Zheng, B.Y.[Bao-Yu],
Qian, W.[Wei],
Clarke, L.P.,
Digital mammography: mixed feature neural network with spectral entropy
decision for detection of microcalcifications,
MedImg(15), No. 5, October 1996, pp. 589-597.
IEEE Top Reference.
0203
BibRef
Lo, S.C.B.,
Chan, H.P.,
Lin, J.S.,
Li, H.,
Freedman, M.T.,
Mun, S.K.,
Artificial Convolution Neural-Network for
Medical Image Pattern-Recognition,
NeurNet(8), No. 7-8, 1995, pp. 1201-1214.
BibRef
9500
Lo, S.C.B.,
Lin, J.S.J.,
Freedman, M.T.,
Mun, S.K.,
Application of Artificial Neural Networks to
Medical Image Pattern-Recognition: Detection of Clustered
Microcalcifications on Mammograms and Lung-Cancer on Chest Radiographs,
VLSIVideo(18), No. 3, April 1998, pp. 263-274.
9806
BibRef
Tsujii, O.[Osamu],
Freedman, M.T.[Matthew T.],
Mun, S.K.[Seong K.],
Classification of microcalcifications in digital mammograms using
trend-oriented radial basis function neural network,
PR(32), No. 5, May 1999, pp. 891-903.
Elsevier DOI
BibRef
9905
Bottema, M.J.[Murk J.],
Slavotinek, J.P.[John P.],
Detection and classification of lobular and DCIS (small cell)
microcalcifications in digital mammograms,
PRL(21), No. 13-14, December 2000, pp. 1209-1214.
0011
BibRef
Earlier:
SCIA99(Biological Applications II).
BibRef
Grohman, W.M.[Wojciech M.],
Dhawan, A.P.[Atam P.],
Fuzzy convex set-based pattern classification for analysis of
mammographic microcalcifications,
PR(34), No. 7, July 2001, pp. 1469-1482.
Elsevier DOI
0105
BibRef
Netsch, T.,
Peitgen, H.O.,
Scale-space signatures for the detection of clustered
microcalcifications in digital mammograms,
MedImg(18), No. 9, September 1999, pp. 774-786.
IEEE Top Reference.
0110
BibRef
Sentelle, S.,
Sentelle, C.,
Sutton, M.A.,
Multiresolution-Based Segmentation of Calcifications for the Early
Detection of Breast Cancer,
RealTimeImg(8), No. 3, June 2002, pp. 237-252.
DOI Link
0208
BibRef
El Naqa, I.,
Yang, Y.Y.[Yong-Yi],
Wernick, M.N.,
Galatsanos, N.P.,
Nishikawa, R.M.,
A support vector machine approach for detection of microcalcifications,
MedImg(21), No. 12, December 2002, pp. 1552-1563.
IEEE Top Reference.
0301
BibRef
Earlier:
A support vector machine approach for detection of microcalcifications
in mammograms,
ICIP02(II: 953-956).
IEEE DOI
0210
BibRef
El Naqa, I.,
Yang, Y.,
Galatsanos, N.P.,
Nishikawa, R.M.,
Wernick, M.N.,
A Similarity Learning Approach to Content-Based Image Retrieval:
Application to Digital Mammography,
MedImg(23), No. 10, October 2004, pp. 1233-1244.
IEEE Abstract.
0410
BibRef
El Naqa, I.[Issam],
Yang, D.S.[De-Shan],
Deasy, J.O.[Joseph O.],
Automated Estimation of the Biophysical Target for Radiotherapy
Treatment Planning using Multimodality Image Analysis,
ICIP07(V: 533-536).
IEEE DOI
0709
BibRef
El Naqa, I.,
Yang, Y.Y.[Yong-Yi],
Galatsanos, N.P.,
Wernick, M.N.,
Content-based image retrieval for digital mammography,
ICIP02(III: 141-144).
IEEE DOI
0210
BibRef
Earlier:
A1, A4, A2, A3:
Image Retrieval Based on Similarity Learning,
ICIP00(Vol III: 722-725).
IEEE DOI
0008
BibRef
El Naqa, I.[Issam],
Variational methods for image-guided adaptive radiotherapy,
Southwest10(13-16).
IEEE DOI
1005
BibRef
Wei, L.,
Yang, Y.,
Nishikawa, R.M.,
Jiang, Y.,
A Study on Several Machine-Learning Methods for Classification of
Malignant and Benign Clustered Microcalcifications,
MedImg(24), No. 3, March 2005, pp. 371-380.
IEEE Abstract.
0501
BibRef
Wei, L.,
Yang, Y.,
Nishikawa, R.M.,
Wernick, M.N.,
Edwards, A.,
Relevance Vector Machine for Automatic Detection of Clustered
Microcalcifications,
MedImg(24), No. 10, October 2005, pp. 1278-1285.
IEEE DOI
0510
BibRef
Wei, L.Y.[Li-Yang],
Yang, Y.Y.[Yong-Yi],
Nishikawa, R.M.,
Relevance Vector Machine Learning for Detection of Microcalcifications
in Mammograms,
ICIP05(I: 9-12).
IEEE DOI
0512
BibRef
Wei, L.Y.[Li-Yang],
Yang, Y.Y.[Yong-Yi],
Nishikawa, R.M.,
Wernick, M.N.,
Mammogram Retrieval by Similarity Learning from Experts,
ICIP06(2517-2520).
IEEE DOI
0610
BibRef
de Santo, M.[Massimo],
Molinara, M.[Mario],
Tortorella, F.[Francesco],
Vento, M.[Mario],
Automatic classification of clustered microcalcifications by a multiple
expert system,
PR(36), No. 7, July 2003, pp. 1467-1477.
Elsevier DOI
0304
BibRef
de Vito, S.,
Tortorella, F.,
Vento, M.,
C: Automatic classification of clustered microcalcifications by a multiple
expert system,
CIAP99(464-469).
IEEE DOI
9909
BibRef
Cheng, H.D.,
Cai, X.P.[Xiao-Peng],
Chen, X.W.[Xiao-Wei],
Hu, L.M.[Li-Ming],
Lou, X.L.[Xue-Ling],
Computer-aided detection and classification of microcalcifications in
mammograms: a survey,
PR(36), No. 12, December 2003, pp. 2967-2991.
Elsevier DOI
0310
Survey, Mammograms.
BibRef
Cheng, H.D.,
Wang, J.L.[Jing-Li],
Shi, X.J.[Xiang-Jun],
Microcalcification detection using fuzzy logic and scale space
approaches,
PR(37), No. 2, February 2004, pp. 363-375.
Elsevier DOI
0311
BibRef
Thangavel, K.,
Karnan, M.,
Sivakumar, R.,
Mohideen, A.K.[A. Kaja],
Automatic Detection of Microcalcification in Mammograms:
A Review,
GVIP(05), No. V5, 2005, pp. 31-61
HTML Version.
BibRef
0500
Thangavel, K.,
Karnan, M.,
Meta-Heuristic Algorithms for Automatic Detection of
Microcalcifications In Digital Mammograms,
GVIP(05), No. V7, 2005, pp. xx-yy
HTML Version.
BibRef
0500
Wei, L.Y.[Li-Yang],
Yang, Y.Y.[Yong-Yi],
Nishikawa, R.M.[Robert M.],
Microcalcification Classification Assisted by Content-Based Image
Retrieval for Breast Cancer Diagnosis,
PR(42), No. 6, June 2009, pp. 1126-1132.
Elsevier DOI
0902
BibRef
Earlier: A2, A1, A3:
ICIP07(V: 1-4).
IEEE DOI
0709
Microcalcification classification; Adaptive support vector machine;
Image retrieval
BibRef
Cheng, J.Z.,
Chen, C.M.,
Cole, E.B.,
Pisano, E.D.,
Shen, D.,
Automated Delineation of Calcified Vessels in Mammography by Tracking
With Uncertainty and Graphical Linking Techniques,
MedImg(31), No. 11, November 2012, pp. 2143-2155.
IEEE DOI
1211
BibRef
Bekker, A.J.,
Shalhon, M.,
Greenspan, H.,
Goldberger, J.,
Multi-View Probabilistic Classification of Breast Microcalcifications,
MedImg(35), No. 2, February 2016, pp. 645-653.
IEEE DOI
1602
Biological system modeling
BibRef
de Cea, M.V.S.[Maria V. Sainz],
Nishikawa, R.M.,
Yang, Y.Y.[Yong-Yi],
Estimating the Accuracy Level Among Individual Detections in
Clustered Microcalcifications,
MedImg(36), No. 5, May 2017, pp. 1162-1171.
IEEE DOI
1705
BibRef
Earlier: A1, A3, Only:
Case-based decision strategy using outlier probability in detection
of microcalcifications in mammographic lesions,
ICIP16(3409-3413)
IEEE DOI
1610
BibRef
Earlier: A1, A3, Only:
Improving uniformity in detection performance of clustered
microcalcifications in mammograms,
ICIP15(842-846)
IEEE DOI
1512
Bayes' risk.
Cancer, Detectors, Estimation, Lesions, Mammography, Sensitivity,
Solid modeling, Clustered microcalcifications (MCs),
computer-aided diagnosis (CAD),
false positives (FPs) in detection, mammography, spatial, point,
process, (SPP)
BibRef
de Cea, M.V.S.[Maria V. Sainz],
Yang, Y.Y.[Yong-Yi],
Point process modeling for determining detection accuracy of
mammographic microcalcifications,
ICIP17(1357-1361)
IEEE DOI
1803
cancer, diagnostic radiography, mammography,
medical image processing, object detection, stochastic processes,
microcalcifications
BibRef
Muthuvel, M.[Marimuthu],
Thangaraju, B.[Balakumaran],
Chinnasamy, G.[Gowrishankar],
Microcalcification cluster detection using multiscale products based
Hessian matrix via the Tsallis thresholding scheme,
PRL(94), No. 1, 2017, pp. 127-133.
Elsevier DOI
1708
Hessian, matrix
BibRef
Zhao, C.,
Kanicki, J.,
Task-Based Modeling of a 5k Ultra-High-Resolution Medical Imaging
System for Digital Breast Tomosynthesis,
MedImg(36), No. 9, September 2017, pp. 1820-1831.
IEEE DOI
1709
CMOS image sensors, cancer, tumours,
microcalcification detection, tomosynthesis
BibRef
Wang, J.[Juan],
Yang, Y.Y.[Yong-Yi],
A context-sensitive deep learning approach for microcalcification
detection in mammograms,
PR(78), 2018, pp. 12-22.
Elsevier DOI
1804
BibRef
Earlier:
Feature saliency analysis for perceptual similarity of clustered
microcalcifications,
ICIP15(775-778)
IEEE DOI
1512
BibRef
Earlier:
Adaboost with dummy-variable modeling for reduction of false
positives in detection of clustered microcalcifications,
ICIP14(2295-2298)
IEEE DOI
1502
Computer-aided diagnosis (CAD),
Clustered microcalcifications (MCs),
Deep learning.
Perceptual similarity.
Adaptation models
BibRef
Wang, J.[Juan],
Yang, Y.Y.[Yong-Yi],
Nishikawa, R.M.[Robert M.],
Quantitative study of image features of clustered microcalcifications
in for-presentation mammograms,
ICIP16(3404-3408)
IEEE DOI
1610
BibRef
Earlier:
Reduction of false positive detection in clustered
microcalcifications,
ICIP13(1433-1437)
IEEE DOI
1402
Design automation.
Computer-aided diagnosis (CAD)
BibRef
Yang, Y.[Yan],
Wang, J.[Juan],
Yang, Y.Y.[Yong-Yi],
Improving SVM classifier with prior knowledge in microcalcification
detection1,
ICIP12(2837-2840).
IEEE DOI
1302
BibRef
Bria, A.,
Marrocco, C.,
Borges, L.R.,
Molinara, M.,
Marchesi, A.,
Mordang, J.,
Karssemeijer, N.,
Tortorella, F.,
Improving the Automated Detection of Calcifications Using Adaptive
Variance Stabilization,
MedImg(37), No. 8, August 2018, pp. 1857-1864.
IEEE DOI
1808
Mammography, Standards, Solid modeling, Adaptation models,
Transforms, Cancer, Digital mammography, quantum noise,
microcalcification detection
BibRef
Chakravarthy, S.R.S.[S. R. Sannasi],
Rajaguru, H.[Harikumar],
Detection and classification of microcalcification from digital
mammograms with firefly algorithm, extreme learning machine and
non-linear regression models: A comparison,
IJIST(30), No. 1, 2020, pp. 126-146.
DOI Link
2002
benign, breast cancer, extreme learning machine,
firefly classifier, malignant, mammogram, regression model, wavelet
BibRef
AlGhamdi, M.,
Abdel-Mottaleb, M.,
Collado-Mesa, F.,
DU-Net: Convolutional Network for the Detection of Arterial
Calcifications in Mammograms,
MedImg(39), No. 10, October 2020, pp. 3240-3249.
IEEE DOI
2010
Mammography, Task analysis, Image segmentation, Feature extraction,
Solid modeling, Biological system modeling,
segmentation U-Net
BibRef
Liu, W.M.[Wei-Min],
Long, M.J.[Mei-Jun],
Peng, L.R.[Ling-Rong],
Qu, C.H.[Cai-Hong],
Guo, R.[Ruomi],
Kang, Z.[Zhuang],
Wang, J.[Jin],
Wu, J.[Juekun],
Wang, X.H.[Xiao-Hong],
Digital breast tomosynthesis improves diagnostic accuracy of breast
microcalcifications,
IJIST(31), No. 2, 2021, pp. 555-561.
DOI Link
2105
breast imaging, breast imaging report and data system,
diagnosis, digital breast tomosynthesis, microcalcification
BibRef
Aminzadeh, A.,
Arhatari, B.D.,
Maksimenko, A.,
Hall, C.J.,
Hausermann, D.,
Peele, A.G.,
Fox, J.,
Kumar, B.,
Prodanovic, Z.,
Dimmock, M.,
Lockie, D.,
Pavlov, K.M.,
Nesterets, Y.I.,
Thompson, D.,
Mayo, S.C.,
Paganin, D.M.,
Taba, S.T.,
Lewis, S.,
Brennan, P.C.,
Quiney, H.M.,
Gureyev, T.E.,
Imaging Breast Microcalcifications Using Dark-Field Signal in
Propagation-Based Phase-Contrast Tomography,
MedImg(41), No. 11, November 2022, pp. 2980-2990.
IEEE DOI
2211
Breast, X-ray imaging, Computed tomography, Australia, Imaging,
Breast cancer, Detectors, Breast cancer, dark-field imaging,
X-ray imaging
BibRef
Sun, H.T.[Hao-Tian],
Wu, S.[Shandong],
Chen, X.J.[Xin-Jian],
Li, M.[Ming],
Kong, L.[Lingji],
Yang, X.D.[Xiao-Dong],
Meng, Y.[You],
Chen, S.[Shuangqing],
Zheng, J.[Jian],
SAH-NET: Structure-Aware Hierarchical Network for Clustered
Microcalcification Classification in Digital Breast Tomosynthesis,
Cyber(54), No. 4, April 2024, pp. 2345-2357.
IEEE DOI Code:
WWW Link.
2403
Feature extraction, Convolution, Cancer, Transformers,
Medical diagnostic imaging, Image resolution, Breast,
microcalcification (MC)
BibRef
Wang, K.[Kaier],
Hill, M.[Melissa],
Knowles-Barley, S.[Seymour],
Tikhonov, A.[Aristarkh],
Litchfield, L.[Lester],
Bare, J.C.[James Christopher],
Improving Segmentation of Breast Arterial Calcifications from Digital
Mammography: Good Annotation is All You Need,
ACCVWS22(134-150).
Springer DOI
2307
BibRef
Wang, K.,
Khan, N.,
Highnam, R.,
Automated Segmentation of Breast Arterial Calcifications from Digital
Mammography,
IVCNZ19(1-6)
IEEE DOI
2004
blood vessels, diagnostic radiography, diseases,
feature extraction, image classification, image filtering,
deep learning
BibRef
Zhang, F.[Fandong],
Luo, L.[Ling],
Sun, X.W.[Xin-Wei],
Zhou, Z.[Zhen],
Li, X.L.[Xiu-Li],
Yu, Y.Z.[Yi-Zhou],
Wang, Y.Z.[Yi-Zhou],
Cascaded Generative and Discriminative Learning for Microcalcification
Detection in Breast Mammograms,
CVPR19(12570-12578).
IEEE DOI
2002
BibRef
Wang, J.,
Yang, Y.,
A Hierarchical Learning Approach for Detection of Clustered
Microcalcifications in Mammograms,
ICIP19(804-808)
IEEE DOI
1910
Computer-aided detection (CADe),
clustered microcalcifications (MCs),
fully-convolutional neural network
BibRef
Savelli, B.[Benedetta],
Marrocco, C.[Claudio],
Bria, A.[Alessandro],
Molinara, M.[Mario],
Tortorella, F.[Francesco],
Combining Convolutional Neural Networks for Multi-context
Microcalcification Detection in Mammograms,
CAIPWS19(36-44).
Springer DOI
1909
BibRef
Wang, J.,
Fu, Z.,
Sadeghradehyazdi, N.,
Kipnis, J.,
Acton, S.T.,
Nonlinear Shape Regression for Filtering Segmentation Results from
Calcium Imaging,
ICIP18(738-742)
IEEE DOI
1809
Shape, Neurons, Image segmentation, Calcium, Imaging, Manifolds,
Splines (mathematics), Calcium imaging, shape analysis,
cell segmentation
BibRef
Khalaf, A.F.[Aya F.],
Yassine, I.A.[Inas A.],
Novel features for microcalcification detection in digital mammogram
images based on wavelet and statistical analysis,
ICIP15(1825-1829)
IEEE DOI
1512
Computer Aided Diagnosis
BibRef
Mustra, M.[Mario],
Grgic, M.[Mislav],
Detection of areas containing microcalcifications in digital
mammograms,
WSSIP14(51-54)
1406
Biomedical imaging
BibRef
Diaz-Huerta, C.C.[Claudia C.],
Felipe-Riverón, E.M.[Edgardo M.],
Montaño-Zetina, L.M.[Luis M.],
Evaluation and Selection of Morphological Procedures for Automatic
Detection of Micro-calcifications in Mammography Images,
CIARP12(575-582).
Springer DOI
1209
BibRef
Chatterjee, S.,
Ray, A.K.,
Karim, R.,
Biswas, A.,
Detection of Micro-calcification to Characterize Malignant Breast
Lesion,
NCVPRIPG11(251-254).
IEEE DOI
1205
BibRef
Ma, Y.M.[Yi-Ming],
Tay, P.C.[Peter C.],
Adams, R.D.[Robert D.],
Zhang, J.Z.[James Z.],
A novel shape feature to classify microcalcifications,
ICIP10(2265-2268).
IEEE DOI
1009
BibRef
Torrent, A.[Albert],
Oliver, A.[Arnau],
Llado, X.[Xavier],
Marti, R.[Robert],
Freixenet, J.[Jordi],
A supervised micro-calcification detection approach in digitised
mammograms,
ICIP10(4345-4348).
IEEE DOI
1009
See also Segmenting extended structures in radio astronomical images by filtering bright compact sources and using wavelets decomposition.
BibRef
Tay, P.C.[Peter C.],
Ma, Y.M.[Yi-Ming],
A novel microcalcification shape metric to classify regions of
interests,
Southwest10(201-204).
IEEE DOI
1005
BibRef
Jing, H.[Hao],
Yang, Y.Y.[Yong-Yi],
Regularized adaptive classification based on image retrieval for
clustered microcalcifications,
ICIP12(1169-1172).
IEEE DOI
1302
BibRef
Earlier:
Case-Adaptive Classification Based on Image Retrieval for
Computer-Aided Diagnosis,
ICIP10(4333-4336).
IEEE DOI
1009
BibRef
And:
Image retrieval for computer-aided diagnosis of breast cancer,
Southwest10(9-12).
IEEE DOI
1005
BibRef
Earlier:
Spatial distribution modeling for detection of clustered
microcalcifications,
ICIP09(657-660).
IEEE DOI
0911
BibRef
Siong, T.S.[Ting Shyue],
Isa, N.A.M.[Nor Ashidi Mat],
Nordin, Z.M.[Zailani Mohammed],
Ngah, U.K.[Umi Kalthum],
The Determination of the Number of Suspicious Clustered Micro
Calcifications on ROI of Mammogram Images,
IVIC09(232-242).
Springer DOI
0911
BibRef
Chang, T.T.[Tian-Tian],
Feng, J.[Jun],
Liu, H.W.[Hong-Wei],
Ip, H.H.S.[Horace H. S.],
Clustered Microcalcification detection based on a Multiple Kernel
Support Vector Machine with Grouped Features (GF-SVM),
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wu, Z.Q.,
Jiang, J.,
Peng, Y.H.,
Effective features based on normal linear structures for detecting
microcalcifications in mammograms,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Veni, G.,
Regentova, E.E.,
Zhang, L.,
Detection of Clustered Microcalcifications with SUSAN Edge Detector,
Adaptive Contrast Thresholding and Spatial Filters,
ICIAR08(xx-yy).
Springer DOI
0806
See also Susan: A New Approach to Low-Level Image-Processing.
BibRef
Hernández-Cisneros, R.R.[Rolando R.],
Terashima-Marín, H.[Hugo],
Conant-Pablos, S.E.[Santiago E.],
Comparison of Class Separability, Forward Sequential Search and Genetic
Algorithms for Feature Selection in the Classification of Individual
and Clustered Microcalcifications in Digital Mammograms,
ICIAR07(911-922).
Springer DOI
0708
BibRef
Oporto-Díaz, S.[Samuel],
Hernández-Cisneros, R.R.[Rolando R.],
Terashima-Marín, H.[Hugo],
Detection of Microcalcification Clusters in Mammograms Using a
Difference of Optimized Gaussian Filters,
ICIAR05(998-1005).
Springer DOI
0509
BibRef
Das, A.[Arpita],
Bhattacharya, M.[Mahua],
GA Based Neuro Fuzzy Techniques for Breast Cancer Identification,
IMVIP08(136-141).
IEEE DOI
0809
BibRef
Earlier: A2, A1:
Fuzzy Logic Based Segmentation of Microcalcification in Breast Using
Digital Mammograms Considering Multiresolution,
IMVIP07(98-105).
IEEE DOI
0709
BibRef
Vitulano, S.[Sergio],
Casanova, A.[Andrea],
Savona, V.[Valentina],
The Spiral Method Applied to the Study of the Microcalcifications in
Mammograms,
CIAP05(915-921).
Springer DOI
0509
BibRef
Catanzariti, E.,
Ciminello, M.,
Prevete, R.,
Computer aided detection of clustered microcalcifications in digitized
mammograms using Gabor functions,
CIAP03(266-270).
IEEE DOI
0310
BibRef
Gulsrud, T.O.[Thor Ole],
Husøy, J.H.[John Håkon],
Detection of clustered microcalcifications in compressed mammograms,
SCIA01(P-W3A).
0206
BibRef
Earlier:
Optimal Filter for Detection of Clustered Microcalcifications,
ICPR00(Vol I: 508-511).
IEEE DOI
0009
BibRef
Quadrades, S.,
Sacristán, A.,
Automated Extraction of Microcalcifications BI-Rads Numbers in
Mammograms,
ICIP01(II: 289-292).
IEEE DOI
0108
BibRef
Mata, R.,
Nava, E.,
Sendra, F.,
Microcalcifications Detection Using Multiresolution Methods,
ICPR00(Vol IV: 344-347).
IEEE DOI
0009
BibRef
Rodriguez-Sánchez, R.,
García, J.A.,
Fdez-Valdivia, J.,
Fdez-Vidal, X.R.[Xose R.],
How to Define the Notion of Microcalcifications in Digitized Mammograms,
ICPR00(Vol I: 494-499).
IEEE DOI
0009
BibRef
Cordella, L.P.,
Tortorella, F.,
Vento, M.,
Combining Experts with Different Features for Classifying Clustered
Microcalcifications in Mammograms,
ICPR00(Vol IV: 324-327).
IEEE DOI
0009
BibRef
Bhangale, T.,
Desai, U.,
Sharma, U.,
An Unsupervised Scheme for Detection of Microcalcifications on
Mammograms,
ICIP00(Vol I: 184-187).
IEEE DOI
0008
BibRef
Caputo, B., and
Gigante, G.E.,
Digital Mammography: Gabor Filter for Detection of Microcalcifications,
VMV00(375-381).
PS File.
BibRef
0001
Gurcan, M.N.[M. Nafi],
Yardimci, Y.[Yasemin],
Cetin, A.E.[A. Enis],
Influence function based Gaussianity tests for detection of
microcalcifications in mammogram images,
ICIP99(III:407-411).
IEEE DOI
BibRef
9900
Dinten, J.M.[Jean Marc],
Darboux, M.,
Nicolas, E.,
Feature Extraction for a Precise Characterization of
Microcalcifications in Mammograms,
ICIP96(I: 351-354).
IEEE DOI
9610
BibRef
Lado, M.J.,
Mendez, A.J.,
Tahoces, P.G.,
Souto, M.,
Correa, J.,
Vidal, J.J.,
Comparison of real and computer-simulated clustered microcalcifications
on digital mammograms. ROC study,
ICIP96(I: 355-358).
IEEE DOI
9610
BibRef
Loew, M.H.,
Mia, R.S.,
Detection of microcalcifications in mammograms using eyetrack data,
ICIP95(III: 145-148).
IEEE DOI
9510
BibRef
Zhang, W.[Wei],
Doi, K.[Kunio],
Method and system for the detection of microcalcifications
in digital mammograms,
US_Patent5,491,627, Feb 13, 1996
WWW Link.
BibRef
9602
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Breast Mass Detection, Analysis .