26.1.12.1 Hidden Markov Models for Speech Recognition, HMM

Chapter Contents (Back)
Speech. HMM. Hidden Markov Models.

Huo, Q.A.[Qi-Ang], Chan, C.[Chorkin],
Contextual vector quantization for speech recognition with discrete hidden Markov model,
PR(28), No. 4, April 1995, pp. 513-517.
Elsevier DOI 0401
BibRef

Kenny, P., Lennig, M., Mermelstein, P.,
Speaker adaptation in a large-vocabulary Gaussian HMM recognizer,
PAMI(12), No. 9, September 1990, pp. 917-920.
IEEE DOI 0401
BibRef

Kwong, S., He, Q.H., Man, K.F., Tang, K.S.,
A maximum model distance approach for HMM-based speech recognition,
PR(31), No. 3, March 1998, pp. 219-229.
Elsevier DOI 0401
BibRef

He, Q.H., Kwong, S., Man, K.F., Tang, K.S.,
An improved maximum model distance approach for HMM-based speech recognition systems,
PR(33), No. 10, October 2000, pp. 1749-1758.
Elsevier DOI 0006
BibRef

Ding, I.J.[Ing-Jr],
Incremental MLLR speaker adaptation by fuzzy logic control,
PR(40), No. 11, November 2007, pp. 3110-3119.
Elsevier DOI 0707
Speech recognition; Speaker adaptation; Hidden Markov model; Maximum likelihood linear regression; T-S fuzzy logic controller BibRef

Liu, J.W.[Jing-Wei], Wang, Z.Y.[Zuo-Ying], Xiao, X.[Xi],
A hybrid SVM/DDBHMM decision fusion modeling for robust continuous digital speech recognition,
PRL(28), No. 8, 1 June 2007, pp. 912-920.
Elsevier DOI 0704
Speech recognition; Gaussian mixture model; Duration distribution based hidden Markov model (DDBHMM); Support vector machine BibRef

O'Shaughnessy, D.[Douglas],
Invited paper: Automatic speech recognition: History, methods and challenges,
PR(41), No. 10, October 2008, pp. 2965-2979.
Elsevier DOI 0808
Automatic speech recognition; Hidden Markov models; Adaptation; Compensation; Pattern recognition; Spectral representation BibRef

Zeng, J.[Jia], Xie, L.[Lei], Liu, Z.Q.[Zhi-Qiang],
Type-2 fuzzy Gaussian mixture models,
PR(41), No. 12, December 2008, pp. 3636-3643.
Elsevier DOI 0810
BibRef
Earlier: A1, A3, Only:
Type-2 fuzzy hidden markov models to phoneme recognition,
ICPR04(I: 192-195).
IEEE DOI 0409
Type-2 fuzzy sets; Gaussian mixture models; Hidden Markov models BibRef

Milone, D.H.[Diego H.], di Persia, L.E.[Leandro E.], Torres, M.E.[Maria E.],
Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees,
PR(43), No. 4, April 2010, pp. 1577-1589.
Elsevier DOI 1002
Sequence learning; EM algorithm; Wavelets; Speech recognition BibRef

Heracleous, P.[Panikos], Badin, P.[Pierre], Bailly, G.[Gerard], Hagita, N.[Norihiro],
A pilot study on augmented speech communication based on Electro-Magnetic Articulography,
PRL(32), No. 8, 1 June 2011, pp. 1119-1125.
Elsevier DOI 1101
Augmented speech; Electro-Magnetic Articulography (EMA); Automatic speech recognition; Hidden Markov model (HMMs); Fusion; Noise robustness BibRef

Zamani, B.[Behzad], Akbari, A.[Ahmad], Nasersharif, B.[Babak], Jalalvand, A.[Azarakhsh],
Optimized discriminative transformations for speech features based on minimum classification error,
PRL(32), No. 7, 1 May 2011, pp. 948-955.
Elsevier DOI 1101
Minimum classification error; Principal Component Analysis; Linear Discriminant Analysis; Feature transformation; Hidden Markov Model BibRef

Im, J.H., Lee, S.Y.,
Unified Training of Feature Extractor and HMM Classifier for Speech Recognition,
SPLetters(19), No. 2, February 2012, pp. 111-114.
IEEE DOI 1201
BibRef

Lee, L.M.[Lee-Min], Jean, F.R.,
Adaptation of Hidden Markov Models for Recognizing Speech of Reduced Frame Rate,
Cyber(43), No. 6, 2013, pp. 2114-2121.
IEEE DOI 1312
hidden Markov models BibRef

Cho, J.W., Park, H.M.,
An Efficient HMM-Based Feature Enhancement Method With Filter Estimation for Reverberant Speech Recognition,
SPLetters(20), No. 12, 2013, pp. 1199-1202.
IEEE DOI 1311
Bayes methods BibRef

Chung, Y.J.[Yong-Joo],
Vector Taylor series based model adaptation using noisy speech trained hidden Markov models,
PRL(75), No. 1, 2016, pp. 36-40.
Elsevier DOI 1604
Noisy speech recognition BibRef

Shahnawazuddin, S., Adiga, N., Kathania, H.K.,
Effect of Prosody Modification on Children's ASR,
SPLetters(24), No. 11, November 2017, pp. 1749-1753.
IEEE DOI 1710
Hidden Markov models, Mel frequency cepstral coefficient, Speech, Speech recognition, Training, Acoustic mismatch, pitch-adaptive features, prosody modification, speech recognition, zero-frequency, filter BibRef

Baltrušaitis, T.[Tadas], Ahuja, C., Morency, L.P.[Louis-Philippe],
Multimodal Machine Learning: A Survey and Taxonomy,
PAMI(41), No. 2, February 2019, pp. 423-443.
IEEE DOI 1901
Speech recognition, Visualization, Media, Speech, Multimedia communication, Streaming media, Hidden Markov models, survey BibRef

Hsiao, R., Can, D., Ng, T., Travadi, R., Ghoshal, A.,
Online Automatic Speech Recognition With Listen, Attend and Spell Model,
SPLetters(27), 2020, pp. 1889-1893.
IEEE DOI 2011
Hidden Markov models, Decoding, Training, Earth Observing System, Computational modeling, Acoustics, Automatic speech recognition, online recognition BibRef

Qiu, J.Y.[Jia-Yan], Wang, X.C.[Xin-Chao], Fua, P.[Pascal], Tao, D.C.[Da-Cheng],
Matching Seqlets: An Unsupervised Approach for Locality Preserving Sequence Matching,
PAMI(43), No. 2, February 2021, pp. 745-752.
IEEE DOI 2101
Hidden Markov models, Task analysis, Annotations, Pattern matching, Speech recognition, Optimization, Coherence, Sequence matching, joint optimization BibRef

de Souza, D.B.[Douglas Baptista], Bakri, K.J.[Khaled Jamal], de Souza Ferreira, F.[Fernanda], Inacio, J.[Juliana],
Multitaper-Mel Spectrograms for Keyword Spotting,
SPLetters(29), 2022, pp. 2028-2032.
IEEE DOI 2210
Spectrogram, Hidden Markov models, Feature extraction, Speech recognition, Internet, Computational modeling, Training, mel spectrograms BibRef


Ezzine, A., Satori, H., Hamidi, M., Satori, K.,
Moroccan Dialect Speech Recognition System Based on CMU SphinxTools,
ISCV20(1-5)
IEEE DOI 2011
feature extraction, Gaussian processes, hidden Markov models, natural language processing, speaker recognition, Artificial intelligence BibRef

Shahin, M., Ji, J.X., Ahmed, B.,
One-Class SVMs Based Pronunciation Verification Approach,
ICPR18(2881-2886)
IEEE DOI 1812
Feature extraction, Hidden Markov models, Training, Support vector machines, Error analysis, Lattices, Acoustics, speech attributes BibRef

Addarrazi, I., Satori, H., Satori, K.,
Amazigh audiovisual speech recognition system design,
ISCV17(1-5)
IEEE DOI 1710
Face, Feature extraction, Hidden Markov models, Lips, Mouth, Speech recognition, Visualization, Audio-visual recognition, Automatic Speech Recognition, HMM, lip, reading BibRef

Wu, C., Ng, R.W.M., Torralba, O.S., Hain, T.,
Analysing acoustic model changes for active learning in automatic speech recognition,
WSSIP17(1-5)
IEEE DOI 1707
Acoustics, Adaptation models, Analytical models, Computational modeling, Data models, Hidden Markov models, Measurement, Active learning, confidence measures, data selection, speaker, adaptation BibRef

Asadullah, Shaukat, A., Ali, H., Akram, U.,
Automatic Urdu Speech Recognition using Hidden Markov Model,
ICIVC16(135-139)
IEEE DOI 1610
cepstral analysis BibRef

Conka, D., Viszlay, P., Juhár, J.,
Fuzzy clustering in HMM-based triphone classes of 2DLDA in Slovak LVCSR,
WSSIP16(1-4)
IEEE DOI 1608
fuzzy set theory BibRef

Kacur, J., Kozicka, R., Vargic, R.,
Semi-tight covariance matrices implementation in MASPER HMM training procedure,
WSSIP16(1-4)
IEEE DOI 1608
covariance matrices BibRef

Kacur, J., Trnovsky, T., Vargic, R.,
Discriminative training of HMM using MASPER procedure,
WSSIP15(93-96)
IEEE DOI 1603
hidden Markov models BibRef

Pérez Maldonado, Y.[Yara], Caballero Morales, S.O.[Santiago Omar], Cruz Ortega, R.O.[Roberto Omar],
GA Approaches to HMM Optimization for Automatic Speech Recognition,
MCPR12(313-322).
Springer DOI 1208
BibRef

Swietojanski, P.[Pawel], Wielgat, R.[Robert], Zielinski, T.[Tomasz],
Automatic Selection of Pareto-Optimal Topologies of Hidden Markov Models Using Multicriteria Evolutionary Algorithms,
EvoIASP11(224-233).
Springer DOI 1104
Applied to speech recognition. BibRef

Ravinder, K.[Kumar],
Comparison of HMM and DTW for Isolated Word Recognition System of Punjabi Language,
CIARP10(244-252).
Springer DOI 1011
BibRef

Duan, Q.S.[Quan-Sheng], Kang, S.Y.[Shi-Yin], Wu, Z.Y.[Zhi-Yong], Cai, L.H.[Lian-Hong], Shuang, Z.W.[Zhi-Wei], Qin, Y.[Yong],
Comparison of Syllable/Phone HMM Based Mandarin TTS,
ICPR10(4496-4499).
IEEE DOI 1008
BibRef

Kacur, J., Rozinaj, G.,
Adding Voicing Features into Speech Recognition Based on HMM in Slovak,
WSSIP09(1-4).
IEEE DOI 0906
BibRef

Kruger, S.E.[Sven E.], Schaffoner, M.[Martin], Katz, M.[Marcel], Andelic, E.[Edin], Wendemuth, A.[Andreas],
Mixture of Support Vector Machines for HMM based Speech Recognition,
ICPR06(IV: 326-329).
IEEE DOI 0609
BibRef

Andelic, E.[Edin], Schaffoner, M.[Martin], Katz, M.[Marcel], Kruger, S.E.[Sven E.],
A Hybrid HMM-Based Speech Recognizer Using Kernel-Based Discriminants as Acoustic Models,
ICPR06(II: 1158-1161).
IEEE DOI 0609
BibRef

Demirekler, M., Karahan, F., Ciloglu, T.,
Fusing length and voicing information, and HMM decision using a Bayesian causal tree against insufficient training data,
ICPR00(Vol III: 102-105).
IEEE DOI 0403
BibRef

Steidl, S.[Stefan], Stemmer, G.[Georg], Hacker, C.[Christian], Nöth, E.[Elmar], Niemann, H.[Heinrich],
Improving Children's Speech Recognition by HMM Interpolation with an Adults' Speech Recognizer,
DAGM03(600-607).
Springer DOI 0310
BibRef

Nouza, J.,
Feature selection methods for hidden Markov model-based speech recognition,
ICPR96(II: 186-190).
IEEE DOI 0509
BibRef

Rieck, S., Schukat-Talamazzini, E.G., Niemann, H.,
Speaker adaptation using semi-continuous hidden Markov models,
ICPR92(III:541-544).
IEEE DOI 9208
BibRef

Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Speech Recognition, Neural Networks, CNN .


Last update:Mar 17, 2025 at 20:02:03