20.7.3.9.4 Inspection -- Crack Detection Pavement, Road Surface, Asphalt, Concrete

Chapter Contents (Back)
Pavement Analysis. Crack Detection. Application, Inspection. Inspection, Defects. Defect Detection. Bridges, deformation, structural:
See also Deformation of Bridges, Monitor Bridges, Other Structures. Other things on the road
See also Obstacle Dectection, Objects on the Road.

Yamaguchi, T.[Tomoyuki], Hashimoto, S.[Shuji],
Fast crack detection method for large-size concrete surface images using percolation-based image processing,
MVA(21), No. 5, August 2010, pp. 797-809.
WWW Link. 1011
BibRef
Earlier:
Improved percolation-based method for crack detection in concrete surface images,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Fujita, Y.[Yusuke], Hamamoto, Y.[Yoshihiko],
A robust automatic crack detection method from noisy concrete surfaces,
MVA(22), No. 2, March 2011, pp. 245-254.
WWW Link. 1103
BibRef

Li, Q.Q.[Qing-Quan], Zou, Q.[Qin], Zhang, D.Q.[Da-Qiang], Mao, Q.Z.[Qing-Zhou],
FoSA: F* Seed-growing Approach for crack-line detection from pavement images,
IVC(29), No. 12, November 2011, pp. 861-872.
Elsevier DOI 1112
Line detection; Pavement crack; Seed-growing; Dynamic programming BibRef

Zou, Q.[Qin], Cao, Y.[Yu], Li, Q.Q.[Qing-Quan], Mao, Q.Z.[Qing-Zhou], Wang, S.[Song],
CrackTree: Automatic crack detection from pavement images,
PRL(33), No. 3, 1 February 2012, pp. 227-238.
Elsevier DOI 1201
Crack detection; Edge detection; Edge grouping; Tensor voting; Shadow removal BibRef

Oliveira, H., Correia, P.L.,
Automatic Road Crack Detection and Characterization,
ITS(14), No. 1, March 2013, pp. 155-168.
IEEE DOI 1303
BibRef

Guan, H.[Haiyan], Li, J., Yu, Y.T.[Yong-Tao], Chapman, M., Wang, H.Y.[Han-Yun], Wang, C.[Cheng], Zhai, R.F.[Rui-Fang],
Iterative Tensor Voting for Pavement Crack Extraction Using Mobile Laser Scanning Data,
GeoRS(53), No. 3, March 2015, pp. 1527-1537.
IEEE DOI 1412
crack detection
See also Automated Extraction of Urban Road Facilities Using Mobile Laser Scanning Data. BibRef

Hoult, N.A., Dutton, M., Hoag, A., Take, W.A.,
Measuring Crack Movement in Reinforced Concrete Using Digital Image Correlation: Overview and Application to Shear Slip Measurements,
PIEEE(104), No. 8, August 2016, pp. 1561-1574.
IEEE DOI 1608
Area measurement BibRef

Amhaz, R.[Rabih], Chambon, S.[Sylvie], Idier, J.[Jerome], Baltazart, V.[Vincent],
Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection,
ITS(17), No. 10, October 2016, pp. 2718-2729.
IEEE DOI 1610
BibRef
Earlier:
A new minimal path selection algorithm for automatic crack detection on pavement images,
ICIP14(788-792)
IEEE DOI 1502
Context Cost function BibRef

Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.,
Automatic Road Crack Detection Using Random Structured Forests,
ITS(17), No. 12, December 2016, pp. 3434-3445.
IEEE DOI 1612
Feature extraction BibRef

Zhang, D.[Dejin], Li, Q.Q.[Qing-Quan], Chen, Y.[Ying], Cao, M.[Min], He, L.[Li], Zhang, B.L.[Bai-Ling],
An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection,
IVC(57), No. 1, 2017, pp. 130-146.
Elsevier DOI 1702
Pavement crack detection BibRef

Lenglet, C.[Céline], Blanc, J.[Juliette], Dubroca, S.[Stéphane],
Smart road that warns its network manager when it begins cracking,
IET-ITS(11), No. 3, April 2017, pp. 152-157.
DOI Link 1705
BibRef

Zhang, Y., Chen, C., Wu, Q., Lu, Q., Zhang, S., Zhang, G., Yang, Y.,
A Kinect-Based Approach for 3D Pavement Surface Reconstruction and Cracking Recognition,
ITS(19), No. 12, December 2018, pp. 3935-3946.
IEEE DOI 1812
Surface cracks, Surface reconstruction, Sensors, Image reconstruction, BibRef

Feng, H.[Hui], Xu, G.S.[Guo-Sheng], Guo, Y.H.[Yan-Hui],
Multi-scale classification network for road crack detection,
IET-ITS(13), No. 2, February 2019, pp. 398-405.
DOI Link 1902
BibRef

Li, H., Song, D., Liu, Y., Li, B.,
Automatic Pavement Crack Detection by Multi-Scale Image Fusion,
ITS(20), No. 6, June 2019, pp. 2025-2036.
IEEE DOI 1906
Training data, Manuals, Feature extraction, Training, Clutter, Image edge detection, Fuses, Crack detection, robotic airport runway inspection BibRef

Kaddah, W.[Wissam], Elbouz, M.[Marwa], Ouerhani, Y.[Yousri], Baltazart, V.[Vincent], Alfalou, A.[Ayman],
Optimized minimal path selection (OMPS) method for automatic and unsupervised crack segmentation within two-dimensional pavement images,
VC(35), No. 9, September 2018, pp. 1293-1309.
Springer DOI 1908
BibRef

Fei, Y., Wang, K.C.P., Zhang, A., Chen, C., Li, J.Q., Liu, Y., Yang, G., Li, B.,
Pixel-Level Cracking Detection on 3D Asphalt Pavement Images Through Deep-Learning- Based CrackNet-V,
ITS(21), No. 1, January 2020, pp. 273-284.
IEEE DOI 2001
Surface cracks, Asphalt, Libraries, Feature extraction, Deep learning, Kernel, CrackNet, CrackNet-V, surface cracks BibRef

Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.,
Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection,
ITS(21), No. 4, April 2020, pp. 1525-1535.
IEEE DOI 2004
Feature extraction, Image edge detection, Deep learning, Boosting, Task analysis, Semantics, Wavelet transforms, hierarchical boosting BibRef

Kaddah, W.[Wissam], Elbouz, M.[Marwa], Ouerhani, Y.[Yousri], Alfalou, A.[Ayman], Desthieux, M.[Marc],
Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images,
VC(36), No. 7, July 2020, pp. 1369-1384.
Springer DOI 2005
BibRef

Xiang, X.Z.[Xue-Zhi], Zhang, Y.Q.[Yu-Qi], El Saddik, A.[Abdulmotaleb],
Pavement crack detection network based on pyramid structure and attention mechanism,
IET-IPR(14), No. 8, 19 June 2020, pp. 1580-1586.
DOI Link 2005
BibRef

Debroux, N.[Noémie], Le Guyader, C.[Carole], Vese, L.A.[Luminita A.],
A Nonlocal Laplacian-Based Model for Bituminous Surfacing Crack Recovery and its MPI Implementation,
JMIV(62), No. 6-7, July 2020, pp. 1007-1033.
Springer DOI 2007
BibRef

Abdellatif, M.[Mohamed], Peel, H.[Harriet], Cohn, A.G.[Anthony G.], Fuentes, R.[Raul],
Pavement Crack Detection from Hyperspectral Images Using A Novel Asphalt Crack Index,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Yu, Y.[Yang], Rashidi, M.[Maria], Samali, B.[Bijan], Yousefi, A.M.[Amir M.], Wang, W.Q.[Wei-Qiang],
Multi-Image-Feature-Based Hierarchical Concrete Crack Identification Framework Using Optimized SVM Multi-Classifiers and D-S Fusion Algorithm for Bridge Structures,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Zhang, K., Zhang, Y., Cheng, H.D.,
CrackGAN: Pavement Crack Detection Using Partially Accurate Ground Truths Based on Generative Adversarial Learning,
ITS(22), No. 2, February 2021, pp. 1306-1319.
IEEE DOI 2102
Training, Feature extraction, Generative adversarial networks, Image segmentation, Generators, Semantics, partially accurate ground truths BibRef

Wei, Z.X.[Zi-Xian], SUN, T.[Tao], Wu, Y.H.[Yu-Hao], Zhou, L.Q.[Li-Qing], Ruan, X.L.[Xiao-Li],
Pavement crack detection using non-local theory and iterative sampling,
IET-IPR(16), No. 3, 2022, pp. 869-877.
DOI Link 2202
BibRef

Fan, L.[Lili], Zhao, H.W.[Hong-Wei], Li, Y.[Ying], Li, S.[Shen], Zhou, R.[Rui], Chu, W.B.[Wen-Bo],
RAO-UNet: a residual attention and octave UNet for road crack detection via balance loss,
IET-ITS(16), No. 3, 2022, pp. 332-343.
DOI Link 2202
BibRef

Sun, M.[Mingsi], Zhao, H.W.[Hong-Wei], Li, J.[Jiao],
Road crack detection network under noise based on feature pyramid structure with feature enhancement (road crack detection under noise),
IET-IPR(16), No. 3, 2022, pp. 809-822.
DOI Link 2202
BibRef

Guo, S.[Shili], Xu, Z.W.[Zhi-Wei], Li, X.Z.[Xiu-Zhong], Zhu, P.M.[Pei-Min],
Detection and Characterization of Cracks in Highway Pavement with the Amplitude Variation of GPR Diffracted Waves: Insights from Forward Modeling and Field Data,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhou, Q.[Qiang], Qu, Z.[Zhong], Ju, F.R.[Fang-Rong],
A multi-scale learning method with dilated convolutional network for concrete surface cracks detection,
IET-IPR(16), No. 5, 2022, pp. 1389-1402.
DOI Link 2203
BibRef

Yu, Y.T.[Yong-Tao], Guan, H.Y.[Hai-Yan], Li, D.[Dilong], Zhang, Y.J.[Yong-Jun], Jin, S.H.[Sheng-Hua], Yu, C.H.[Chang-Hui],
CCapFPN: A Context-Augmented Capsule Feature Pyramid Network for Pavement Crack Detection,
ITS(23), No. 4, April 2022, pp. 3324-3335.
IEEE DOI 2204
Feature extraction, Deep learning, Image edge detection, Task analysis, Monitoring, Neurons, Fuses, Crack detection, deep learning BibRef

Yuan, G.[Genji], Li, J.B.[Jian-Bo], Meng, X.L.[Xiang-Long], Li, Y.[Yinong],
CurSeg: A pavement crack detector based on a deep hierarchical feature learning segmentation framework,
IET-ITS(16), No. 6, 2022, pp. 782-799.
DOI Link 2205
BibRef

Park, M.J.[Min Jae], Kim, J.[Jihyung], Jeong, S.[Sanggi], Jang, A.[Arum], Bae, J.[Jaehoon], Ju, Y.K.[Young K.],
Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Schladitz, K.[Katja],
Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images,
PR(129), 2022, pp. 108747.
Elsevier DOI 2206
Computed tomography, Fractional Brownian surface, 3d segmentation, Crack detection, Machine learning, Deep learning BibRef

Ji, K.[Kun], Zhang, Z.H.[Zhen-Hai], Yu, J.L.[Jia-Le], Dang, J.W.[Jian-Wu],
A deep learning-based method for pixel-level crack detection on concrete bridges,
IET-IPR(16), No. 10, 2022, pp. 2609-2622.
DOI Link 2207
BibRef

Zhou, Q.[Qiang], Qu, Z.[Zhong], Cao, C.[Chong],
Mixed pooling and richer attention feature fusion for crack detection,
PRL(145), 2021, pp. 96-102.
Elsevier DOI 2104
Crack detection, Mixed pooling, Spatial attention, Channel-wise attention BibRef

Qu, Z.[Zhong], Chen, W.[Wen], Wang, S.Y.[Shi-Yan], Yi, T.M.[Tu-Ming], Liu, L.[Ling],
A Crack Detection Algorithm for Concrete Pavement Based on Attention Mechanism and Multi-Features Fusion,
ITS(23), No. 8, August 2022, pp. 11710-11719.
IEEE DOI 2208
Feature extraction, Semantics, Decoding, Encoding, Intelligent transportation systems, Detection algorithms, multi-features fusion BibRef

Zhang, Y.[Yi], Fan, J.F.[Jun-Fu], Zhang, M.Z.[Meng-Zhen], Shi, Z.W.[Zong-Wen], Liu, R.F.[Ru-Fei], Guo, B.[Bing],
A Recurrent Adaptive Network: Balanced Learning for Road Crack Segmentation with High-Resolution Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Feng, H.F.[Hui-Fang], Li, W.[Wen], Luo, Z.P.[Zhi-Peng], Chen, Y.P.[Yi-Ping], Fatholahi, S.N.[Sarah Narges], Cheng, M.[Ming], Wang, C.[Cheng], Junior, J.M.[José Marcato], Li, J.[Jonathan],
GCN-Based Pavement Crack Detection Using Mobile LiDAR Point Clouds,
ITS(23), No. 8, August 2022, pp. 11052-11061.
IEEE DOI 2208
Roads, Feature extraction, Learning systems, Laser radar, Inspection, Shape, Pavement crack detection, MLS point clouds, semi-supervised, GCN BibRef

Feng, H.F.[Hui-Fang], Li, W.[Wen], Ma, L.F.[Ling-Fei], Chen, Y.P.[Yi-Ping], Guan, H.Y.[Hai-Yan], Yu, Y.T.[Yong-Tao], Junior, J.M.[José Marcato], Li, J.[Jonathan],
Crack-U2Net: Multiscale Feature Learning Network for Pavement Crack Detection from Large-Scale MLS Point Clouds,
ITS(25), No. 11, November 2024, pp. 17952-17964.
IEEE DOI 2411
Feature extraction, Point cloud compression, Accuracy, Roads, Training data, Deep learning, Representation learning, data augmentation BibRef

Zhu, W.X.[Wen-Xuan], Tan, W.K.[Wei-Kan], Ma, L.F.[Ling-Fei], Zhang, D.D.[De-Dong], Li, J.[Jonathan], Chapman, M.A.[Michael A.],
A Capsnets Approach to Pavement Crack Detection Using Mobile Laser Scannning Point Clouds,
ISPRS21(B1-2021: 39-44).
DOI Link 2201
BibRef

Qu, Z.[Zhong], Wang, C.Y.[Cai-Yun], Wang, S.Y.[Shi-Yan], Ju, F.R.[Fang-Rong],
A Method of Hierarchical Feature Fusion and Connected Attention Architecture for Pavement Crack Detection,
ITS(23), No. 9, September 2022, pp. 16038-16047.
IEEE DOI 2209
Convolution, Feature extraction, Kernel, Roads, Deep learning, Image edge detection, dilated convolution BibRef

Zhang, Y.J.[Yu-Jia], Wu, J.X.[Jun-Xian], Li, Q.Z.[Qian-Zhong], Zhao, X.G.[Xiao-Guang], Tan, M.[Min],
Beyond Crack: Fine-Grained Pavement Defect Segmentation Using Three-Stream Neural Networks,
ITS(23), No. 9, September 2022, pp. 14820-14832.
IEEE DOI 2209
Image segmentation, Task analysis, Shape, Inspection, Roads, Lighting, Maintenance engineering, Fine-grained defect segmentation, pavement inspection BibRef

Liao, J.H.[Jiang-Hai], Yue, Y.H.[Yuan-Hao], Zhang, D.[Dejin], Tu, W.[Wei], Cao, R.[Rui], Zou, Q.[Qin], Li, Q.Q.[Qing-Quan],
Automatic Tunnel Crack Inspection Using an Efficient Mobile Imaging Module and a Lightweight CNN,
ITS(23), No. 9, September 2022, pp. 15190-15203.
IEEE DOI 2209
Inspection, Cameras, Imaging, Charge coupled devices, Sensors, Feature extraction, Surface emitting lasers, Tunnel inspection, spatial constraint BibRef

Liu, C.Q.[Chuan-Qi], Zhu, C.G.[Cheng-Guang], Xia, X.[Xuan], Zhao, J.K.[Jian-Kang], Long, H.H.[Hai-Hui],
FFEDN: Feature Fusion Encoder Decoder Network for Crack Detection,
ITS(23), No. 9, September 2022, pp. 15546-15557.
IEEE DOI 2209
Feature extraction, Decoding, Shape, Semantics, Interference, Task analysis, Image edge detection, Crack detection, shape semantic prior BibRef

Sun, X.Z.[Xin-Zi], Xie, Y.C.[Yuan-Chang], Jiang, L.M.[Li-Ming], Cao, Y.[Yu], Liu, B.[Benyuan],
DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation,
ITS(23), No. 10, October 2022, pp. 18392-18403.
IEEE DOI 2210
Image segmentation, Convolution, Semantics, Roads, Decoding, Feature extraction, Pavement crack segmentation, multi-scale attention BibRef

Zhou, Q.[Qiang], Qu, Z.[Zhong], Wang, S.Y.[Shi-Yan], Bao, K.H.[Kang-Hua],
A Method of Potentially Promising Network for Crack Detection With Enhanced Convolution and Dynamic Feature Fusion,
ITS(23), No. 10, October 2022, pp. 18736-18745.
IEEE DOI 2210
Convolution, Feature extraction, Strips, Kernel, Task analysis, Deep learning, Surface treatment, Crack detection, dynamic feature fusion BibRef

Fang, J.[Jie], Yang, C.[Chen], Shi, Y.[Yuetian], Wang, N.[Nan], Zhao, Y.[Yang],
External Attention Based TransUNet and Label Expansion Strategy for Crack Detection,
ITS(23), No. 10, October 2022, pp. 19054-19063.
IEEE DOI 2210
Feature extraction, Transformers, Roads, Mathematical models, Deep learning, Convolution, Semantics, Crack detection, TransUNet, label expansion BibRef

Sekar, A.[Aravindkumar], Perumal, V.[Varalakshmi],
CFC-GAN: Forecasting Road Surface Crack Using Forecasted Crack Generative Adversarial Network,
ITS(23), No. 11, November 2022, pp. 21378-21391.
IEEE DOI 2212
Roads, Generative adversarial networks, Predictive models, Faces, Surface cracks, Forecasting, Aging, road crack forecasting BibRef

Han, C.J.[Cheng-Jia], Ma, T.[Tao], Huyan, J.[Ju], Huang, X.M.[Xiao-Ming], Zhang, Y.N.[Yan-Ning],
CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network,
ITS(23), No. 11, November 2022, pp. 22135-22144.
IEEE DOI 2212
Image segmentation, Convolution, Convolutional neural networks, Roads, Feature extraction, Task analysis, Neural networks, semantic segmentation BibRef

Liu, F.Y.[Fang-Yu], Liu, J.[Jian], Wang, L.[Linbing],
Asphalt Pavement Crack Detection Based on Convolutional Neural Network and Infrared Thermography,
ITS(23), No. 11, November 2022, pp. 22145-22155.
IEEE DOI 2212
Computational modeling, Image segmentation, Complexity theory, Cameras, Measurement, Convolutional neural networks, Asphalt, asphalt pavement BibRef

Hou, Y.[Yue], Liu, S.[Shuo], Cao, D.D.[Dan-Dan], Peng, B.[Bo], Liu, Z.[Zhuo], Sun, W.J.[Wen-Juan], Chen, N.[Ning],
A Deep Learning Method for Pavement Crack Identification Based on Limited Field Images,
ITS(23), No. 11, November 2022, pp. 22156-22165.
IEEE DOI 2212
Convolutional neural networks, Generative adversarial networks, Image processing, Data models, Training, Image edge detection, pavement BibRef

Ma, D.[Duo], Fang, H.Y.[Hong-Yuan], Wang, N.[Niannian], Zhang, C.[Chao], Dong, J.X.[Jia-Xiu], Hu, H.[Haobang],
Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF,
ITS(23), No. 11, November 2022, pp. 22166-22178.
IEEE DOI 2212
Autonomous aerial vehicles, Graphics processing units, Generative adversarial networks, Roads, Real-time systems, crack tracking and counting BibRef

Yao, H.[Hui], Liu, Y.[Yanhao], Li, X.[Xin], You, Z.[Zhanping], Feng, Y.[Yu], Lu, W.W.[Wei-Wei],
A Detection Method for Pavement Cracks Combining Object Detection and Attention Mechanism,
ITS(23), No. 11, November 2022, pp. 22179-22189.
IEEE DOI 2212
Feature extraction, Object detection, Neural networks, Roads, Computational modeling, Image segmentation, attention mechanism BibRef

Liu, Z.[Zhen], Gu, X.Y.[Xing-Yu], Yang, H.[Hailu], Wang, L.[Lutai], Chen, Y.[Yihan], Wang, D.Y.[Dan-Yu],
Novel YOLOv3 Model With Structure and Hyperparameter Optimization for Detection of Pavement Concealed Cracks in GPR Images,
ITS(23), No. 11, November 2022, pp. 22258-22268.
IEEE DOI 2212
Roads, Feature extraction, Training, Optimization, Bayes methods, Antenna arrays, Ground penetrating radar, concealed cracks, Bayesian optimization BibRef

del Río-Barral, P.[Pablo], Soilán, M.[Mario], González-Collazo, S.M.[Silvia María], Arias, P.[Pedro],
Pavement Crack Detection and Clustering via Region-Growing Algorithm from 3D MLS Point Clouds,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Shokri, P.[Parnia], Shahbazi, M.[Mozhdeh], Nielsen, J.[John],
Semantic Segmentation and 3D Reconstruction of Concrete Cracks,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Hu, Q.F.[Qing-Feng], Wang, P.[Peng], Li, S.M.[Shi-Ming], Liu, W.K.[Wen-Kai], Li, Y.F.[Yi-Fan], Lu, W.Q.[Wei-Qiang], Kou, Y.C.[Ying-Chao], Wei, F.P.[Fu-Peng], He, P.P.[Pei-Pei], Yu, A.[Anzhu],
Research on Intelligent Crack Detection in a Deep-Cut Canal Slope in the Chinese South-North Water Transfer Project,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Guo, J.M.[Jing-Ming], Markoni, H.[Herleeyandi],
Efficient and Adaptable Patch-Based Crack Detection,
ITS(23), No. 11, November 2022, pp. 21885-21896.
IEEE DOI 2212
Decoding, Feature extraction, Transformers, Roads, Detectors, Convolution, Inspection, Patch-based processing, CNN, Linformer, demanded controller BibRef

König, J.[Jacob], Jenkins, M.D.[Mark David], Mannion, M.[Mike], Barrie, P.[Peter], Morison, G.[Gordon],
Weakly-Supervised Surface Crack Segmentation by Generating Pseudo-Labels Using Localization With a Classifier and Thresholding,
ITS(23), No. 12, December 2022, pp. 24083-24094.
IEEE DOI 2212
Image segmentation, Surface cracks, Location awareness, Training, Surface morphology, Standards, Convolutional neural networks, neural networks BibRef

Tian, Y.L.[Yao-Lin], Wan, X.[Xue], Wu, A.[Aodi], Zhao, G.Y.[Guang-Yuan],
Scene Aware Semantic Crack Segmentation from Oblique Drone Imagery,
ICPR22(585-592)
IEEE DOI 2212
Degradation, Image segmentation, Roads, Semantics, Buildings, Feature extraction, Computational efficiency BibRef

Li, K.[Kai], Wang, B.[Bo], Tian, Y.J.[Ying-Jie], Qi, Z.Q.[Zhi-Quan],
Fast and Accurate Road Crack Detection Based on Adaptive Cost-Sensitive Loss Function,
Cyber(53), No. 2, February 2023, pp. 1051-1062.
IEEE DOI 2301
Roads, Training, Costs, Image edge detection, Training data, Sampling methods, Adaptation models, Crack detection, weighted cross-entropy (WCE) BibRef

Liu, H.J.[Hui-Jun], Yang, C.H.[Chun-Hua], Li, A.[Ao], Huang, S.[Sheng], Feng, X.[Xin], Ruan, Z.M.[Zhi-Min], Ge, Y.X.[Yong-Xin],
Deep Domain Adaptation for Pavement Crack Detection,
ITS(24), No. 2, February 2023, pp. 1669-1681.
IEEE DOI 2302
Feature extraction, Annotations, Training, Support vector machines, Roads, Diseases, Neural networks, Pavement crack detection, convolutional neural network BibRef

Lin, C.M.[Chun-Mian], Tian, D.X.[Da-Xin], Duan, X.T.[Xu-Ting], Zhou, J.S.[Jian-Shan], Zhao, D.Z.[De-Zong], Cao, D.[Dongpu],
DA-RDD: Toward Domain Adaptive Road Damage Detection Across Different Countries,
ITS(24), No. 3, March 2023, pp. 3091-3103.
IEEE DOI 2303
Roads, Feature extraction, Training, Surface cracks, Convolutional neural networks, Annotations, Adaptation models, intelligent transportation systems BibRef

Deng, L.[Lu], Zhang, A.[An], Guo, J.J.[Jing-Jing], Liu, Y.[Yingkai],
An Integrated Method for Road Crack Segmentation and Surface Feature Quantification under Complex Backgrounds,
RS(15), No. 6, 2023, pp. 1530.
DOI Link 2304
BibRef

Zhang, C.[Chong], Chen, Y.[Yang], Tang, L.[Luliang], Chu, X.[Xu], Li, C.K.[Chao-Kui],
CTCD-Net: A Cross-Layer Transmission Network for Tiny Road Crack Detection,
RS(15), No. 8, 2023, pp. 2185.
DOI Link 2305
BibRef

Fan, L.[Lili], Cao, D.[Dongpu], Zeng, C.X.[Chang-Xian], Li, B.[Bai], Li, Y.J.[Yun-Jie], Wang, F.Y.[Fei-Yue],
Cognitive-Based Crack Detection for Road Maintenance: An Integrated System in Cyber-Physical-Social Systems,
SMCS(53), No. 6, June 2023, pp. 3485-3500.
IEEE DOI 2305
Roads, Maintenance engineering, Metaverse, Visualization, Real-time systems, Monitoring, Safety, Brain inspired, visual cognition BibRef

Cao, T.[Ting], Wang, Y.H.[Yu-Hang], Liu, S.[Sheng],
Pavement Crack Detection Based on 3D Edge Representation and Data Communication With Digital Twins,
ITS(24), No. 7, July 2023, pp. 7697-7706.
IEEE DOI 2307
Digital twins, Solid modeling, Image edge detection, Data models, Feature extraction, Data communication, Digital twins, fractional differential BibRef

Khan, M. .A.M.[Md. Al-Masrur], Harseno, R.W.[Regidestyoko Wasistha], Kee, S.H.[Seong-Hoon], Nahid, A.A.[Abdullah-Al],
Development of AI- and Robotics-Assisted Automated Pavement-Crack-Evaluation System,
RS(15), No. 14, 2023, pp. 3573.
DOI Link 2307
BibRef

Djenouri, Y.[Youcef], Belhadi, A.[Asma], Houssein, E.H.[Essam H.], Srivastava, G.[Gautam], Lin, J.C.W.[Jerry Chun-Wei],
Intelligent Graph Convolutional Neural Network for Road Crack Detection,
ITS(24), No. 8, August 2023, pp. 8475-8482.
IEEE DOI 2308
Roads, Feature extraction, Convolutional neural networks, Anomaly detection, Visualization, Training, Behavioral sciences, SIFT extractor BibRef

Gao, Z.[Zhi], Zhao, X.H.[Xu-Hui], Cao, M.[Min], Li, Z.[Ziyao], Liu, K.C.[Kang-Cheng], Chen, B.M.[Ben M.],
Synergizing Low Rank Representation and Deep Learning for Automatic Pavement Crack Detection,
ITS(24), No. 10, October 2023, pp. 10676-10690.
IEEE DOI 2310
BibRef

Liu, H.J.[Hua-Jun], Yang, J.[Jing], Miao, X.Y.[Xiang-Yu], Mertz, C.[Christoph], Kong, H.[Hui],
CrackFormer Network for Pavement Crack Segmentation,
ITS(24), No. 9, September 2023, pp. 9240-9252.
IEEE DOI 2310
BibRef

Xu, C.[Chuan], Zhang, Q.[Qi], Mei, L.[Liye], Chang, X.F.[Xiu-Feng], Ye, Z.Y.[Zhao-Yi], Wang, J.J.[Jun-Jian], Ye, L.[Lang], Yang, W.[Wei],
Cross-Attention-Guided Feature Alignment Network for Road Crack Detection,
IJGI(12), No. 9, 2023, pp. 382.
DOI Link 2310
BibRef

Yang, L.[Lei], Huang, H.Y.[Han-Yun], Kong, S.Y.[Shu-Yi], Liu, Y.H.[Yan-Hong], Yu, H.[Hongnian],
PAF-Net: A Progressive and Adaptive Fusion Network for Pavement Crack Segmentation,
ITS(24), No. 11, November 2023, pp. 12686-12700.
IEEE DOI 2311
BibRef

Tian, L.[Lin], Li, Q.Q.[Qing-Quan], He, L.[Li], Zhang, D.[Dejin],
Image-Range Stitching and Semantic-Based Crack Detection Methods for Tunnel Inspection Vehicles,
RS(15), No. 21, 2023, pp. 5158.
DOI Link 2311
BibRef

Zhang, T.J.[Tian-Jie], Wang, D.L.[Dong-Lei], Lu, Y.[Yang],
ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection,
ITS(24), No. 12, December 2023, pp. 15105-15112.
IEEE DOI 2312
BibRef

Li, K.[Kai], Yang, J.[Jie], Ma, S.W.[Si-Wei], Wang, B.[Bo], Wang, S.S.[Shan-She], Tian, Y.J.[Ying-Jie], Qi, Z.Q.[Zhi-Quan],
Rethinking Lightweight Convolutional Neural Networks for Efficient and High-Quality Pavement Crack Detection,
ITS(25), No. 1, January 2024, pp. 237-250.
IEEE DOI 2402
Performance evaluation, Deconvolution, Databases, Source coding, Roads, Decoding, Convolutional neural networks, Crack detection, feature up-sampling BibRef

Zhang, H.Y.[Hao-Yuan], Chen, N.[Ning], Li, M.[Mei], Mao, S.J.[Shan-Jun],
The Crack Diffusion Model: An Innovative Diffusion-Based Method for Pavement Crack Detection,
RS(16), No. 6, 2024, pp. 986.
DOI Link 2403
BibRef

Wang, Y.[Yong], He, Z.L.[Zheng-Long], Zeng, X.Q.[Xiang-Qiang], Zeng, J.C.[Jun-Cheng], Cen, Z.X.[Zong-Xi], Qiu, L.Y.[Lu-Yang], Xu, X.W.[Xiao-Wei], Zhuo, Q.X.[Qun-Xiong],
GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion,
RS(16), No. 10, 2024, pp. 1797.
DOI Link 2405
BibRef

Duan, Z.X.[Ze-Xian], Liu, J.H.[Jia-Hang], Ling, X.P.[Xin-Peng], Zhang, J.L.[Jin-Long], Liu, Z.H.[Zhi-Heng],
ERNet: A Rapid Road Crack Detection Method Using Low-Altitude UAV Remote Sensing Images,
RS(16), No. 10, 2024, pp. 1741.
DOI Link 2405
BibRef

Cheng, X.[Xu], He, T.[Tian], Shi, F.[Fan], Zhao, M.[Meng], Liu, X.[Xiufeng], Chen, S.Y.[Sheng-Yong],
Selective Feature Fusion and Irregular-Aware Network for Pavement Crack Detection,
ITS(25), No. 5, May 2024, pp. 3445-3456.
IEEE DOI 2405
Feature extraction, Image edge detection, Roads, Lighting, Fuses, Deep learning, Deep learning, selective feature fusion BibRef

Bai, S.[Suli], Yang, L.[Lei], Liu, Y.H.[Yan-Hong], Yu, H.[Hongnian],
DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection,
ITS(25), No. 6, June 2024, pp. 5981-5996.
IEEE DOI Code:
WWW Link. 2406
Feature extraction, Transformers, Image segmentation, Task analysis, Roads, Convolutional neural networks, Deep learning, multi-scale feature learning BibRef

Li, C.[Chong], Fan, Z.[Zhun], Chen, Y.[Ying], Lin, H.B.[Hui-Biao], Moretti, L.[Laura], Loprencipe, G.[Giuseppe], Sheng, W.H.[Wei-Hua], Wang, K.C.P.[Kelvin C. P.],
CrackCLF: Automatic Pavement Crack Detection Based on Closed-Loop Feedback,
ITS(25), No. 6, June 2024, pp. 5965-5980.
IEEE DOI 2406
Feature extraction, Neural networks, Image segmentation, Generative adversarial networks, Roads, Task analysis, Training, closed-loop feedback BibRef

Zheng, W.W.[Wen-Wen], Jiang, X.Y.[Xiao-Yan], Fang, Z.J.[Zhi-Jun], Gao, Y.B.[Yong-Bin],
TV-Net: A Structure-Level Feature Fusion Network Based on Tensor Voting for Road Crack Segmentation,
ITS(25), No. 6, June 2024, pp. 5743-5754.
IEEE DOI Code:
WWW Link. 2406
Tensors, Image segmentation, Roads, Feature extraction, Convolutional neural networks, Eigenvalues and eigenfunctions, U-Net BibRef

Zhang, X.B.[Xue-Bing], Pei, J.X.[Jun-Xuan], Sha, X.D.[Xian-Da], Feng, X.[Xuan], Hu, X.[Xin], Chen, C.L.[Chang-La], Song, Z.C.[Zheng-Chun],
Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme,
RS(16), No. 12, 2024, pp. 2095.
DOI Link 2406
BibRef

Lei, Q.[Qin], Zhong, J.[Jiang], Wang, C.[Chen],
Joint Optimization of Crack Segmentation With an Adaptive Dynamic Threshold Module,
ITS(25), No. 7, July 2024, pp. 6902-6916.
IEEE DOI 2407
Task analysis, Optimization, Instance segmentation, Semantic segmentation, Optimized production technology, joint optimization BibRef

Yuan, Q.[Qi], Shi, Y.F.[Yu-Feng], Li, M.Y.[Ming-Yue],
A Review of Computer Vision-Based Crack Detection Methods in Civil Infrastructure: Progress and Challenges,
RS(16), No. 16, 2024, pp. 2910.
DOI Link 2408
BibRef

Li, Z.[Zhe], Torbaghan, M.E.[Mehran Eskandari], Zhang, T.[Tuo], Qin, X.[Xia], Li, W.[Wenda], Li, Y.J.[Yong-Jian], Zhang, J.[Jiupeng],
An Automated 3D Crack Severity Assessment Using Surface Data for Improving Flexible Pavement Maintenance Strategies,
ITS(25), No. 9, September 2024, pp. 12490-12503.
IEEE DOI 2409
Surface cracks, Volume measurement, Surface morphology, Predictive models, crack volume BibRef

Sun, L.X.[Li-Xiang], Yang, Y.X.[Yi-Xin], Yang, Z.[Zaichun], Zhou, G.X.[Guo-Xiong], Li, L.J.[Liu-Jun],
DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes,
ITS(25), No. 9, September 2024, pp. 12682-12695.
IEEE DOI 2409
Feature extraction, Roads, Image segmentation, Data mining, Interference, Autonomous aerial vehicles, Training, Complex scenes, UAV remote sensing image BibRef

Zhang, H.[Hang], Zhang, A.A.[Allen A.], Dong, Z.[Zishuo], He, A.[Anzheng], Liu, Y.[Yang], Zhan, Y.[You], Wang, K.C.P.[Kelvin C. P.],
Robust Semantic Segmentation for Automatic Crack Detection Within Pavement Images Using Multi-Mixing of Global Context and Local Image Features,
ITS(25), No. 9, September 2024, pp. 11282-11303.
IEEE DOI 2409
Transformers, Feature extraction, Convolutional neural networks, Decoding, Training, Surface cracks, Semantic segmentation, graph network BibRef

Ma, N.[Nachuan], Fan, R.[Rui], Xie, L.H.[Li-Hua],
UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration,
ITS(25), No. 10, October 2024, pp. 13926-13936.
IEEE DOI 2410
Roads, Image restoration, Training, Anomaly detection, Task analysis, Semantics, Semantic segmentation, Semantic segmentation, unsupervised anomaly detection BibRef

Zhong, J.T.[Jing-Tao], Ma, Y.[Yuetan], Zhang, M.M.[Miao-Miao], Xiao, R.[Rui], Cheng, G.[Guantao], Huang, B.S.[Bao-Shan],
A Pavement Crack Translator for Data Augmentation and Pixel-Level Detection Based on Weakly Supervised Learning,
ITS(25), No. 10, October 2024, pp. 13350-13363.
IEEE DOI 2410
Generative adversarial networks, Image segmentation, Accuracy, Data augmentation, Image synthesis, Noise, Generators, pavement crack detection BibRef

Wang, X.[Xin], Mao, Z.Y.[Zhao-Yong], Liang, Z.W.[Zhi-Wei], Shen, J.[Junge],
Multi-Scale Semantic Map Distillation for Lightweight Pavement Crack Detection,
ITS(25), No. 10, October 2024, pp. 15081-15093.
IEEE DOI 2410
Feature extraction, Semantics, Knowledge engineering, Accuracy, Convolutional neural networks, Transportation, Training, pavement crack detection BibRef

Li, P.T.[Peng-Tao], Wang, M.[Meihua], Fan, Z.[Zhun], Huang, H.[Han], Zhu, G.[Guijie], Zhuang, J.[Jiafan],
OUR-Net: A Multi-Frequency Network With Octave Max Unpooling and Octave Convolution Residual Block for Pavement Crack Segmentation,
ITS(25), No. 10, October 2024, pp. 13833-13848.
IEEE DOI 2410
Feature extraction, Image segmentation, Convolution, Image edge detection, Decoding, Surface cracks, Redundancy, multi-spatial frequency features BibRef

Liu, C.Q.[Chuan-Qi], Zhao, J.K.[Jian-Kang], Zhu, C.G.[Cheng-Guang], Xia, X.[Xuan], Long, H.H.[Hai-Hui],
MECFNet: Reconstruct Sharp Image for UAV-Based Crack Detection,
ITS(25), No. 10, October 2024, pp. 15016-15028.
IEEE DOI 2410
Cameras, Image restoration, Task analysis, Transformers, Kernel, Image reconstruction, Feature extraction, Crack detection, cross-modal transformer BibRef

Cheng, H.Y.[Hao-Yuan], Zhang, B.[Bei], Zhong, Y.H.[Yan-Hui], Xu, S.J.[Sheng-Jie],
Quantitative Pixel-Level Segmentation and 3D Reconstruction of Concealed Cracks in Asphalt Pavements,
ITS(25), No. 11, November 2024, pp. 18136-18152.
IEEE DOI 2411
Ground penetrating radar, Asphalt, Accuracy, Image segmentation, Finite difference methods, Time-domain analysis, 3D reconstruction BibRef

Zhang, Y.[Yu], Zhang, L.[Lin],
Detection of Pavement Cracks by Deep Learning Models of Transformer and UNet,
ITS(25), No. 11, November 2024, pp. 15791-15808.
IEEE DOI 2411
Transformers, Image segmentation, Task analysis, Computational modeling, Convolutional neural networks, Accuracy, CNN BibRef

Shan, J.H.[Jin-Huan], Jiang, W.[Wei], Huang, Y.[Yue], Yuan, D.D.[Dong-Dong], Liu, Y.[Yaohan],
Unmanned Aerial Vehicle (UAV)-Based Pavement Image Stitching Without Occlusion, Crack Semantic Segmentation, and Quantification,
ITS(25), No. 11, November 2024, pp. 17038-17053.
IEEE DOI 2411
Accuracy, Semantic segmentation, Autonomous aerial vehicles, Roads, Inspection, Task analysis, Image stitching, Pavement distress, unmanned aerial vehicle (UAV) BibRef

Li, X.R.[Xin-Ran], Xu, X.Y.[Xiang-Yang], Yang, H.[Hao],
A Road Crack Detection Model Integrating GLMANet and EFPN,
ITS(25), No. 11, November 2024, pp. 18211-18223.
IEEE DOI 2411
Feature extraction, Roads, Convolution, Image edge detection, Semantics, Convolutional neural networks, Data mining, feature pyramid network BibRef

Ma, M.Y.[Ming-Yang], Yang, L.[Lei], Liu, Y.H.[Yan-Hong], Yu, H.N.[Hong-Nian],
A Transformer-Based Network With Feature Complementary Fusion for Crack Defect Detection,
ITS(25), No. 11, November 2024, pp. 16989-17006.
IEEE DOI 2411
Feature extraction, Transformers, Task analysis, Image coding, Encoding, Computational modeling, Convolutional neural networks, crack detection BibRef

Chen, Z.Z.[Zhuang-Zhuang], Lu, R.H.[Rong-Hao], Chen, J.[Jie], Song, H.B.H.[Hou-Bing Herbert], Li, J.Q.[Jian-Qiang],
Implicit Gradient-Modulated Semantic Data Augmentation for Deep Crack Recognition,
ITS(25), No. 11, November 2024, pp. 16084-16095.
IEEE DOI 2411
Semantics, Training, Data augmentation, Task analysis, Deep learning, Upper bound, Feature extraction, semantic data augmentation BibRef

Chen, C.J.[Chun-Jiang], Song, Y.Z.[Yong-Ze], Shemery, A.[Ammar], Hampson, K.[Keith], Dewan, A.[Ashraf], Zhong, Y.[Yun], Wu, P.[Peng],
Large Scale Pavement Crack Evaluation Through a Novel Spatial Machine Learning Approach Considering Geocomplexity,
ITS(25), No. 12, December 2024, pp. 21429-21441.
IEEE DOI 2412
Roads, Inspection, Numerical models, Maintenance, Data models, Australia, Visualization, Accuracy, Load modeling, Analytical models, laser scanning BibRef

Tao, H.J.[Huan-Jie],
Weakly-Supervised Pavement Surface Crack Segmentation Based on Dual Separation and Domain Generalization,
ITS(25), No. 12, December 2024, pp. 19729-19743.
IEEE DOI 2412
Image segmentation, Annotations, Training, Surface cracks, Manuals, Image reconstruction, Data models, image-level labels BibRef

Zhou, W.[Wei], Huang, H.[Hongpu], Zhang, H.C.[Han-Cheng], Wang, C.[Chen],
Teaching Segment-Anything-Model Domain-Specific Knowledge for Road Crack Segmentation From On-Board Cameras,
ITS(25), No. 12, December 2024, pp. 20588-20601.
IEEE DOI Code:
WWW Link. 2412
Roads, Image segmentation, Cameras, Training, Adaptation models, Computational modeling, Transfer learning, Inspection, on-board cameras BibRef

Zhao, S.G.[Shu-Guang], Yi, W.[Wen], Shi, J.J.[Jia-Ji], Jiang, Z.[Zhengru], Lu, X.C.[Xiao-Chen],
An Innovative Crack Detection Algorithm Based on Efficient Feature Fusion and Progressive Transfer Learning,
ITS(25), No. 12, December 2024, pp. 21469-21483.
IEEE DOI 2412
Feature extraction, Accuracy, Bridges, Transfer learning, Data models, Training, Computational modeling, Transformers, transfer learning (TL) BibRef

Li, H.T.[Hai-Tao], Peng, T.[Tao], Qiao, N.G.[Ning-Guo], Guan, Z.W.[Zhi-Wei], Feng, X.Y.[Xin-Yun], Guo, P.[Peng], Duan, T.T.[Ting-Ting], Gong, J.F.[Jin-Feng],
CrackTinyNet: A novel deep learning model specifically designed for superior performance in tiny road surface crack detection,
IET-ITS(18), No. 12, 2024, pp. 2693-2712.
DOI Link 2501
crack detection, object detection, road safety, road traffic BibRef

Tao, R.[Rui], Peng, R.[Rui], Jin, Y.[Yong], Gong, F.Y.[Fang-Yuan], Li, B.[Bo],
Automatic Detection of Asphalt Pavement Crack Width Based on Machine Vision,
ITS(26), No. 1, January 2025, pp. 484-496.
IEEE DOI 2501
Roads, Asphalt, Maintenance, Surface cracks, Noise, Diseases, Training, Convolutional neural networks, Complexity theory, road maintenance BibRef

Wang, Z.F.[Zheng-Fang], Zhu, H.L.[Hong-Liang], Yang, Y.J.[Yu-Jie], Jiang, H.[Haonan], Li, W.H.[Wen-Hao], Li, B.[Bingrui], Li, P.[Peng], Xu, L.[Lei], Sui, Q.[Qingmei], Wang, J.[Jing],
A Pavement Crack Registration and Change Identification Method Based on Unsupervised Deep Neural Network,
ITS(26), No. 1, January 2025, pp. 757-769.
IEEE DOI 2501
Feature extraction, Autonomous aerial vehicles, Image registration, Inspection, Convolutional neural networks, multi-temporal UAV images BibRef

Qu, Z.[Zhong], Wang, J.D.[Jian-Dong], Yin, X.H.[Xue-Hui],
A Directional Connectivity Feature Enhancement Network for Pavement Crack Detection,
ITS(26), No. 1, January 2025, pp. 1039-1054.
IEEE DOI 2501
Feature extraction, Convolution, Semantics, Accuracy, Noise, Topology, Background noise, Strips, Shape, Digital images, Crack detection, directional connectivity BibRef

Yang, L.[Lei], Ma, M.Y.[Ming-Yang], Wu, Z.[Zhenlong], Liu, Y.H.[Yan-Hong],
A Global-Local Fusion Model via Edge Enhancement and Transformer for Pavement Crack Defect Segmentation,
ITS(26), No. 2, February 2025, pp. 1964-1981.
IEEE DOI Code:
WWW Link. 2502
Image edge detection, Feature extraction, Defect detection, Transformers, Data mining, Accuracy, Gabor filters, Decoding. BibRef

Wang, J.[Jin], Zhang, T.[Tao], Li, H.[Hao], Xu, N.[Niuqi], Chen, Y.Y.[Yan-Yan],
Pixel-Level Assessment of Pavement Cracks With Light-Weight Convolution Network and Metric-Skeleton Measurement Using High-Resolution Images From Low-Cost Camera,
ITS(26), No. 2, February 2025, pp. 2503-2513.
IEEE DOI 2502
Roads, Length measurement, Maintenance, Image segmentation, Cameras, Convolution, Asphalt, Surface cracks, Skeleton, Manuals, metric-skeleton measurement BibRef

Hu, X.K.[Xiang-Kun], Li, H.[Hua], Feng, Y.X.[Yi-Xiong], Qian, S.R.[Song-Rong], Li, J.[Jian], Li, S.B.[Shao-Bo],
CCDFormer: A dual-backbone complex crack detection network with transformer,
PR(161), 2025, pp. 111251.
Elsevier DOI 2502
Concrete crack detection, Semantic segmentation, Transformer, Convolution neural network, UNet BibRef

Hu, X.[Xiao], Chen, Q.H.[Qi-Hao], Liu, X.[Xiuguo], Deng, G.[Gang], Chi, C.[Cheng], Wang, B.[Bin],
ANF-Net: A Refined Segmentation Network for Road Scenes with Multiple Noises and Various Morphologies of Cracks,
RS(17), No. 6, 2025, pp. 971.
DOI Link 2503
BibRef

Dong, R.[Ruchan], Xia, J.[Jinwei], Zhao, J.[Jin], Hong, L.[Lei],
CL-PSDD: Contrastive Learning for Adaptive Generalized Pavement Surface Distress Detection,
ITS(26), No. 4, April 2025, pp. 5211-5224.
IEEE DOI 2504
Contrastive learning, Roads, Feature extraction, YOLO, Unsupervised learning, Adaptation models, Surface cracks, object detection BibRef

Li, B.C.[Bing-Chao], Li, Z.[Zihao], Zong, J.P.[Jian-Ping], Wang, H.[Huaichao], Li, N.[Nansha], Li, H.F.[Hai-Feng],
A Novel Proactive Fault Tolerance Loss Function for Crack Segmentation,
ITS(26), No. 5, May 2025, pp. 6361-6378.
IEEE DOI 2505
Fault tolerant systems, Fault tolerance, Image segmentation, Training, Sensitivity, Roads, Adaptation models, loss function BibRef

Pascucci, N.[Nicole], Dominici, D.[Donatella], Habib, A.[Ayman],
LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance,
RS(17), No. 9, 2025, pp. 1543.
DOI Link 2505
BibRef

Chen, P.H.[Po-Hao], Hsieh, J.W.[Jun-Wei], Hsieh, Y.K.[Yi-Kuan], Chang, C.W.[Chuan-Wang], Huang, D.Y.[Deng-Yuan],
Cross-Scale Overlapping Patch-Based Attention Network for Road Crack Detection,
ITS(26), No. 6, June 2025, pp. 7587-7599.
IEEE DOI 2506
Feature extraction, Roads, Convolutional neural networks, Transformers, Accuracy, Surface cracks BibRef

Guo, X.[Xin], Tang, W.Z.[Wen-Zhong], Wang, H.R.[Hao-Ran], Wang, J.[Jiale], Wang, S.[Shuai], Qu, X.L.[Xiao-Lei], Lin, X.[Xun],
MorFormer: Morphology-Aware Transformer for Generalized Pavement Crack Segmentation,
ITS(26), No. 6, June 2025, pp. 8219-8232.
IEEE DOI 2506
Feature extraction, Image reconstruction, Morphology, Background noise, Transformers, Image segmentation, morphology prior BibRef

Tan, Q.[Qinzhong], Li, A.[Ao], Dong, L.[Le], Dong, W.S.[Wei-Sheng], Li, X.[Xin], Shi, G.M.[Guang-Ming],
CDS-Net: Contextual Difference Sensitivity Network for Pixel-Wise Road Crack Detection,
CirSysVideo(35), No. 6, June 2025, pp. 5223-5235.
IEEE DOI Code:
WWW Link. 2506
Roads, Image segmentation, Feature extraction, Accuracy, Transformers, Surface cracks, Shape, Sensitivity, Convolution, cross-entropy loss BibRef

Pang, J.B.[Jun-Biao], Xiong, B.C.[Bao-Cheng], Wu, J.Q.[Jia-Qi], Huang, Q.M.[Qing-Ming],
Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection,
ITS(26), No. 7, July 2025, pp. 9165-9174.
IEEE DOI Code:
WWW Link. 2507
Feature extraction, Semantics, Heating systems, Context modeling, Noise, Convolution, Asphalt, Semantic segmentation, YOLO, Training, spatial structure BibRef

Duan, L.J.[Li-Juan], Zeng, J.[Jun], Pang, J.B.[Jun-Biao], Wang, J.Z.[Jun-Zhe],
Pavement Crack Detection Using Multi-stage Structural Feature Extraction Model,
ICIP21(969-973)
IEEE DOI 2201
Training, Art, Roads, Maintenance engineering, Feature extraction, Complexity theory, crack detection, deep supervision, structural feature extraction BibRef

ALKannad, A.A.[Abdulrahman A.], Smadi, A.A.[Ahmad Al], Al-Makhlafi, M.[Moeen], Yang, S.Y.[Shu-Yuan], Feng, Z.X.[Zhi-Xi],
CrackVisionX: A Fine-Tuned Framework for Efficient Binary Concrete Crack Detection,
ITS(26), No. 7, July 2025, pp. 10353-10372.
IEEE DOI 2507
Computational modeling, Accuracy, Deep learning, Real-time systems, Bridges, Training, Computational efficiency, structural health monitoring BibRef


Jaziri, A.[Achref], Mundt, M.[Martin], Rodriguez, A.F.[Andres Fernandez], Ramesh, V.[Visvanathan],
Designing a Hybrid Neural System to Learn Real-world Crack Segmentation from Fractal-based Simulation,
WACV24(8621-8631)
IEEE DOI 2404
Symbiosis, Adaptation models, Fractals, Data models, Surface cracks, Task analysis, Applications, Image recognition and understanding BibRef

Nayyeri, F.[Fereshteh], Zhou, J.[Jun],
Multi-Resolution ResNet for Road and Bridge Crack Detection,
DICTA21(1-8)
IEEE DOI 2201
Training, Bridges, Image resolution, Computational modeling, Roads, Image edge detection, Digital images, crack detection, ResNet, crack dataset BibRef

Shahbazi, L.[Leila], Majidi, B.[Babak], Movaghar, A.[Ali],
Autonomous Road Pavement Inspection and Defect Analysis for Smart City Maintenance,
IPRIA21(1-5)
IEEE DOI 2201
Deep learning, Visualization, Asphalt, Smart cities, Roads, Inspection, Safety, Road pavement crack detection, smart city BibRef

Wu, X.Y.[Xuan-Yi], Ma, J.F.[Jian-Fei], Sun, Y.[Yu], Zhao, C.[Chenqiu], Basu, A.[Anup],
Multi-Scale Deep Pixel Distribution Learning for Concrete Crack Detection,
ICPR21(6577-6583)
IEEE DOI 2105
Deep learning, Learning systems, Image segmentation, Feature extraction, Surface cracks, concrete crack detection BibRef

Inoue, Y.[Yuki], Nagayoshi, H.[Hiroto],
Crack Detection as a Weakly-Supervised Problem: Towards Achieving Less Annotation-Intensive Crack Detectors,
ICPR21(65-72)
IEEE DOI 2105
Annotations, Roads, Semantics, Buildings, Brightness, Detectors, Inspection BibRef

Shokri, P., Shahbazi, M., Lichti, D., Nielsen, J.,
Vision-based Approaches for Quantifying Cracks In Concrete Structures,
ISPRS20(B2:1167-1174).
DOI Link 2012
BibRef

Niu, B., Wu, H., Meng, Y.,
Application of CEM Algorithm in the Field of Tunnel Crack Identification,
ICIVC20(232-236)
IEEE DOI 2009
Feature extraction, Gabor filters, Road transportation, Filtering algorithms, Image edge detection, Inspection, CEM BibRef

Benz, C., Debus, P., Ha, H.K., Rodehorst, V.,
Crack Segmentation on UAS-based Imagery using Transfer Learning,
IVCNZ19(1-6)
IEEE DOI 2004
Code, Crack Detection.
WWW Link. autonomous aerial vehicles, convolutional neural nets, crack detection, image resolution, image segmentation, UAS BibRef

Liebold, F., Maas, H.G., Heravi, A.A.,
Crack Width Measurement for Non-planar Surfaces By Triangle Mesh Analysis in Civil Engineering Material Testing,
Optical3D19(107-113).
DOI Link 1912
BibRef

Fakhri, S.A., Fakhri, S.A., Saadatseresht, M.,
Road Crack Detection Using Gaussian/prewitt Filter,
SMPR19(371-377).
DOI Link 1912
BibRef

König, J., Jenkins, M.D.[M. David], Barrie, P., Mannion, M., Morison, G.,
A Convolutional Neural Network for Pavement Surface Crack Segmentation Using Residual Connections and Attention Gating,
ICIP19(1460-1464)
IEEE DOI 1910
Semantic Segmentation, Attention, Residual Connections, U-Net, Surface Cracks BibRef

Liu, X.Z.[Xiang-Zeng], Ai, Y.F.[Yun-Feng], Scherer, S.[Sebastian],
Robust image-based crack detection in concrete structure using multi-scale enhancement and visual features,
ICIP17(2304-2308)
IEEE DOI 1803
Indexes, Crack detection, concrete structure, guided filter, image enhancement BibRef

Chaudhury, S., Nakano, G., Takada, J., Iketani, A.,
Spatial-Temporal Motion Field Analysis for Pixelwise Crack Detection on Concrete Surfaces,
WACV17(336-344)
IEEE DOI 1609
Bridges, Concrete, Labeling, Loading, Maintenance engineering, Safety, Surface cracks. BibRef

Vandoni, J., Le Hégarat-Mascle, S., Aldea, E.,
Crack detection based on a Marked Point Process model,
ICPR16(3933-3938)
IEEE DOI 1705
Adaptation models, Data models, Extremities, Image segmentation, Joining processes, Roads, Robustness BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Paint and Printing Quality, Print Analysis .


Last update:Jul 7, 2025 at 14:35:55