Lee, J.S.[Jae Sung],
Lee, D.S.[Dong Soo],
Kim, S.K.[Seok-Ki],
Lee, S.K.[Sang-Kun],
Chung, J.K.[June-Key],
Lee, M.C.[Myung Chul],
Park, K.S.[Kwang Suk],
Localization of epileptogenic zones in F-18 FDG brain PET of patients
with temporal lobe epilepsy using artificial neural network,
MedImg(19), No. 4, April 2000, pp. 347-355.
IEEE Top Reference.
0110
BibRef
Baete, K.,
Nuyts, J.,
van Paesschen, W.,
Suetens, P.,
Dupont, P.,
Anatomical-based FDG-PET reconstruction for the detection of
hypo-metabolic regions in epilepsy,
MedImg(23), No. 4, April 2004, pp. 510-519.
IEEE Abstract.
0406
BibRef
Unsworth, C.P.,
Spowart, J.J.,
Lawson, G.,
Brown, J.K.,
Mulgrew, B.,
Minns, R.A.,
Clark, M.,
New hypothesis test: a repropagation method to test the applicability
of linear ICA to a given problem (highlighted by an EEG case study
applied to epilepsy),
VISP(152), No. 5, October 2005, pp. 545-552.
DOI Link
0512
BibRef
DeLorenzo, C.[Christine],
Papademetris, X.[Xenophon],
Staib, L.H.[Lawrence H.],
Vives, K.P.[Kenneth P.],
Spencer, D.D.[Dennis D.],
Duncan, J.S.[James S.],
Image-Guided Intraoperative Cortical Deformation Recovery Using Game
Theory: Application to Neocortical Epilepsy Surgery,
MedImg(29), No. 2, February 2010, pp. 322-338.
IEEE DOI
1002
BibRef
Earlier:
Nonrigid Intraoperative Cortical Surface Tracking Using Game Theory,
MMBIA07(1-8).
IEEE DOI
0710
See also Local Shape Registration Using Boundary-Constrained Match of Skeletons.
See also Estimation of 3-d left ventricular deformation from medical images using biomechanical models.
BibRef
Vazquez, D.M.,
Rubio, J.J.,
Pacheco, J.,
Characterisation framework for epileptic signals,
IET-IPR(6), No. 9, 2012, pp. 1227-1235.
DOI Link
1302
BibRef
Wang, J.[Jing],
Gao, X.Z.,
Guo, P.[Ping],
Feature extraction based on sparse representation with
application to epileptic EEG classification,
IJIST(23), No. 2, 2013, pp. 104-113.
DOI Link
1307
electroencephalogram signals, epilepsy seizures, seizure detection,
Bayesian decision rule
BibRef
Kumar, Y.[Yatindra],
Dewal, M.L.,
Anand, R.S.,
Epileptic seizures detection in EEG using DWT-based ApEn and artificial
neural network,
SIViP(8), No. 7, October 2014, pp. 1323-1334.
WWW Link.
1410
BibRef
Wang, Y.M.[Yue-Ming],
Qi, Y.[Yu],
Zhu, J.M.[Jun-Ming],
Zhang, J.M.[Jian-Min],
Wang, Y.W.[Yi-Wen],
Zheng, X.X.[Xiao-Xiang],
Wu, Z.H.[Zhao-Hui],
A Cauchy-Based State-Space Model for Seizure Detection in EEG
Monitoring Systems,
IEEE_Int_Sys(30), No. 1, January 2015, pp. 6-12.
IEEE DOI
1502
Biomedical monitoring
BibRef
Das, A.B.[Anindya Bijoy],
Bhuiyan, M.I.H.[Mohammed Imamul Hassan],
Alam, S.M.S.[S. M. Shafiul],
Classification of EEG signals using normal inverse Gaussian parameters
in the dual-tree complex wavelet transform domain for seizure detection,
SIViP(10), No. 1, February 2016, pp. 259-266.
Springer DOI
1601
BibRef
Erem, B.,
Hyde, D.E.,
Peters, J.M.,
Duffy, F.H.,
Warfield, S.K.,
Dynamic Electrical Source Imaging (DESI) of Seizures and Interictal
Epileptic Discharges Without Ensemble Averaging,
MedImg(36), No. 1, January 2017, pp. 98-110.
IEEE DOI
1701
Brain modeling
BibRef
Deivasigamani, S.,
Senthilpari, C.,
Yong, W.H.[Wong Hin],
Classification of focal and nonfocal EEG signals using ANFIS
classifier for epilepsy detection,
IJIST(26), No. 4, 2016, pp. 277-283.
DOI Link
1701
focal signals, epilepsy, epileptogenic area, wavelet, brain
BibRef
Sharma, M.[Manish],
Pachori, R.B.[Ram Bilas],
Acharya, U.R.[U. Rajendra],
A new approach to characterize epileptic seizures using analytic
time-frequency flexible wavelet transform and fractal dimension,
PRL(94), No. 1, 2017, pp. 172-179.
Elsevier DOI
1708
Electroencephalography
BibRef
Chen, S.N.[Sha-Nen],
Zhang, X.[Xi],
Yang, Z.X.[Zhi-Xian],
Epileptic seizure detection by combining robust-principal component
analysis and least square-support vector machine,
IJIST(27), No. 4, 2017, pp. 368-375.
DOI Link
1712
electroencephalogram, least square-support vector machine,
maximum cross-correlation,
seizure detection
BibRef
Guo, J.,
Yang, K.,
Liu, H.,
Yin, C.,
Xiang, J.,
Li, H.,
Ji, R.,
Gao, Y.,
A Stacked Sparse Autoencoder-Based Detector for Automatic
Identification of Neuromagnetic High Frequency Oscillations in
Epilepsy,
MedImg(37), No. 11, November 2018, pp. 2474-2482.
IEEE DOI
1811
Hafnium oxide, Detectors, Feature extraction, Machine learning,
Surgery, Epilepsy, Head, High-frequency oscillations, MEG, SSAE, brain,
detector
BibRef
Jothiraj, S.N.[Sairamya Nanjappan],
Selvaraj, T.G.[Thomas George],
Ramasamy, B.[Balakrishnan],
Deivendran, N.P.[Narain Ponraj],
Subathra, M.S.P.,
Classification of EEG signals for detection of epileptic seizure
activities based on feature extraction from brain maps using image
processing algorithms,
IET-IPR(12), No. 12, December 2018, pp. 2153-2162.
DOI Link
1812
BibRef
Yan, M.[Ming],
Liu, L.[Ling],
Basodi, S.[Sunitha],
Pan, Y.[Yi],
Multi-view learning for benign epilepsy with centrotemporal spikes,
IET-CV(13), No. 2, March 2019, pp. 109-116.
DOI Link
1902
BibRef
Onofrey, J.A.,
Staib, L.H.,
Papademetris, X.,
Segmenting the Brain Surface From CT Images With Artifacts Using
Locally Oriented Appearance and Dictionary Learning,
MedImg(38), No. 2, February 2019, pp. 596-607.
IEEE DOI
1902
Computed tomography, Image segmentation, Brain, Electrodes,
Magnetic resonance imaging, Surgery, Segmentation,
epilepsy
BibRef
Xie, L.,
Deng, Z.,
Xu, P.,
Choi, K.,
Wang, S.,
Generalized Hidden-Mapping Transductive Transfer Learning for
Recognition of Epileptic Electroencephalogram Signals,
Cyber(49), No. 6, June 2019, pp. 2200-2214.
IEEE DOI
1904
Brain modeling, Electroencephalography, Fuzzy neural networks,
Training, Data models, Learning systems,
transductive transfer learning
BibRef
Xu, H.,
Dong, M.,
Lee, M.,
O'Hara, N.,
Asano, E.,
Jeong, J.,
Objective Detection of Eloquent Axonal Pathways to Minimize
Postoperative Deficits in Pediatric Epilepsy Surgery Using Diffusion
Tractography and Convolutional Neural Networks,
MedImg(38), No. 8, August 2019, pp. 1910-1922.
IEEE DOI
1908
White matter, Epilepsy, Pediatrics, Surgery,
Functional magnetic resonance imaging, Visualization,
epilepsy surgery
BibRef
Thara, D.K.,
Prema Sudha, B.,
Fan, X.[Xiong],
Auto-detection of epileptic seizure events using deep neural network
with different feature scaling techniques,
PRL(128), 2019, pp. 544-550.
Elsevier DOI
1912
Deep neural network, Epilepsy, Seizure, Feature scaling, Loss
BibRef
Thara, D.K.,
Prema Sudha, B.,
Fan, X.[Xiong],
Epileptic seizure detection and prediction using stacked
bidirectional long short term memory,
PRL(128), 2019, pp. 529-535.
Elsevier DOI
1912
Epilepsy, Seizure, LSTM, Detection, Prediction, Deep learning
BibRef
Abdelhameed, A.M.,
Bayoumi, M.,
Semi-Supervised EEG Signals Classification System for Epileptic
Seizure Detection,
SPLetters(26), No. 12, December 2019, pp. 1922-1926.
IEEE DOI
2001
Electroencephalography, Feature extraction, Deep learning,
Epilepsy, Training, Classification, cross-validation, deep learning,
variational autoencoder
BibRef
Ramos-Aguilar, R.[Ricardo],
Olvera-López, J.A.[J. Arturo],
Olmos-Pineda, I.[Ivan],
Sánchez-Urrieta, S.[Susana],
Feature extraction from EEG spectrograms for epileptic seizure
detection,
PRL(133), 2020, pp. 202-209.
Elsevier DOI
2005
EEG signals, Short-time Fourier Transform, Spectrograms,
Feature Extraction, Seizure Classification
BibRef
Abdulhay, E.[Enas],
Elamaran, V.,
Chandrasekar, M.,
Balaji, V.S.,
Narasimhan, K.,
Automated diagnosis of epilepsy from EEG signals using ensemble
learning approach,
PRL(139), 2020, pp. 174-181.
Elsevier DOI
2011
Classification, EEG signal, Entropy, Epilepsy, Higher order spectra
BibRef
Ashokkumar, S.R.,
MohanBabu, G.,
Anupallavi, S.,
A novel two-band equilateral wavelet filter bank method for an
automated detection of seizure from EEG signals,
IJIST(30), No. 4, 2020, pp. 978-993.
DOI Link
2011
classification, electroencephalogram, epilepsy,
optimal equilateral wavelet filter banks, seizure
BibRef
Bee, M.K.M.[Mohamed Kasim Mariam],
Vidhya, K.[Krishnan],
An automated methodology for the classification of focal and nonfocal
EEG signals using a hybrid classification approach,
IJIST(30), No. 1, 2020, pp. 147-153.
DOI Link
2002
classification, decomposition, epilepsy, focal signal, hybrid
BibRef
Craley, J.,
Johnson, E.,
Venkataraman, A.,
A Spatio-Temporal Model of Seizure Propagation in Focal Epilepsy,
MedImg(39), No. 5, May 2020, pp. 1404-1418.
IEEE DOI
2005
Electroencephalography, Hidden Markov models, Brain modeling,
Feature extraction, Epilepsy, Time-domain analysis,
electroencephalography
BibRef
Zheng, L.,
Liao, P.,
Luo, S.,
Sheng, J.,
Teng, P.,
Luan, G.,
Gao, J.,
EMS-Net: A Deep Learning Method for Autodetecting Epileptic
Magnetoencephalography Spikes,
MedImg(39), No. 6, June 2020, pp. 1833-1844.
IEEE DOI
2006
Deep learning, convolutional neural network, epilepsy,
magnetoencephalography, spike detection
BibRef
Wu, M.[Min],
Wan, T.[Ting],
Wan, X.B.[Xiong-Bo],
Fang, Z.L.[Ze-Lin],
Du, Y.X.[Yu-Xiao],
A new localization method for epileptic seizure onset zones based on
time-frequency and clustering analysis,
PR(111), 2021, pp. 107687.
Elsevier DOI
2012
Epilepsy, Seizure onset zones, High-frequency oscillations,
Time-frequency analysis, Clustering analysis
BibRef
Malek, A.G.[Amirreza Geran],
Mansoori, M.[Mojtaba],
Omranpour, H.[Hesam],
Random forest and rotation forest ensemble methods for classification
of epileptic EEG signals based on improved 1D-LBP feature extraction,
IJIST(31), No. 1, 2021, pp. 189-203.
DOI Link
2102
1D-local binary patterns, EEG classification,
ensemble classification, epilepsy, feature extraction, rotation forest
BibRef
Nasiri, S.,
Clifford, G.D.,
Generalizable Seizure Detection Model Using Generating Transferable
Adversarial Features,
SPLetters(28), 2021, pp. 568-572.
IEEE DOI
2104
Training, Feature extraction, Electroencephalography,
Brain modeling, Robustness, Electrodes, Deep learning, EEG,
transferable features
BibRef
Srinath, R.[Rajagopalan],
Gayathri, R.[Rajagopal],
Detection and classification of electroencephalogram signals for
epilepsy disease using machine learning methods,
IJIST(31), No. 2, 2021, pp. 729-740.
DOI Link
2105
ANFIS, EEG, epilepsy diagnosis, NSCT, soft computing
BibRef
Ashokkumar, S.R.,
Anupallavi, S.,
Premkumar, M.,
Jeevanantham, V.,
Implementation of deep neural networks for classifying
electroencephalogram signal using fractional S-transform for
epileptic seizure detection,
IJIST(31), No. 2, 2021, pp. 895-908.
DOI Link
2105
deep neural networks, electroencephalogram, entropy, epilepsy,
fractional S-transform
BibRef
Mandal, S.[Sunandan],
Singh, B.K.[Bikesh Kumar],
Thakur, K.[Kavita],
Majority voting-based hybrid feature selection in machine learning
paradigm for epilepsy detection using EEG,
IJCVR(11), No. 4, 2021, pp. 385-400.
DOI Link
2108
BibRef
Banerjee, S.,
Dong, M.,
Lee, M.H.,
O'Hara, N.,
Juhasz, C.,
Asano, E.,
Jeong, J.W.,
Deep Relational Reasoning for the Prediction of Language Impairment
and Postoperative Seizure Outcome Using Preoperative DWI Connectome
Data of Children With Focal Epilepsy,
MedImg(40), No. 3, March 2021, pp. 793-804.
IEEE DOI
2103
Iron, Surgery, Epilepsy, Cognition, Pediatrics, Imaging, Brain modeling,
Diffusion-weighted imaging, convolutional neural network,
functional brain mapping
BibRef
Jia, G.Y.[Guang-Yu],
Lam, H.K.[Hak-Keung],
Althoefer, K.[Kaspar],
Variable weight algorithm for convolutional neural networks and its
applications to classification of seizure phases and types,
PR(121), 2022, pp. 108226.
Elsevier DOI
2109
Variable weight convolutional neural networks,
Machine learning, Seizure phase classification, Seizure type classification
BibRef
Zhang, G.[Geng],
Zhu, Q.[Qi],
Yang, J.[Jing],
Xu, R.[Ruting],
Zhang, Z.Q.[Zhi-Qiang],
Zhang, D.Q.[Dao-Qiang],
Functional Brain Connectivity Hyper-Network Embedded with Structural
Information for Epilepsy Diagnosis,
IJIG(22), No. 4, July 2022, pp. 2250029.
DOI Link
2208
BibRef
Hirano, R.[Ryoji],
Emura, T.[Takuto],
Nakata, O.[Otoichi],
Nakashima, T.[Toshiharu],
Asai, M.[Miyako],
Kagitani-Shimono, K.[Kuriko],
Kishima, H.[Haruhiko],
Hirata, M.[Masayuki],
Fully-Automated Spike Detection and Dipole Analysis of Epileptic MEG
Using Deep Learning,
MedImg(41), No. 10, October 2022, pp. 2879-2890.
IEEE DOI
2210
Epilepsy, Sensors, Estimation, Deep learning, Training data,
Image segmentation, Semantics, Magnetoencephalography (MEG), deep learning
BibRef
Tajmirriahi, M.[Mahnoosh],
Amini, Z.[Zahra],
Rabbani, H.[Hossein],
Logarithmic Moments for Mixture of Symmetric Alpha Stable Modelling,
SPLetters(29), 2022, pp. 2527-2531.
IEEE DOI
2301
Transforms, Mathematical models, Mixture models,
Signal processing algorithms, Sociology, Random variables,
epileptic signal
BibRef
Liu, Y.[Yang],
Zhou, H.[Huan],
Guan, M.[Min],
Feng, F.L.[Feng-Ling],
Duan, J.W.[Jun-Wei],
Scalp EEG-Based Automatic Detection of Epileptiform Events via Graph
Convolutional Network and Bi-Directional LSTM Co-Embedded Broad
Learning System,
SPLetters(30), 2023, pp. 448-452.
IEEE DOI
2305
Feature extraction, Electroencephalography, Brain modeling,
Bidirectional control, Recording, Convolution, Annotations,
graph convolutinal networks
BibRef
Lan, Q.X.[Qi-Xin],
Yao, B.[Bin],
Qing, T.[Tao],
Epileptic Seizure Prediction Using Convolutional Neural Networks and
Fusion Features on Scalp EEG Signals,
IEICE(E106-D), No. 5, May 2023, pp. 821-823.
WWW Link.
2305
BibRef
Xu, T.[Tao],
Wu, Y.J.[Ya-Jing],
Tang, Y.Q.[Yong-Qiang],
Zhang, W.S.[Wen-Sheng],
Cui, Z.H.[Zhi-Hua],
Dynamic Functional Connectivity Neural Network for Epileptic Seizure
Prediction Using Multi-Channel EEG Signal,
SPLetters(31), 2024, pp. 1499-1503.
IEEE DOI
2406
Electroencephalography, Feature extraction,
Convolutional neural networks, Brain modeling, Epilepsy, deep learning
BibRef
Visalini, K.,
Alagarsamy, S.[Saravanan],
Raja, S.P.,
Detecting Epileptic Seizures Using Symplectic Geometry
Decomposition-Based Features and Gaussian Deep Boltzmann Machines,
IJIG(24), No. 4, July 2024, pp. 2450044.
DOI Link
2408
BibRef
Marques, M.[Miguel],
da Silva Lourenço, C.[Catarina],
Teixeira, L.F.[Luís F.],
Detection of Epilepsy in EEGs Using Deep Sequence Models:
A Comparative Study,
IbPRIA22(192-203).
Springer DOI
2205
BibRef
Hussein, R.[Ramy],
Lee, S.[Soojin],
Ward, R.[Rabab],
McKeown, M.J.[Martin J.],
Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural
Network Architecture,
ICPR21(5436-5443)
IEEE DOI
2105
Time-frequency analysis, Sensitivity, Image resolution,
Convolution, Shape, Epilepsy, Machine learning
BibRef
Chen, X.,
Zheng, Y.,
Niu, Y.,
Li, C.,
Epilepsy Classification for Mining Deeper Relationships between EEG
Channels based on GCN,
CVIDL20(701-706)
IEEE DOI
2102
convolutional neural nets, electroencephalography,
medical disorders, medical signal processing, neurophysiology,
Biosignal processing
BibRef
Aminpour, A.[Azad],
Ebrahimi, M.[Mehran],
Widjaja, E.[Elysa],
Lesion Localization in Paediatric Epilepsy Using Patch-based
Convolutional Neural Network,
ICIAR20(II:216-227).
Springer DOI
2007
BibRef
Hoyos-Osorio, K.[Keider],
Álvarez, A.M.[Andrés M.],
Orozco, Á.A.[Álvaro A.],
Rios, J.I.[Jorge I.],
Daza-Santacoloma, G.[Genaro],
Clustering-Based Undersampling to Support Automatic Detection of Focal
Cortical Dysplasias,
CIARP17(298-305).
Springer DOI
1802
BibRef
Beserra, F.S.[Fernando S.],
Raimundo, M.M.[Marcos M.],
von Zuben, F.J.[Fernando J.],
Ensembles of Multiobjective-Based Classifiers for Detection of
Epileptic Seizures,
CIARP17(575-583).
Springer DOI
1802
BibRef
Farazi, M.,
Soltanian-Zadeh, H.,
Shape analysis of hippocampus in temporal lobe epilepsy using Signed
Poisson Mapping,
IPRIA17(118-122)
IEEE DOI
1712
biomedical MRI, computational geometry, diseases,
image classification, learning (artificial intelligence),
temporal lobe epilepsy
BibRef
Dasgupta, A.[Abhijit],
Nayak, L.[Losiana],
Das, R.[Ritankar],
Basu, D.[Debasis],
Chandra, P.[Preetam],
De, R.K.[Rajat K.],
Feature Selection and Fuzzy Rule Mining for Epileptic Patients from
Clinical EEG Data,
PReMI17(87-95).
Springer DOI
1711
BibRef
Quintero-Rincón, A.,
Prendes, J.,
Pereyra, M.,
Batatia, H.,
Risk, M.,
Multivariate Bayesian classification of epilepsy EEG signals,
IVMSP16(1-5)
IEEE DOI
1608
Bayes methods
BibRef
Sathyanarayana, S.[Supriya],
Satzoda, R.K.[Ravi Kumar],
Sathyanarayana, S.[Suchitra],
Thambipillai, S.[Srikanthan],
Identifying epileptic seizures based on a template-based eyeball
detection technique,
ICIP15(4689-4693)
IEEE DOI
1512
epileptic seizure; eyeball detection; vision-based monitoring
BibRef
Boubchir, L.[Larbi],
Al-Maadeed, S.[Somaya],
Bouridane, A.[Ahmed],
Cherif, A.A.[Arab Ali],
Classification of EEG signals for detection of epileptic seizure
activities based on LBP descriptor of time-frequency images,
ICIP15(3758-3762)
IEEE DOI
1512
EEG
BibRef
Mahmoudi, F.[Fariborz],
Nazem-Zadeh, M.R.[Mohammad-Reza],
Bagher-Ebadian, H.[Hassan],
Schwalb, J.M.[Jason M.],
Soltanian-Zadeh, H.[Hamid],
Roles of Various Brain Structures on Non-Invasive Lateralization of
Temporal Lobe Epilepsy,
ISVC14(II: 32-40).
Springer DOI
1501
BibRef
da Silva, N.M.[Nádia Moreira],
Rego, R.[Ricardo],
Silva Cunha, J.P.[João Paulo],
3D Multimodal Visualization of Subdural Electrodes with Cerebellum
Removal to Guide Epilepsy Resective Surgery Procedures,
ICIAR14(II: 167-174).
Springer DOI
1410
BibRef
Ahmad, M.A.[Malik Anas],
Khan, N.A.[Nadeem Ahmad],
Majeed, W.[Waqas],
Computer Assisted Analysis System of Electroencephalogram for
Diagnosing Epilepsy,
ICPR14(3386-3391)
IEEE DOI
1412
Accuracy
BibRef
Shaker, M.[Matineh],
Soltanian-Zadeh, H.[Hamid],
Voxel-Based Morphometric Study of Brain Regions from Magnetic Resonance
Images in Temporal Lobe Epilepsy,
Southwest08(209-212).
IEEE DOI
0803
BibRef
Shen, T.W.[Tsu-Wang],
Kuo, X.[Xavier],
Yu, C.S.[Chung-Shan],
Intelligence computing approach for seizure detection based on
intracranial electroencephalogram (IEEG),
ICPR08(1-4).
IEEE DOI
0812
BibRef
Sahin, C.[Cenk],
Ogulata, S.N.[Seyfettin Noyan],
Aslan, K.[Kezban],
Bozdemir, H.[Hacer],
The Application of Neural Networks in Classification of Epilepsy Using
EEG Signals,
BVAI07(499-508).
Springer DOI
0710
BibRef
Jing, M.[Min],
Sanei, S.[Saeid],
Scanner Artifact Removal in Simultaneous EEG-fMRI for Epileptic Seizure
Prediction,
ICPR06(III: 722-725).
IEEE DOI
0609
BibRef
Fernandes, J.M.[José Maria],
Leal, A.[Alberto],
Silva Cunha, J.P.[João Paulo],
EpiGauss: Spatio-temporal Characterization of Epiletogenic Activity
Applied to Hypothalamic Hamartomas,
ICIAR06(II: 680-690).
Springer DOI
0610
BibRef
Duchesne, S.,
Bernasconi, N.,
Bernasconi, A.,
Collins, D.L.,
On the classification of temporal lobe epilepsy using MR image
appearance,
ICPR02(I: 520-523).
IEEE DOI
0211
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Heart, Cardiac Applications .