20.7.3.9.1 Anomalies, Anomaly Detection

Chapter Contents (Back)
Anomaly Detection. Application, Inspection. Inspection, Defects. Defect Detection. General Anomaly Detection.
See also Outlier Detection and Analysis, Robust Analysis, Out of Distribution, OOD.
See also Hyperspectral Data Anomaly Detection, Hyper-Spectral Anomaly.
See also Time Series Anomaly Detection.
See also Learning for Detecting Anomalies.

Verdoja, F.[Francesco], Grangetto, M.[Marco],
Graph Laplacian for image anomaly detection,
MVA(31), No. 1, January 2020, pp. Article 11.
Springer DOI 2003
Code, Anomaly Detection.
WWW Link. Reed-Xiaoli detector BibRef

Mensi, A.[Antonella], Bicego, M.[Manuele],
Enhanced anomaly scores for isolation forests,
PR(120), 2021, pp. 108115.
Elsevier DOI 2109
Anomaly detection, Isolation forest, Anomaly score, Outliers BibRef

Wheeler, B.J.[Bradley J.], Karimi, H.A.[Hassan A.],
A semantically driven self-supervised algorithm for detecting anomalies in image sets,
CVIU(213), 2021, pp. 103279.
Elsevier DOI 2112
Anomaly detection, Self-supervised learning, Representation learning, Remote sensing, Multivariate statistics BibRef

Zhang, K.T.[Kai-Tai], Wang, B.[Bin], Kuo, C.C.J.[C.C. Jay],
PEDENet: Image anomaly localization via patch embedding and density estimation,
PRL(153), 2022, pp. 144-150.
Elsevier DOI 2201
Image anomaly detection, Image anomaly localization, Density estimation BibRef

Sato, K.[Kazuki], Nakata, S.[Satoshi], Matsubara, T.[Takashi], Uehara, K.[Kuniaki],
Few-Shot Anomaly Detection Using Deep Generative Models for Grouped Data,
IEICE(E105-D), No. 2, February 2022, pp. 436-440.
WWW Link. 2202
BibRef

Wang, Z.P.[Zhi-Peng], Hou, C.P.[Chun-Ping], Ge, B.B.[Bang-Bang], Liu, Y.[Yang], Dong, Z.C.[Zhi-Cheng], Wu, Z.Q.[Zhi-Qiang],
Unsupervised anomaly detection via dual transformation-aware embeddings,
IET-IPR(16), No. 6, 2022, pp. 1657-1668.
DOI Link 2204
images that are globally or locally different from the training set. BibRef

Shah, R.A.[Rizwan Ali], Urmonov, O.[Odilbek], Kim, H.W.[Hyung-Won],
Two-stage coarse-to-fine image anomaly segmentation and detection model,
IVC(139), 2023, pp. 104817.
Elsevier DOI Code:
WWW Link. 2311
Anomaly detection and segmentation, Convolutional neural network, Pseudo anomaly insertion, Superpixel segmentation BibRef

Tang, T.W.[Ta-Wei], Hsu, H.[Hakiem], Li, K.M.[Kuan-Ming],
Industrial anomaly detection with multiscale autoencoder and deep feature extractor-based neural network,
IET-IPR(17), No. 6, 2023, pp. 1752-1761.
DOI Link 2305
image classification, image recognition, inspection, unsupervised learning BibRef

Chen, Z.[Zhi], Duan, J.[Jiang], Kang, L.[Li], Qiu, G.P.[Guo-Ping],
Supervised Anomaly Detection via Conditional Generative Adversarial Network and Ensemble Active Learning,
PAMI(45), No. 6, June 2023, pp. 7781-7798.
IEEE DOI 2305
Detectors, Anomaly detection, Generative adversarial networks, Ensemble learning, Training, Generators, Task analysis, outlier detection BibRef

Arias, L.A.S.[Luis Antonio Souto], Oosterlee, C.W.[Cornelis W.], Cirillo, P.[Pasquale],
AIDA: Analytic isolation and distance-based anomaly detection algorithm,
PR(141), 2023, pp. 109607.
Elsevier DOI 2306
Outlier detection, Anomaly explanation, Isolation, Distance, Ensemble methods BibRef

Wei, S.X.[Shen-Xing], Wei, X.[Xing], Kurniawan, M.R.[Muhammad Rifki], Ma, Z.H.[Zhi-Heng], Gong, Y.H.[Yi-Hong],
Topology-preserving transfer learning for weakly-supervised anomaly detection and segmentation,
PRL(170), 2023, pp. 77-84.
Elsevier DOI 2306
Anomaly detection, Transfer learning, Weakly-supervised learning, Topology preservation BibRef

Maškov”, M.[Michaela], Zorek, M.[Matej], Pevny, T.[Tom”š], Šmidl, V.[V”clav],
Deep anomaly detection on set data: Survey and comparison,
PR(151), 2024, pp. 110381.
Elsevier DOI 2404
Set data, Anomaly detection, Generative models, One-class classification, Set transformers BibRef

Li, H.X.[Han-Xi], Hu, J.F.[Jian-Fei], Li, B.[Bo], Chen, H.[Hao], Zheng, Y.B.[Yong-Bin], Shen, C.H.[Chun-Hua],
Target Before Shooting: Accurate Anomaly Detection and Localization Under One Millisecond via Cascade Patch Retrieval,
IP(33), 2024, pp. 5606-5621.
IEEE DOI Code:
WWW Link. 2410
Accuracy, Anomaly detection, Measurement, Standards, Prototypes, Image retrieval, Image reconstruction, Anomaly detection, metric learning BibRef

Yu, Q.[Qianzi], Zhu, K.[Kai], Cao, Y.[Yang], Xia, F.[Feijie], Kang, Y.[Yu],
TF²: Few-Shot Text-Free Training-Free Defect Image Generation for Industrial Anomaly Inspection,
CirSysVideo(34), No. 11, November 2024, pp. 11825-11837.
IEEE DOI 2412
Inspection, Diffusion models, Feature extraction, Image synthesis, Task analysis, Production, Anomaly generation, anomaly inspection BibRef

Yang, M.H.[Ming-Hui], Liu, J.[Jing], Yang, Z.W.[Zhi-Wei], Wu, Z.Y.[Zhao-Yang],
SLSG: Industrial image anomaly detection with improved feature embeddings and one-class classification,
PR(156), 2024, pp. 110862.
Elsevier DOI 2408
Anomaly detection, One-class classification, Self-supervised learning, Graph convolutional network BibRef

Liu, B.[Binhui], Guo, T.[Tianchu], Luo, B.[Bin], Cui, Z.[Zhen], Yang, J.[Jian],
Cross-Attention Regression Flow for Defect Detection,
IP(33), 2024, pp. 5183-5193.
IEEE DOI 2410
Feature extraction, Anomaly detection, Transforms, Defect detection, Visualization, Fitting, Testing, Defect detection, autoregression BibRef

Chen, Z.H.[Zi-Heng], Lyu, C.Z.[Chen-Zhi], Zhang, L.[Lei], Li, S.K.[Shao-Kang], Xia, B.[Bin],
RDMS: Reverse distillation with multiple students of different scales for anomaly detection,
IET-IPR(18), No. 13, 2024, pp. 3815-3826.
DOI Link Code:
WWW Link. 2411
crack detection, pattern recognition, unsupervised learning BibRef

Wan, Y.H.[Yong-Hao], Feng, A.[Aimin],
DualAD: Dual adversarial network for image anomaly detection?,
IET-CV(18), No. 8, 2024, pp. 1138-1148.
DOI Link 2501
feature extraction, image recognition, image reconstruction, vision defects BibRef

Chen, Z.[Ziyi], Bai, C.Y.[Chen-Yao], Zhu, Y.L.[Yun-Long], Lu, X.W.[Xi-Wen],
TUT: Template-Augmented U-Net Transformer for Unsupervised Anomaly Detection,
SPLetters(31), 2024, pp. 780-784.
IEEE DOI 2404
Image reconstruction, Decoding, Convolution, Vectors, Anomaly detection, Head, Self-supervised learning, unsupervised learning BibRef

Chen, Q.Y.[Qi-Yu], Luo, H.Y.[Hui-Yuan], Gao, H.[Han], Lv, C.[Chengkan], Zhang, Z.T.[Zheng-Tao],
Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection,
CirSysVideo(35), No. 2, February 2025, pp. 1193-1208.
IEEE DOI Code:
WWW Link. 2502
Image reconstruction, Feature extraction, Anomaly detection, Training, Optimization, Learning (artificial intelligence), progressive boundary guidance BibRef

Liu, J.[Jinfan], Yan, Y.C.[Yi-Chao], Li, J.J.[Jun-Jie], Zhao, W.M.[Wei-Ming], Chu, P.Z.[Peng-Zhi], Sheng, X.[Xingdong], Liu, Y.H.[Yun-Hui], Yang, X.K.[Xiao-Kang],
IPAD: Industrial Process Anomaly Detection Dataset,
CirSysVideo(35), No. 1, January 2025, pp. 380-393.
IEEE DOI Code:
WWW Link. 2502
Anomaly detection, Synthetic data, Pedestrians, Image reconstruction, Production facilities, Data models, reconstruction model BibRef

Wang, C.J.[Cheng-Jie], Jiang, X.[Xi], Gao, B.B.[Bin-Bin], Gan, Z.[Zhenye], Liu, Y.[Yong], Zheng, F.[Feng], Ma, L.Z.[Li-Zhuang],
SoftPatch+: Fully unsupervised anomaly classification and segmentation,
PR(161), 2025, pp. 111295.
Elsevier DOI Code:
WWW Link. 2502
Anomaly detection, Unsupervised learning, Learn with noise BibRef

Zhang, J.J.[Jia-Jun], Yang, Z.W.[Zhou-Wang], Song, Y.Z.[Yan-Zhi],
DC-AD: A Divide-and-Conquer Method for Few-Shot Anomaly Detection,
PR(162), 2025, pp. 111360.
Elsevier DOI 2503
Few-shot learning, Anomaly detection, Region matching, Benchmarks BibRef

Pei, M.J.[Ming-Jing], Zhou, X.[Xiancun], Huang, Y.[Yourui], Zhang, F.H.[Feng-Hui], Pei, M.L.[Ming-Li], Yang, Y.D.[Ya-Dong], Zheng, S.J.[Shi-Jian], Xin, M.[Mai],
Enhancing industrial anomaly detection with Mamba-inspired feature fusion,
JVCIR(107), 2025, pp. 104368.
Elsevier DOI 2503
Industrial image anomaly detection, Unsupervised learning, Mamba, Feature fusion BibRef

Zhang, J.N.[Jiang-Ning], Chen, X.[Xuhai], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie], Liu, Y.[Yong], Li, X.T.[Xiang-Tai], Yang, M.H.[Ming-Hsuan], Tao, D.C.[Da-Cheng],
Exploring plain ViT features for multi-class unsupervised visual anomaly detection,
CVIU(253), 2025, pp. 104308.
Elsevier DOI Code:
WWW Link. 2503
Multi-class anomaly detection, Vision transformer, Unsupervised learning, Feature reconstruction BibRef

He, L.[Liren], Jiang, Z.K.[Zheng-Kai], Peng, J.L.[Jin-Long], Zhu, W.B.[Wen-Bing], Liu, L.[Liang], Du, Q.G.[Qian-Gang], Hu, X.B.[Xia-Bin], Chi, M.M.[Ming-Min], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie],
Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection,
ECCV24(LXVII: 216-232).
Springer DOI 2412
BibRef

Chen, D.[Dong], Pan, K.[Kaihang], Dai, G.Y.[Guang-Yu], Wang, G.M.[Guo-Ming], Zhuang, Y.T.[Yue-Ting], Tang, S.L.[Si-Liang], Xu, M.L.[Ming-Liang],
Improving Vision Anomaly Detection With the Guidance of Language Modality,
MultMed(27), 2025, pp. 1410-1419.
IEEE DOI 2503
Detectors, Feature extraction, Anomaly detection, Entropy, Training, Correlation, Contrastive learning, Semantics, Testing, Symbols, anomaly detection BibRef

Wu, G.C.[Gao-Chang], Zhang, Y.P.[Ya-Peng], Deng, L.[Lan], Zhang, J.X.[Jing-Xin], Chai, T.Y.[Tian-You],
Cross-Modal Learning for Anomaly Detection in Complex Industrial Process: Methodology and Benchmark,
CirSysVideo(35), No. 3, March 2025, pp. 2632-2645.
IEEE DOI Code:
WWW Link. 2503
Anomaly detection, Smelting, Magnesium, Visualization, Feature extraction, Transformers, Tokenization, Correlation, fused magnesium furnace BibRef

Chen, Z.X.[Zi-Xuan], Xie, X.H.[Xiao-Hua], Yang, L.X.[Ling-Xiao], Lai, J.H.[Jian-Huang],
Hard-Normal Example-Aware Template Mutual Matching for Industrial Anomaly Detection,
IJCV(133), No. 5, May 2025, pp. 2927-2949.
Springer DOI 2504
BibRef

He, S.[Sihan], Zhang, T.[Tao], Song, W.[Wei], Yu, H.B.[Hong-Bin],
Feature Bank-Guided Reconstruction for Anomaly Detection,
SPLetters(32), 2025, pp. 1480-1484.
IEEE DOI 2504
Image reconstruction, Discrete cosine transforms, Feature extraction, Anomaly detection, Training, semisupervised learning BibRef

Yu, Q.[Qien], Dai, S.X.[Sheng-Xin], Dong, R.[Ran], Ikuno, S.[Soichiro],
Attention-based vector quantized variational autoencoder for anomaly detection by using orthogonal subspace constraints,
PR(164), 2025, pp. 111500.
Elsevier DOI 2504
Industrial image, Anomaly detection, Subspace projection, Attention mechanism, Vector quantized variational autoencoder BibRef

Wang, C.[Chen], Erfani, S.[Sarah], Alpcan, T.[Tansu], Leckie, C.[Christopher],
OIL-AD: An anomaly detection framework for decision-making sequences,
PR(166), 2025, pp. 111656.
Elsevier DOI Code:
WWW Link. 2505
Anomaly detection, Offline imitation learning, Sequential decision-making, Reinforcement learning BibRef

Li, J.H.[Jia-Hao], Chen, Y.Q.[Yi-Qiang], Xing, Y.[Yunbing], Gu, Y.[Yang], Lan, X.Y.[Xiang-Yuan],
GSM: Global Semantic Memory,
PR(169), 2026, pp. 111950.
Elsevier DOI 2509
Anomaly detection, Unsupervised learning, Memory BibRef

Lee, Y.J.[Yu-Jin], Lim, H.[Harin], Jang, S.[Seoyoon], Yoon, H.[Hyunsoo],
UniFormaly: Towards task-agnostic unified framework for visual anomaly detection,
PR(169), 2026, pp. 111820.
Elsevier DOI Code:
WWW Link. 2509
Anomaly detection, Unified framework, Off-the-shelf representation, Patch-level memory bank BibRef

Liu, X.[Xu], Wu, C.L.[Chun-Lei], Zhang, H.[Huan], Wang, L.[Leiquan],
A memory-tree driven network for multi-view fusion anomaly detection,
PR(170), 2026, pp. 112106.
Elsevier DOI 2509
Memory tree, Fusion scheme, Anomaly detection BibRef

Wang, C.J.[Cheng-Jie], Zhu, H.[Haokun], Peng, J.L.[Jin-Long], Wang, Y.[Yue], Yi, R.[Ran], Wu, Y.S.[Yun-Sheng], Ma, L.Z.[Li-Zhuang], Zhang, J.N.[Jiang-Ning],
M3DM-NR: RGB-3D Noisy-Resistant Industrial Anomaly Detection via Multimodal Denoising,
PAMI(47), No. 11, November 2025, pp. 9981-9993.
IEEE DOI 2510
Anomaly detection, Feature extraction, Noise measurement, Training, Noise, Image reconstruction, unsupervised learning BibRef

Wang, Y.[Yue], Peng, J.L.[Jin-Long], Zhang, J.N.[Jiang-Ning], Yi, R.[Ran], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie],
Multimodal Industrial Anomaly Detection via Hybrid Fusion,
CVPR23(8032-8041)
IEEE DOI 2309
BibRef

Wang, G.[Gang], Zou, Y.S.[Yi-Sheng], He, S.L.[Song-Lin], Wang, Y.K.[Ya-Kun], Dai, R.H.[Rui-Hong],
Anomaly Detection and Localization via Reverse Distillation With Latent Anomaly Suppression,
CirSysVideo(35), No. 10, October 2025, pp. 9592-9607.
IEEE DOI 2510
Decoding, Anomaly detection, Image reconstruction, Training, Feature extraction, Location awareness, Semantics, Optimization, knowledge distillation BibRef

Zhou, Y.X.[Yi-Xuan], Xu, X.[Xing], Sun, Z.[Zhe], Song, J.K.[Jing-Kuan], Cichocki, A.[Andrzej], Shen, H.T.[Heng Tao],
VQ-Flow: Taming Normalizing Flows for Multi-Class Anomaly Detection via Hierarchical Vector Quantization,
MultMed(27), 2025, pp. 6884-6895.
IEEE DOI 2510
Anomaly detection, Vector quantization, Data models, Prototypes, Gaussian distribution, Computational modeling, Adaptation models, vector quantization BibRef

Wang, S.[Sihan], Yuan, Z.[Zhong], Cheng, S.T.[Shi-Tong], Chen, H.M.[Hong-Mei], Peng, D.Z.[De-Zhong],
Granular-ball computing-based Random Walk for anomaly detection,
PR(165), 2025, pp. 111588.
Elsevier DOI Code:
WWW Link. 2505
Anomaly detection, Outlier detection, Granular-ball computing, Multi-granularity, Random walk BibRef

Galka, L.[Lukasz],
Optimized Deep Isolation Forest,
PRL(197), 2025, pp. 88-94.
Elsevier DOI 2510
Anomaly detection, Isolation Forest, Deep Isolation Forest, Neural networks, Outlier detection BibRef

Nourmohammadi, S.[Sepehr], Sarp-Yenicesu, A.[Arda], Rahimzadeh-Arashloo, S.[Shervin], Oguz, O.S.[Ozgur S.],
Locally adaptive one-class classifier fusion with dynamic Lp-Norm constraints for robust anomaly detection,
PR(171), 2026, pp. 112204.
Elsevier DOI 2511
One-class classification, Anomaly detection, Locally adaptive learning, Classifier fusion BibRef

Zhong, Y.H.[Yuan-Hong], Yan, G.[Ge], Hu, Y.[Yongting], Zhu, D.[Dong], Zhu, R.[Ruyue],
A Two-Stage Framework With Memory for Anomaly Detection via Video Decomposition and Bidirectional Consistency,
CirSysVideo(35), No. 11, November 2025, pp. 11377-11389.
IEEE DOI Code:
WWW Link. 2511
Prototypes, Anomaly detection, Training, Feature extraction, Image reconstruction, Decoding, Streaming media, Data models, video decomposition BibRef

Coscia, P.[Pasquale], Genovese, A.[Angelo], Piuri, V.[Vincenzo], Scotti, F.[Fabio],
OneN: Guided attention for natively-explainable anomaly detection,
IVC(163), 2025, pp. 105741.
Elsevier DOI 2511
Anomaly detection, Attention mechanism, Knowledge distillation, Generative model, Vision transformer BibRef

Wang, P.X.[Peng-Xiang], Qin, Y.H.[Yu-Hua], Zong, X.[Xulin], Wang, C.[Chaoyue], Zhang, H.[Hao],
MMFNet: A multi-scale memory fusion network based on simulated abnormal samples for anomaly detection,
PR(172), 2026, pp. 112581.
Elsevier DOI 2512
Anomaly detection, Anomaly synthesis, Unsupervised learning, Mechanism-driven data enhancement BibRef

Rahmaniar, W.[Wahyu], Suzuki, K.[Kenji],
Multi-AD: cross-domain unsupervised anomaly detection for medical and industrial applications,
PR(172), 2026, pp. 112486.
Elsevier DOI 2512
Anomaly detection, CNN, Deep learning, Knowledge distillation, Medical imaging, Industrial imaging BibRef

Wang, C.[Chuang], Ning, X.[Xin], Qian, P.J.[Peng-Jiang], Hu, W.J.[Wen-Jun], Yao, J.[Jian], Ng, E.Y.K.[Eddie-Yin-Kwee], Lai, K.W.[Khin-Wee], Wang, S.T.[Shi-Tong],
Distribution entropy regularized multimodal subspace support vector data description for anomaly detection,
PR(172), 2026, pp. 112478.
Elsevier DOI 2512
One-class classification (OCC), Multimodal data, Support vector data description (SVDD), Subspace learning BibRef

Leveni, F.[Filippo], Magri, L.[Luca], Alippi, C.[Cesare], Boracchi, G.[Giacomo],
Preference isolation forest for structure-based anomaly detection,
PR(172), 2026, pp. 112405.
Elsevier DOI 2512
Structure-based anomaly detection, Isolation-based anomaly detection BibRef


Huang, Y.[Yaru], Geng, X.L.[Xiao-Li], You, Z.W.[Zhen-Wei],
Magnetic Tile Defect Detection with Cross-Scale Visual Feature Fusion: A Cascade Framework of Improved YOLOv11 and SAM Segmentation,
ICIVC25(286-291)
IEEE DOI 2512
Industries, Visualization, Image segmentation, Shape, Magnetic resonance imaging, Quality control, Production, Industrial visual inspection BibRef

Nakkina, T.G.[Tapan Ganatma], Zhong, Y.H.[Yu-Hao], Sumethasorn, P.[Pete], Tian, H.[Haopeng], Bukkapatnam, S.[Satish],
When Textures Deceive: Weakly Supervised Industrial Anomaly Detection with Adapted-Loss CycleGAN,
VAND25(4068-4077)
IEEE DOI 2512
Benchmark testing, Manufacturing, Complexity theory, Labeling, Anomaly detection, Standards, anomaly localization, cyclegan, texture complexity BibRef

Mokhtar, S.[Sassan], Mousakhan, A.[Arian], Galesso, S.[Silvio], Tayyub, J.[Jawad], Brox, T.[Thomas],
Detect, Classify, Act: Categorizing Industrial Anomalies with Multi-Modal Large Language Models,
VAND25(4058-4067)
IEEE DOI 2512
Training, Visualization, Accuracy, Annotations, Large language models, Pipelines, Inspection, Benchmark testing, MLLM BibRef

Pemula, L.[Latha], Zhang, D.Q.[Dong-Qing], Dabeer, O.[Onkar],
Robust AD: A Real World Benchmark Dataset for Robustness in Industrial Anomaly Detection,
VAND25(4047-4057)
IEEE DOI Code:
WWW Link. 2512
Measurement, Training, Computational modeling, Benchmark testing, Robustness, Complexity theory, Mirrors, Anomaly detection, domain generalization BibRef

Baitieva, A.[Aimira], Bouaouni, Y.[Yacine], Briot, A.[Alexandre], Ameln, D.[Dick], Khalfaoui, S.[Souhaiel], Akcay, S.[Samet],
Beyond Academic Benchmarks: Critical Analysis and Best Practices for Visual Industrial Anomaly Detection,
VAND25(4015-4025)
IEEE DOI Code:
WWW Link. 2512
Measurement, Degradation, Visualization, Production, Benchmark testing, Predictive models, Inspection, Data models, visual inspection BibRef

Kruse, M.[Mathis], Rosenhahn, B.[Bodo],
Multi-Flow: Multi-View-Enriched Normalizing Flows for Industrial Anomaly Detection,
VAND25(3933-3944)
IEEE DOI 2512
Training, Bridges, Estimation, Computer architecture, Production, Boosting, Anomaly detection, anomaly detection, defect detection, density estimation BibRef

Park, Y.[YeongHyeon], Kang, S.[Sungho], Kim, M.J.[Myung Jin], Kim, H.S.[Hyeong Seok], Yi, J.H.[June-Ho],
Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection,
VAND25(3922-3932)
IEEE DOI 2512
Computational modeling, Scalability, Artificial neural networks, Benchmark testing, Attenuation, Feature extraction, feature representation BibRef

Zhao, Y.[Ying],
AnomalyHybrid: A Domain-Agnostic Generative Framework for General Anomaly Detection,
SyntaGen25(3118-3127)
IEEE DOI 2512
Training, Image segmentation, Image color analysis, Image edge detection, Depth measurement, Diversity reception, GAN BibRef

Lagos, J.[Juan], Ali, H.[Haider], Faroque, A.[Adnan], Rahtu, E.[Esa],
Heterogeneous Datasets for Unsupervised Image Anomaly Detection,
WACV25(7266-7276)
IEEE DOI Code:
WWW Link. 2505
Location awareness, Measurement, Visualization, Accuracy, Roads, Benchmark testing, Robustness, Manufacturing, Anomaly detection, DCNN BibRef

Li, X.F.[Xiao-Fan], Tan, X.[Xin], Chen, Z.[Zhuo], Zhang, Z.Z.[Zhi-Zhong], Zhang, R.X.[Rui-Xin], Guo, R.[Rizen], Jiang, G.[Guanna], Chen, Y.L.[Yu-Long], Qu, Y.Y.[Yan-Yun], Ma, L.Z.[Li-Zhuang], Xie, Y.[Yuan],
One-for-More: Continual Diffusion Model for Anomaly Detection,
CVPR25(4766-4775)
IEEE DOI Code:
WWW Link. 2508
Training, Memory management, Markov processes, Diffusion models, Stability analysis, Iterative methods, Anomaly detection, continual learning BibRef

Huang, Z.M.[Zi-Ming], Li, X.[Xurui], Liu, H.T.[Hao-Tian], Xue, F.[Feng], Wang, Y.Z.[Yu-Zhe], Zhou, Y.[Yu],
AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios,
CVPR25(4755-4765)
IEEE DOI Code:
WWW Link. 2508
Representation learning, Codes, Clustering methods, Merging, Semantics, Crops, Anomaly detection, Faces BibRef

Ma, W.X.[Wen-Xin], Zhang, X.[Xu], Yao, Q.S.[Qing-Song], Tang, F.[Fenghe], Wu, C.X.[Chen-Xu], Li, Y.[Yingtai], Yan, R.[Rui], Jiang, Z.H.[Zi-Hang], Zhou, S.K.[S. Kevin],
AA-CLIP: Enhancing Zero-Shot Anomaly Detection via Anomaly-Aware CLIP,
CVPR25(4744-4754)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Visualization, Biomedical equipment, Codes, Semantics, Medical services, Lesions, Anomaly detection, clip, vlm BibRef

Yang, K.[Kaichen], Cao, J.J.[Jun-Jie], Bai, Z.[Zeyu], Su, Z.X.[Zhi-Xun], Tagliasacchi, A.[Andrea],
PIAD: Pose and Illumination agnostic Anomaly Detection,
CVPR25(4734-4743)
IEEE DOI Code:
WWW Link. 2508
Accuracy, Autonomous systems, Lighting, Training data, Anomaly detection, anomaly detection, camera pose estimation, 3dgs, illumination BibRef

Ye, J.A.[Jian-An], Zhao, W.G.[Wei-Guang], Yang, X.[Xi], Cheng, G.L.[Guang-Liang], Huang, K.[Kaizhu],
PO3AD: Predicting Point Offsets toward Better 3D Point Cloud Anomaly Detection,
CVPR25(1353-1362)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Training, Measurement, Data visualization, Feature extraction, Vectors, Data models, Anomaly detection, 3d point cloud BibRef

Mao, K.[Kai], Wei, P.[Ping], Lian, Y.Y.[Yi-Yang], Wang, Y.Y.[Yang-Yang], Zheng, N.N.[Nan-Ning],
Beyond Single-Modal Boundary: Cross-Modal Anomaly Detection through Visual Prototype and Harmonization,
CVPR25(9964-9973)
IEEE DOI Code:
WWW Link. 2508
Visualization, Adaptation models, Codes, Semantics, Prototypes, Data models, Anomaly detection BibRef

Luo, W.[Wei], Cao, Y.[Yunkang], Yao, H.M.[Hai-Ming], Zhang, X.T.[Xiao-Tian], Lou, J.A.[Jian-An], Cheng, Y.Q.[Yu-Qi], Shen, W.M.[Wei-Ming], Yu, W.Y.[Wen-Yong],
Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection,
CVPR25(9974-9983)
IEEE DOI Code:
WWW Link. 2508
Training, Limiting, Prototypes, Coherence, III-V semiconductor materials, Indium phosphide, feature reconstruction BibRef

Li, W.Q.[Wen-Qiao], Zheng, B.[Bozhong], Xu, X.H.[Xiao-Hao], Gan, J.Y.[Jin-Ye], Lu, F.[Fading], Li, X.[Xiang], Ni, N.[Na], Tian, Z.[Zheng], Huang, X.N.[Xiao-Nan], Gao, S.H.[Sheng-Hua], Wu, Y.[Yingna],
Multi-Sensor Object Anomaly Detection: Unifying Appearance, Geometry, and Internal Properties,
CVPR25(9984-9993)
IEEE DOI Code:
WWW Link. 2508
Geometry, Deformation, Face recognition, Infrared imaging, Inspection, Sensors, Laser fusion, Anomaly detection, multisensor BibRef

Wei, S.[Shun], Jiang, J.L.[Jie-Lin], Xu, X.L.[Xiao-Long],
UniNet: A Contrastive Learning-guided Unified Framework with Feature Selection for Anomaly Detection,
CVPR25(9994-10003)
IEEE DOI 2508
Bridges, Technological innovation, Visualization, Correlation, Feature extraction, Anomaly detection, anomaly detection, contrastive learning BibRef

Nafez, M.[Mojtaba], Koochakian, A.[Amirhossein], Maleki, A.[Arad], Habibi, J.[Jafar], Rohban, M.H.[Mohammad Hossein],
PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies,
CVPR25(20383-20394)
IEEE DOI 2508
Location awareness, Training, Training data, Performance gain, Transformers, Robustness, Anomaly detection, Biomedical imaging BibRef

Bhunia, A.[Ankan], Li, C.J.[Chang-Jian], Bilen, H.[Hakan],
Odd-One-Out: Anomaly Detection by Comparing with Neighbors,
CVPR25(20395-20404)
IEEE DOI 2508
Solid modeling, Correlation, Computational modeling, Benchmark testing, Object recognition, Anomaly detection, multi-view BibRef

Guo, J.[Jia], Lu, S.[Shuai], Zhang, W.[Weihang], Chen, F.[Fang], Li, H.Q.[Hui-Qi], Liao, H.[Hongen],
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection,
CVPR25(20405-20415)
IEEE DOI Code:
WWW Link. 2508
Philosophical considerations, Computational modeling, Noise, Force, Transformers, Feature extraction, Noise measurement, unsupervised learning BibRef

Wang, F.[Fuyun], Zhang, T.[Tong], Wang, Y.Z.[Yuan-Zhi], Qiu, Y.[Yide], Liu, X.[Xin], Guo, X.[Xu], Cui, Z.[Zhen],
Distribution Prototype Diffusion Learning for Open-set Supervised Anomaly Detection,
CVPR25(20416-20426)
IEEE DOI 2508
Representation learning, Bridges, Prototypes, Gaussian distribution, Robustness, Anomaly detection, Dispersion BibRef

Sun, H.[Han], Cao, Y.[Yunkang], Dong, H.[Hao], Fink, O.[Olga],
Unseen Visual Anomaly Generation,
CVPR25(25508-25517)
IEEE DOI Code:
WWW Link. 2508
Training, Visualization, Limiting, Image synthesis, Foundation models, Training data, Anomaly detection, Optimization, diffusion model BibRef

Akshay, S.[Shilhora], Narasimhan, N.L.[Niveditha Lakshmi], George, J.[Jacob], Balasubramanian, V.N.[Vineeth N.],
A Unified Latent Schrödinger Bridge Diffusion Model for Unsupervised Anomaly Detection and Localization,
CVPR25(25528-25538)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Bridges, Training, Adaptation models, Transforms, Robustness, Anomaly detection, Image reconstruction, diffusion BibRef

Qu, Z.[Zhen], Tao, X.[Xian], Gong, X.[Xinyi], Qu, S.[ShiChen], Chen, Q.Y.[Qi-Yu], Zhang, Z.T.[Zheng-Tao], Wang, X.G.[Xin-Gang], Ding, G.[Guiguang],
Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection,
CVPR25(30398-30408)
IEEE DOI Code:
WWW Link. 2508
Training, Uncertainty, Semantics, Probabilistic logic, Vectors, Probability distribution, oBayes methods, Anomaly detection, CLIP BibRef

Zhang, J.J.[Jin-Jin], Wang, G.D.[Guo-Dong], Jin, Y.Z.[Yi-Zhou], Huang, D.[Di],
Towards Training-free Anomaly Detection with Vision and Language Foundation Models,
CVPR25(15204-15213)
IEEE DOI Code:
WWW Link. 2508
Training, Foundation models, Semantic segmentation, Detectors, Inspection, Robustness, Proposals, Anomaly detection, vision and language foundation models BibRef

Zhu, W.B.[Wen-Bing], Wang, L.[Lidong], Zhou, Z.Q.[Zi-Qing], Wang, C.J.[Cheng-Jie], Pan, Y.R.[Yu-Rui], Zhang, R.[Ruoyi], Chen, Z.[Zhuhao], Cheng, L.J.[Lin-Jie], Gao, B.B.[Bin-Bin], Zhang, J.N.[Jiang-Ning], Gan, Z.[Zhenye], Wang, Y.X.[Yu-Xie], Chen, Y.L.[Yu-Long], Qian, S.G.[Shu-Guang], Chi, M.[Mingmin], Peng, B.[Bo], Ma, L.Z.[Li-Zhuang],
Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection,
CVPR25(15214-15223)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Image resolution, Face recognition, Machine vision, Feature extraction, Robustness, Complexity theory, Anomaly detection BibRef

Wu, S.[Sheng], Wang, Y.[Yimi], Liu, X.D.[Xu-Dong], Yang, Y.G.[Yu-Guang], Wang, R.[Runqi], Guo, G.D.[Guo-Dong], Doermann, D.[David], Zhang, B.C.[Bao-Chang],
DFM: Differentiable Feature Matching for Anomaly Detection,
CVPR25(15224-15233)
IEEE DOI 2508
Training, Computational modeling, Transforms, Feature extraction, Anomaly detection, Optimization, Pattern matching BibRef

Gu, Z.P.[Zhao-Peng], Zhu, B.[Bingke], Zhu, G.[Guibo], Chen, Y.Y.[Ying-Ying], Tang, M.[Ming], Wang, J.Q.[Jin-Qiao],
UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection,
CVPR25(15194-15203)
IEEE DOI Code:
WWW Link. 2508
Training, Visualization, Semantics, Training data, Standardization, Data models, Anomaly detection, Context modeling, multimodal BibRef

Beizaee, F.[Farzad], Lodygensky, G.A.[Gregory A.], Desrosiers, C.[Christian], Dolz, J.[Jose],
Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection,
CVPR25(19088-19097)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Degradation, Noise, Diffusion models, Anomaly detection, Image reconstruction, Standards BibRef

Kashiani, H.[Hossein], Talemi, N.A.[Niloufar Alipour], Afghah, F.[Fatemeh],
ROADS: Robust Prompt-Driven Multi-Class Anomaly Detection Under Domain Shift,
WACV25(7908-7917)
IEEE DOI 2505
Location awareness, Degradation, Roads, Interference, Detectors, Robustness, Decoding, Anomaly detection, visual anomaly detection, anomaly detection BibRef

Zhang, J.[Jie], Suganuma, M.[Masanori], Okatani, T.[Takayuki],
Contextual Affinity Distillation for Image Anomaly Detection,
WACV24(148-157)
IEEE DOI 2404
Training, Representation learning, Correlation, Image color analysis, Feature extraction, Vectors, Algorithms BibRef

He, H.[Haitian], Erfani, S.[Sarah], Gong, M.M.[Ming-Ming], Ke, Q.H.[Qiu-Hong],
Learning Transferable Representations for Image Anomaly Localization Using Dense Pretraining,
WACV24(1102-1111)
IEEE DOI Code:
WWW Link. 2404
Training, Location awareness, Representation learning, Fault detection, Self-supervised learning, Inspection, Algorithms BibRef

Zhou, Z.Y.[Zhe-Yuan], Wang, L.[Le], Fang, N.[Naiyu], Wang, Z.L.[Zi-Li], Qiu, L.[Lemiao], Zhang, S.[Shuyou],
R3D-AD: Reconstruction via Diffusion for 3d Anomaly Detection,
ECCV24(XXXVI: 91-107).
Springer DOI 2412
BibRef

Yao, H.[Hang], Liu, M.[Ming], Yin, Z.[Zhicun], Yan, Z.[Zifei], Hong, X.P.[Xiao-Peng], Zuo, W.M.[Wang-Meng],
Glad: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection,
ECCV24(LXXI: 1-17).
Springer DOI 2412
BibRef

Jin, Y.[Ying], Peng, J.L.[Jin-Long], He, Q.D.[Qing-Dong], Hu, T.[Teng], Wu, J.[Jiafu], Chen, H.[Hao], Wang, H.X.[Hao-Xuan], Zhu, W.B.[Wen-Bing], Chi, M.M.[Ming-Min], Liu, J.[Jun], Wang, Y.B.[Ya-Biao],
Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation,
CVPR25(30420-30429)
IEEE DOI 2508
Location awareness, Image synthesis, Shape, Computational modeling, Fitting, Inspection, Diffusion models, Distortion, Data models, Manufacturing BibRef

Gui, G.[Guan], Gao, B.B.[Bin-Bin], Liu, J.[Jun], Wang, C.J.[Cheng-Jie], Wu, Y.S.[Yun-Sheng],
Few-shot Anomaly-driven Generation for Anomaly Classification and Segmentation,
ECCV24(LXXXIII: 210-226).
Springer DOI 2412
BibRef

Meng, S.Y.[Shi-Yuan], Meng, W.C.[Wen-Chao], Zhou, Q.H.[Qi-Hang], Li, S.Z.[Shi-Zhong], Hou, W.[Weiye], He, S.[Shibo],
Moead: A Parameter-efficient Model for Multi-class Anomaly Detection,
ECCV24(LXXXV: 345-361).
Springer DOI 2412
BibRef

Shi, J.[Jian], Zhang, P.Y.[Peng-Yi], Zhang, N.[Ni], Ghazzai, H.[Hakim], Wonka, P.[Peter],
Dissolving is Amplifying: Towards Fine-grained Anomaly Detection,
ECCV24(LIX: 377-394).
Springer DOI 2412
BibRef

Lee, J.C.[Joo Chan], Kim, T.[Taejune], Park, E.[Eunbyung], Woo, S.S.[Simon S.], Ko, J.H.[Jong Hwan],
Continuous Memory Representation for Anomaly Detection,
ECCV24(LI: 438-454).
Springer DOI 2412
BibRef

Sträter, L.P.J.[Luc P. J.], Salehi, M.[Mohammadreza], Gavves, E.[Efstratios], Snoek, C.G.M.[Cees G. M.], Asano, Y.M.[Yuki M.],
Generalad: Anomaly Detection Across Domains by Attending to Distorted Features,
ECCV24(XXXVII: 448-465).
Springer DOI 2412
BibRef

Chen, Q.Y.[Qi-Yu], Luo, H.Y.[Hui-Yuan], Lv, C.[Chengkan], Zhang, Z.T.[Zheng-Tao],
A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization,
ECCV24(LXVII: 37-54).
Springer DOI 2412
BibRef

Gao, B.B.[Bin-Bin],
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt,
ECCV24(LXVII: 454-470).
Springer DOI 2412
BibRef

Isaac-Medina, B.K.S.[Brian K. S.], Gaus, Y.F.A.[Yona Falinie A.], Bhowmik, N.[Neelanjan], Breckon, T.P.[Toby P.],
Towards Open-world Object-based Anomaly Detection via Self-supervised Outlier Synthesis,
ECCV24(LXXI: 196-214).
Springer DOI 2412
BibRef

Qu, Z.[Zhen], Tao, X.[Xian], Prasad, M.[Mukesh], Shen, F.[Fei], Zhang, Z.T.[Zheng-Tao], Gong, X.[Xinyi], Ding, G.G.[Gui-Guang],
VCP-CLIP: A Visual Context Prompting Model for Zero-shot Anomaly Segmentation,
ECCV24(LXIX: 301-317).
Springer DOI 2412
BibRef

Tu, Y.P.[Yuan-Peng], Zhang, B.S.[Bo-Shen], Liu, L.[Liang], Li, Y.X.[Yu-Xi], Zhang, J.N.[Jiang-Ning], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie], Zhao, C.R.[Cai-Rong],
Self-Supervised Feature Adaptation for 3D Industrial Anomaly Detection,
ECCV24(II: 75-91).
Springer DOI 2412
BibRef

Costanzino, A.[Alex], Ramirez, P.Z.[Pierluigi Zama], Lisanti, G.[Giuseppe], di Stefano, L.[Luigi],
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping,
CVPR24(17234-17243)
IEEE DOI 2410
Point cloud compression, Memory management, Feature extraction, Manufacturing, Anomaly detection, anomaly, layer pruning BibRef

Rolih, B.[Blaž], Ameln, D.[Dick], Vaidya, A.[Ashwin], Akcay, S.[Samet],
Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble,
VAND24(3866-3875)
IEEE DOI 2410
Training, Image resolution, Tiles, Memory management, Stacking, Graphics processing units, Anomaly Detection, High-resolution processing BibRef

Costanzino, A.[Alex], Ramirez, P.Z.[Pierluigi Zama], del Moro, M.[Mirko], Aiezzo, A.[Agostino], Lisanti, G.[Giuseppe], Salti, S.[Samuele], di Stefano, L.[Luigi],
Test Time Training for Industrial Anomaly Segmentation,
VAND24(3910-3920)
IEEE DOI 2410
Training, Quality control, Feature extraction, Standards, anomaly, anomaly detection, anomaly segmentation, anomaly scores BibRef

Zhu, B.K.[Bing-Ke], Li, H.[Hao], Chen, C.L.[Chang-Lin], Hua, L.J.[Liu-Jie], Wang, J.Q.[Jin-Qiao],
Estate: Expert-Guided State Text Enhancement for Zero-Shot Industrial Anomaly Detection,
ICIP24(1281-1287)
IEEE DOI 2411
Training, Measurement, Image segmentation, Benchmark testing, Task analysis, Anomaly detection, Standards, anomaly detection, text-guided BibRef

Hu, W.R.[Wen-Rui], Xie, Y.[Yuan], Yu, W.[Wei],
TDAD: Trident Distillations for Anomaly Detection,
ICIP24(346-352)
IEEE DOI 2411
Training, Reliability, Task analysis, Anomaly detection, Surface treatment, Unsupervised anomaly detection, self-supervised learning BibRef

Li, G.J.[Guan-Ji], Gao, H.X.[Hong-Xia],
Apnet: Generating Precise Anomaly Prior Information for Mixed-Supervised Defect Detection,
ICIP24(3889-3895)
IEEE DOI 2411
Location awareness, Inductance, Image segmentation, Vector quantization, Pipelines, Object detection BibRef

Li, X.F.[Xiao-Fan], Zhang, Z.Z.[Zhi-Zhong], Tan, X.[Xin], Chen, C.W.[Cheng-Wei], Qu, Y.Y.[Yan-Yun], Xie, Y.[Yuan], Ma, L.Z.[Li-Zhuang],
PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection,
CVPR24(16848-16858)
IEEE DOI Code:
WWW Link. 2410
Training, Learning systems, Codes, Semantics, Prompt engineering, Anomaly Detection, Prompt Learning, Few-Shot Learning BibRef

Zhu, J.[Jiawen], Pang, G.S.[Guan-Song],
Toward Generalist Anomaly Detection via In-Context Residual Learning with Few-Shot Sample Prompts,
CVPR24(17826-17836)
IEEE DOI Code:
WWW Link. 2410
Training, Codes, Computational modeling, Semantics, Benchmark testing, Data models, Anomaly Detection, Few-shot Anomaly Detection BibRef

Murphy, J.[James], Buckley, M.[Maria], Buckley, L.[Léonie], Taylor, A.[Adam], O'Brien, J.[Jake], Namee, B.M.[Brian Mac],
Deploying Machine Learning Anomaly Detection Models to Flight Ready AI Boards,
AI4Space24(6828-6836)
IEEE DOI 2410
Performance evaluation, Space missions, Image edge detection, Computational modeling, Machine learning, Transformers, Hardware, space BibRef

Gupta, S.[Shaurya], Gautam, N.[Neil], Malyala, A.[Anurag],
ATAC-NET: Zoomed View Works Better for Anomaly Detection,
ICIP24(249-255)
IEEE DOI 2411
Training, Deep learning, Visualization, Quality control, Manufacturing, Reliability, anomaly detection, self-explainability, deviation loss BibRef

Lee, M.Y.[Ming-Yu], Choi, J.W.[Jong-Won],
Text-Guided Variational Image Generation for Industrial Anomaly Detection and Segmentation,
CVPR24(26509-26518)
IEEE DOI 2410
Image segmentation, Image synthesis, Generators, Vectors, Stability analysis, Libraries, Data models, Industrial Anomaly Segmentation BibRef

Ugwu, C.I.[Cynthia I.], Casarin, S.[Sofia], Lanz, O.[Oswald],
Fractals as Pre-training Datasets for Anomaly Detection and Localization,
FaDE-TCV24(163-172)
IEEE DOI 2410
Training, Visualization, Data privacy, Solid modeling, Systematics, Feature extraction, Solids, anomaly detection, fractals images, feature-embedding BibRef

Tebbe, J.[Justin], Tayyub, J.[Jawad],
Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection,
VAND24(3940-3949)
IEEE DOI 2410
Location awareness, Technological innovation, Noise reduction, Noise, Diffusion models, anomaly detection, diffusion models, domain adaptation BibRef

Artola, A.[Aitor], Kolodziej, Y.[Yannis], Morel, J.M.[Jean-Michel], Ehret, T.[Thibaud],
Model-guided contrastive fine-tuning for industrial anomaly detection,
VAND24(3981-3991)
IEEE DOI 2410
Location awareness, Visualization, Computational modeling, Neural networks, Contrastive learning, Feature extraction, contrastive learning BibRef

Zhao, Y.[Ying],
LogicAL: Towards logical anomaly synthesis for unsupervised anomaly localization,
VAND24(4022-4031)
IEEE DOI 2410
Location awareness, Manifolds, Image edge detection, Semantics, Production, Anomaly synthesis, Anomaly localization, Anomaly detection BibRef

Baitieva, A.[Aimira], Hurych, D.[David], Besnier, V.[Victor], Bernard, O.[Olivier],
Supervised Anomaly Detection for Complex Industrial Images,
CVPR24(17754-17762)
IEEE DOI Code:
WWW Link. 2410
Image segmentation, Visualization, Computational modeling, Production, Benchmark testing, Product design, Quality assessment BibRef

Zhu, J.[Jiawen], Ding, C.[Choubo], Tian, Y.[Yu], Pang, G.S.[Guan-Song],
Anomaly Heterogeneity Learning for Open-Set Supervised Anomaly Detection,
CVPR24(17616-17626)
IEEE DOI Code:
WWW Link. 2410
Training, Codes, Computational modeling, Collaboration, Rendering (computer graphics), Supervised Anomaly Detection BibRef

Li, H.M.[Hui-Min], Chen, Z.T.[Zhen-Tao], Xu, Y.H.[Yun-Hao], Hu, J.L.[Jun-Lin],
Hyperbolic Anomaly Detection,
CVPR24(17511-17520)
IEEE DOI 2410
Deep learning, Computational modeling, Pipelines, Benchmark testing, Feature extraction, feature embedding BibRef

Zhang, X.[Ximiao], Xu, M.[Min], Zhou, X.Z.[Xiu-Zhuang],
RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection,
CVPR24(16699-16708)
IEEE DOI Code:
WWW Link. 2410
Location awareness, Redundancy, Reconstruction algorithms, Feature extraction, Data models, feature selection BibRef

Ho, C.H.[Chih-Hui], Peng, K.C.[Kuan-Chuan], Vasconcelos, N.M.[Nuno M.],
Long-Tailed Anomaly Detection with Learnable Class Names,
CVPR24(12435-12446)
IEEE DOI Code:
WWW Link. 2410
Performance evaluation, Semantics, Training data, Transformers, Image reconstruction, Anomaly Detection, Visual Language Foundational Model BibRef

Wang, C.J.[Cheng-Jie], Zhu, W.B.[Wen-Bing], Gao, B.B.[Bin-Bin], Gan, Z.[Zhenye], Zhang, J.N.[Jiang-Ning], Gu, Z.H.[Zhi-Hao], Qian, S.G.[Shu-Guang], Chen, M.[Mingang], Ma, L.Z.[Li-Zhuang],
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection,
CVPR24(22883-22892)
IEEE DOI 2410
Training, Measurement, Noise, Metals, Production, Benchmark testing, Inspection BibRef

Vieira e Silva, A.L.[André Luiz], Simões, F.[Francisco], Kowerko, D.[Danny], Schlosser, T.[Tobias], Battisti, F.[Felipe], Teichrieb, V.[Veronica],
Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study,
WACV24(8231-8240)
IEEE DOI 2404
Visualization, Artificial neural networks, Inspection, Anomaly detection, Applications, Remote Sensing, Algorithms. BibRef

Hyun, J.[Jeeho], Kim, S.[Sangyun], Jeon, G.[Giyoung], Kim, S.H.[Seung Hwan], Bae, K.[Kyunghoon], Kang, B.J.[Byung Jun],
ReConPatch: Contrastive Patch Representation Learning for Industrial Anomaly Detection,
WACV24(2041-2050)
IEEE DOI 2404
Representation learning, Training, Measurement, Dimensionality reduction, Visualization, Modulation, Image recognition and understanding BibRef

Liu, Z.K.[Zhi-Kang], Zhou, Y.M.[Yi-Ming], Xu, Y.S.[Yuan-Sheng], Wang, Z.[Zilei],
SimpleNet: A Simple Network for Image Anomaly Detection and Localization,
CVPR23(20402-20411)
IEEE DOI 2309
BibRef

Bao, T.P.[Tian-Peng], Chen, J.D.[Jia-Dong], Li, W.[Wei], Wang, X.[Xiang], Fei, J.J.[Jing-Jing], Wu, L.W.[Li-Wei], Zhao, R.[Rui], Zheng, Y.[Ye],
MIAD: A Maintenance Inspection Dataset for Unsupervised Anomaly Detection,
LIMIT23(993-1002)
IEEE DOI 2401
BibRef

Fang, Z.[Zheng], Wang, X.Y.[Xiao-Yang], Li, H.C.[Hao-Cheng], Liu, J.J.[Jie-Jie], Hu, Q.[Qiugui], Xiao, J.[Jimin],
FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction,
ICCV23(17435-17444)
IEEE DOI Code:
WWW Link. 2401
BibRef

Rudolph, M.[Marco], Wehrbein, T.[Tom], Rosenhahn, B.[Bodo], Wandt, B.[Bastian],
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection,
WACV23(2591-2601)
IEEE DOI 2302
Training, Location awareness, Neural networks, Estimation, Algorithms: Image recognition and understanding, object detection BibRef

Jang, J.K.[Jun-Kyu], Hwang, E.[Eugene], Park, S.H.[Sung-Hyuk],
N-pad : Neighboring Pixel-based Industrial Anomaly Detection,
VISION23(4365-4374)
IEEE DOI 2309
BibRef

Yao, X.C.[Xin-Cheng], Li, R.[Ruoqi], Qian, Z.F.[Ze-Feng], Luo, Y.[Yan], Zhang, C.Y.[Chong-Yang],
Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection,
ICCV23(6780-6790)
IEEE DOI Code:
WWW Link. 2401
BibRef

Gula, T.[Tetiana], Bertoldo, J.P.C.[Joćo P. C.],
Gaussian Image Anomaly Detection with Greedy Eigencomponent Selection,
LXCV-ICCV23(4112-4120)
IEEE DOI 2401
BibRef

Chiu, L.L.[Li-Ling], Lai, S.H.[Shang-Hong],
Self-Supervised Normalizing Flows for Image Anomaly Detection and Localization,
VAND23(2927-2936)
IEEE DOI 2309
BibRef

Yousef, M.[Mohamed], Ackermann, M.[Marcel], Kurup, U.[Unmesh], Bishop, T.[Tom],
No Shifted Augmentations (NSA): Compact distributions for robust self-supervised Anomaly Detection,
WACV23(5500-5509)
IEEE DOI 2302
Representation learning, Measurement, Pollution, Costs, Source coding, Training data, Feature extraction, visual reasoning BibRef

Huang, C.Q.[Chao-Qin], Guan, H.Y.[Hao-Yan], Jiang, A.[Aofan], Zhang, Y.[Ya], Spratling, M.W.[Michael W.], Wang, Y.F.[Yan-Feng],
Registration Based Few-Shot Anomaly Detection,
ECCV22(XXIV:303-319).
Springer DOI 2211

WWW Link. BibRef

de Nardin, A.[Axel], Mishra, P.[Pankaj], Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Bringing Attention to Image Anomaly Detection,
PART22(115-126).
Springer DOI 2208
BibRef

Mishra, P.[Pankaj], Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Image Anomaly Detection by Aggregating Deep Pyramidal Representations,
IML20(705-718).
Springer DOI 2103
BibRef

Long, J.[Jun], Yang, Y.X.[Yu-Xi], Hua, L.[Liujie], Ou, Y.Q.[Yi-Qi],
Self-supervised Augmented Patches Segmentation for Anomaly Detection,
ACCV22(II:93-107).
Springer DOI 2307

WWW Link. BibRef

Ofir, N.[Nati], Yacobi, R.[Ran], Granoviter, O.[Omer], Levant, B.[Boris], Shtalrid, O.[Ore],
Automatic Defect Segmentation by Unsupervised Anomaly Learning,
ICIP22(306-310)
IEEE DOI 2211
Training, Image segmentation, Head, Shape, Manuals, Implants, Semiconductor device manufacture, Defect Segmentation, Contrastive Learning BibRef

Tian, H.[Huang], Li, X.[Xiang], Yang, L.F.[Ling-Feng], Li, J.[Jun], Yang, J.[Jian], Du, W.D.[Wei-Dong],
PPT: Anomaly Detection Dataset of Printed Products with Templates,
ICIP22(506-510)
IEEE DOI 2211
Printing, Industries, Visualization, Inspection, Benchmark testing, Kernel, Anomaly detection, dataset, printed product, template BibRef

Tsai, C.C.[Chin-Chia], Wu, T.H.[Tsung-Hsuan], Lai, S.H.[Shang-Hong],
Multi-Scale Patch-Based Representation Learning for Image Anomaly Detection and Segmentation,
WACV22(3065-3073)
IEEE DOI 2202
Representation learning, Training, Image segmentation, Image representation, Benchmark testing, Semi- and Un- supervised Learning BibRef

Tan, D.S.[Daniel Stanley], Chen, Y.C.[Yi-Chun], Chen, T.P.C.[Trista Pei-Chun], Chen, W.C.[Wei-Chao],
TrustMAE: A Noise-Resilient Defect Classification Framework using Memory-Augmented Auto-Encoders with Trust Regions,
WACV21(276-285)
IEEE DOI 2106
Training, Data collection, Noise robustness, Anomaly detection, Image reconstruction BibRef

Barata, A.P.[António Pereira], Takes, F.W.[Frank W.], van den Herik, H.J.[H. Jaap], Veenman, C.J.[Cor J.],
The eXPose Approach to Crosslier Detection,
ICPR21(2312-2319)
IEEE DOI 2105
Used for inspections of loads of waste for disposal. Supervised learning, Europe, Transportation, Companies, Tools, Task analysis, crosslier, anomaly, detection, visualisation BibRef

Ye, F.[Fei], Zheng, H.J.[Huang-Jie], Huang, C.Q.[Chao-Qin], Zhang, Y.[Ya],
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework,
ICIP21(1609-1613)
IEEE DOI 2201
Image processing, Benchmark testing, Linear programming, Entropy, Task analysis, Anomaly detection, Anomaly detection, entropy BibRef

Kwon, G.[Gukyeong], Prabhushankar, M.[Mohit], Temel, D.[Dogancan], Al Regib, G.[Ghassan],
Backpropagated Gradient Representations for Anomaly Detection,
ECCV20(XXI:206-226).
Springer DOI 2011
BibRef

Mishra, P.[Pankaj], Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Image Anomaly Detection by Aggregating Deep Pyramidal Representations,
IML20(705-718).
Springer DOI 2103
BibRef

Racki, D., Tomazevic, D., Skocaj, D.,
A Compact Convolutional Neural Network for Textured Surface Anomaly Detection,
WACV18(1331-1339)
IEEE DOI 1806
cellular neural nets, feature extraction, feedforward neural nets, image classification, Visualization BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Glass, Panes, Panels, Bottles .


Last update:Dec 17, 2025 at 15:38:33