22.1.8 Land Use, General Problems

Chapter Contents (Back)
Land Use. Clearly an overlaping subset of Land Cover.
See also Subpixel Target, Subpixel Land Use, Tiny Objects.
See also Sentinel-1, -2, -3 for Land Cover, Remote Sensing.

Bischof, H.[Horst], Schneider, W.[Werner], Pinz, A.[Axel],
Multispectral Classification of Landsat Images Using Neural Networks,
GeoRS(30), No. 3, 1992, pp. 482-490. BibRef 9200

Bischof, H.[Horst], Leonardis, A.[Ales],
Finding Optimal Neural Networks for Land Use Classification,
GeoRS(36), No. 1, 1998, pp. 337-341. BibRef 9800

Ji, C.Y.,
Land-Use Classification of Remotely Sensed Data Using Kohonen Self-Organizing Feature Map Neural Networks,
PhEngRS(66), No. 12, December 2000, pp. 1451-1460. Results are compared to those of the maximum-likelihood method and of the BP neural networks. 0101
BibRef

Yuan, H., van der Wiele, C., Khorram, S.,
An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery,
RS(1), No. 3, September 2009, pp. 243-265.
DOI Link 1203
BibRef

Manandhar, R., Odeh, I., Ancev, T.,
Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement,
RS(1), No. 3, September 2009, pp. 330-344.
DOI Link 1203
BibRef

Clark, M., Aide, T.,
Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data,
RS(3), No. 3, March 2011, pp. 601-620.
DOI Link 1203
BibRef

Martínez, S., Mollicone, D.,
From Land Cover to Land Use: A Methodology to Assess Land Use from Remote Sensing Data,
RS(4), No. 4, April 2012, pp. 1024-1045.
DOI Link 1202
BibRef

Kitada, K., Fukuyama, K.,
Land-Use and Land-Cover Mapping Using a Gradable Classification Method,
RS(4), No. 6, June 2012, pp. 1544-1558.
DOI Link 1208
BibRef

Jiao, L.M.[Li-Min], Liu, Y.L.[Yao-Lin], Li, H.L.[Hong-Liang],
Characterizing land-use classes in remote sensing imagery by shape metrics,
PandRS(72), No. 1, August 2012, pp. 46-55.
Elsevier DOI 1209
Land-use; Image segmentation; Landscape metrics; Shape metrics; Image classification BibRef

Jiao, L.M., Liu, Y.L.,
Analyzing the Shape Characteristics of Land Use Classes in Remote Sensing Imagery,
AnnalsPRS(I-7), No. 2012, pp. 135-140.
HTML Version. 1209
BibRef

Chen, Y.[Yanlei], Gong, P.[Peng],
Clustering based on eigenspace transformation: CBEST for efficient classification,
PandRS(83), No. 1, 2013, pp. 64-80.
Elsevier DOI 1308
Land cover/use mapping BibRef

Li, Y.Z.[Yi-Zhan], Zhu, X.F.[Xiu-Fang], Pan, Y.Z.[Yao-Zhong], Gu, J.Y.[Jian-Yu], Zhao, A.Z.[An-Zhou], Liu, X.F.[Xian-Feng],
A Comparison of Model-Assisted Estimators to Infer Land Cover/Use Class Area Using Satellite Imagery,
RS(6), No. 9, 2014, pp. 8904-8922.
DOI Link 1410
BibRef

Chen, S.Z.[Shi-Zhi], Tian, Y.L.[Ying-Li],
Pyramid of Spatial Relatons for Scene-Level Land Use Classification,
GeoRS(53), No. 4, April 2015, pp. 1947-1957.
IEEE DOI 1502
data structures BibRef

Pereira, D.R.[Danillo Roberto], Papa, J.P.[Joăo Paulo],
A new approach to contextual learning using interval arithmetic and its applications for land-use classification,
PRL(83, Part 2), No. 1, 2016, pp. 188-194.
Elsevier DOI 1609
Sliding Window BibRef

Fan, J., Chen, T., Lu, S.,
Unsupervised Feature Learning for Land-Use Scene Recognition,
GeoRS(55), No. 4, April 2017, pp. 2250-2261.
IEEE DOI 1704
geophysical techniques BibRef

Chen, Y.B.[Yang-Bo], Dou, P.[Peng], Yang, X.J.[Xiao-Jun],
Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Zhang, B.[Bin], Wang, C.P.[Cun-Peng], Shen, Y.L.[Yong-Lin], Liu, Y.Y.[Yue-Yan],
Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Qi, K.L.[Kun-Lun], Yang, C.[Chao], Hu, C.L.[Chu-Li], Shen, Y.L.[Yong-Lin], Shen, S.Y.[Sheng-Yu], Wu, H.Y.[Hua-Yi],
Rotation Invariance Regularization for Remote Sensing Image Scene Classification with Convolutional Neural Networks,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Wang, Q.[Qing], Sun, H.[Hua], Li, R.P.[Ruo-Pu], Wang, G.X.[Guang-Xing],
A new stochastic simulation algorithm for image-based classification: Feature-space indicator simulation,
PandRS(152), 2019, pp. 145-165.
Elsevier DOI 1905
Remote sensing, Image classification, Feature space, Geostatistics, Stochastic simulation, Land use and land cover BibRef

Ray, R.L.[Ram L.], Ibironke, A.[Ademola], Kommalapati, R.[Raghava], Fares, A.[Ali],
Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes Using Satellite Data across Texas, U.S.,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Hou, W.[Wan], Hou, X.Y.[Xi-Yong],
Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover Datasets along Coastal Areas of the Maritime Silk Road,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Talukdar, S.[Swapan], Singha, P.[Pankaj], Mahato, S.[Susanta], Shahfahad, Pal, S.[Swades], Liou, Y.A.[Yuei-An], Rahman, A.[Atiqur],
Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations: A Review,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Su, M.[Mo], Guo, R.Z.[Ren-Zhong], Chen, B.[Bin], Hong, W.Y.[Wu-Yang], Wang, J.Q.[Jia-Qi], Feng, Y.M.[Yi-Mei], Xu, B.[Bing],
Sampling Strategy for Detailed Urban Land Use Classification: A Systematic Analysis in Shenzhen,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Tian, Y.[Ye], Chen, C.[Chenru], Chen, X.Y.[Xin-Yi], Zhang, Q.Q.[Qian-Qian], Sun, R.Z.[Rui-Zhi],
Research on real-time analysis technology of urban land use based on support vector machine,
PRL(133), 2020, pp. 320-326.
Elsevier DOI 2005
Support vector machine, Data processing, Data analysis, Web mining, Text analysis BibRef

Sun, J.[Jing], Wang, H.[Hong], Song, Z.L.[Zheng-Lin], Lu, J.B.[Jin-Bo], Meng, P.Y.[Peng-Yu], Qin, S.H.[Shu-Hong],
Mapping Essential Urban Land Use Categories in Nanjing by Integrating Multi-Source Big Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Chang, S.[Shouzhi], Wang, Z.M.[Zong-Ming], Mao, D.H.[De-Hua], Guan, K.[Kehan], Jia, M.M.[Ming-Ming], Chen, C.[Chaoqun],
Mapping the Essential Urban Land Use in Changchun by Applying Random Forest and Multi-Source Geospatial Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Qian, Z.[Zhen], Liu, X.[Xintao], Tao, F.[Fei], Zhou, T.[Tong],
Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Vali, A.[Ava], Comai, S.[Sara], Matteucci, M.[Matteo],
Deep Learning for Land Use and Land Cover Classification based on Hyperspectral and Multispectral Earth Observation Data: A Review,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Müller, I.[Inken], Taubenböck, H.[Hannes], Kuffer, M.[Monika], Wurm, M.[Michael],
Misperceptions of Predominant Slum Locations? Spatial Analysis of Slum Locations in Terms of Topography Based on Earth Observation Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Anugraha, A.S.[Adindha Surya], Chu, H.J.[Hone-Jay], Ali, M.Z.[Muhammad Zeeshan],
Social Sensing for Urban Land Use Identification,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Andrade, R.[Renato], Alves, A.[Ana], Bento, C.[Carlos],
POI Mining for Land Use Classification: A Case Study,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Tassi, A.[Andrea], Vizzari, M.[Marco],
Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
Land Use-Land Cover. BibRef

Rajendran, G.B.[Ganesh B.], Kumarasamy, U.M.[Uma M.], Zarro, C.[Chiara], Divakarachari, P.B.[Parameshachari B.], Ullo, S.L.[Silvia L.],
Land-Use and Land-Cover Classification Using a Human Group-Based Particle Swarm Optimization Algorithm with an LSTM Classifier on Hybrid Pre-Processing Remote-Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Smaczynski, M.[Maciej], Medynska-Gulij, B.[Beata], Halik, L.[Lukasz],
The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Huang, Z.[Zihao], Du, H.Q.[Hua-Qiang], Li, X.J.[Xue-Jian], Zhang, M.[Meng], Mao, F.J.[Fang-Jie], Zhu, D.[Di'en], He, S.B.[Shao-Bai], Liu, H.[Hua],
Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Li, X.T.[Xiao-Ting], Hu, T.Y.[Teng-Yun], Gong, P.[Peng], Du, S.H.[Shi-Hong], Chen, B.[Bin], Li, X.C.[Xue-Cao], Dai, Q.[Qi],
Mapping Essential Urban Land Use Categories in Beijing with a Fast Area of Interest (AOI)-Based Method,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Zhu, J.W.[Jia-Wei], Tao, C.[Chao], Lin, X.[Xin], Peng, J.[Jian], Huang, H.[Haozhe], Chen, L.[Li], Wang, Q.J.[Qiong-Jie],
A Multiple Subspaces-Based Model: Interpreting Urban Functional Regions with Big Geospatial Data,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Pan, T.T.[Ting-Ting], Zhang, Y.[Yu], Su, F.Z.[Fen-Zhen], Lyne, V.[Vincent], Cheng, F.[Fei], Xiao, H.[Han],
Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Shuangao, W.[Wang], Padmanaban, R.[Rajchandar], Mbanze, A.A.[Aires A.], Silva, J.M.N.[Joăo M. N.], Shamsudeen, M.[Mohamed], Cabral, P.[Pedro], Campos, F.S.[Felipe S.],
Using Satellite Image Fusion to Evaluate the Impact of Land Use Changes on Ecosystem Services and Their Economic Values,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Pinto, N.[Nuno], Antunes, A.P.[António P.], Roca, J.[Josep],
A Cellular Automata Model for Integrated Simulation of Land Use and Transport Interactions,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Czesak, B.[Barbara], Rózycka-Czas, R.[Renata], Salata, T.[Tomasz], Dixon-Gough, R.[Robert], Hernik, J.[Józef],
Determining the Intangible: Detecting Land Abandonment at Local Scale,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Bui, D.H.[Dang Hung], Mucsi, L.[László],
From Land Cover Map to Land Use Map: A Combined Pixel-Based and Object-Based Approach Using Multi-Temporal Landsat Data, a Random Forest Classifier, and Decision Rules,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Sun, Z.H.[Zhi-Hao], Jiao, H.Z.[Hong-Zan], Wu, H.[Hao], Peng, Z.H.[Zheng-Hong], Liu, L.B.[Ling-Bo],
Block2vec: An Approach for Identifying Urban Functional Regions by Integrating Sentence Embedding Model and Points of Interest,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef


Rawal, D., Chhabra, A., Pandya, M., Vyas, A.,
Land Use and Land Cover Mapping - A Case Study of Ahmedabad District,
ISPRS20(B3:189-193).
DOI Link 2012
BibRef

Bergado, J.R., Persello, C., Stein, A.,
Land Use Classification Using Deep Multitask Networks,
ISPRS20(B3:17-21).
DOI Link 2012
BibRef

Guliyeva, S.H.,
Land Cover-Land Use Monitoring for Agriculture Features Classification,
ISPRS20(B3:61-65).
DOI Link 2012
BibRef

Mohd Kamal, N.A., Razak, K.A., Rambat, S.,
Land Use/land Cover Assessment in a Seismically Active Region In Kundasang, Sabah,
GGT19(433-440).
DOI Link 1912
BibRef

Men, J., Fang, L., Liu, Y., Sun, Y.,
Land Use Classification Based On Multi-structure Convolution Neural Network Features Cascading,
PIA19(163-167).
DOI Link 1912
BibRef

Yang, C., Rottensteiner, F., Heipke, C.,
Towards Better Classification of Land Cover and Land Use Based On Convolutional Neural Networks,
Semantics3D19(139-146).
DOI Link 1912
BibRef

Jamali, A., Abdul Rahman, A.,
Evaluation of Advanced Data Mining Algorithms in Land Use/land Cover Mapping,
GGT19(283-289).
DOI Link 1912
BibRef

Nguyen, H.T.T., Doan, T.M., Radeloff, V.,
Applying Random Forest Classification to Map Land Use/land Cover Using Landsat 8 OLI,
Gi4DM18(363-367).
DOI Link 1805
BibRef

Mansor, S.B., Pormanafi, S., Mahmud, A.R.B., Pirasteh, S.,
Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms,
AnnalsPRS(I-2), No. 2012, pp. 229-234.
HTML Version. 1209
BibRef

Heremans, S.[Stien], Orshoven, J.V.[Jos Vand_],
Effect of the learning algorithm on the accuracy of sub-pixel land use classifications with multilayer perceptrons,
MultiTemp11(193-196).
IEEE DOI 1109
BibRef

Ma, S.[Shifa], He, J.H.[Jian-Hua], Liu, F.[Feng],
Land-use Spatial Optimization Model Based On Particle Swarm Optimization,
VCGVA09(xx-yy). 0910
Particle Swarm Optimization PSO, Land-Use Spatial Allocation, Spatial Modeling, GIS BibRef

Hefnawy, A.A.,
A High Accuracy Land Use/Cover Retrieval System,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Pan, C.H.[Chun-Hong], Wu, G.[Gang], Prinet, V.[Veronique], Yang, Q.[Qing], Ma, S.D.[Song-De],
A Band-Weighted Landuse Classification Method for Multispectral Images,
CVPR05(I: 96-102).
IEEE DOI 0507
BibRef

Mathieu, S., Berthod, M., Leymarie, P.,
Determination of proportions and entropy of land use mixing in pixels of a multispectral satellite image,
ICPR94(A:798-800).
IEEE DOI 9410
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Habitat Analysis .


Last update:Jun 14, 2021 at 09:20:36