE DOI
9608
(TU Delft, NL)
BibRef
Palm, H.C.,
A new method for generating statistical classifiers assuming linear
mixtures of Gaussian densities,
ICPR94(B:483-486).
IEEE DOI
9410
BibRef
Palm, H.C.,
A new piecewise linear classifier,
ICPR90(I: 742-744).
IEEE DOI
9006
BibRef
Bobrowski, L.[Leon],
Sklansky, J.,
Linear classifiers by window training and basis exchange,
ICPR94(B:513-514).
IEEE DOI
9410
BibRef
Guyon, I.,
Vapnik, V.,
Boser, B.,
Bottou, L.,
Solla, S.A.,
Capacity control in linear classifiers for pattern recognition,
ICPR92(II:385-388).
IEEE DOI
9208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Fuzzy Clustering, Fuzzy Classification Techniques, Fuzzy C-Means .