20.9.5 Brain, Stroke, Ischemic Stroke

Chapter Contents (Back)
Brain. Cortex. Stroke Detection.

Clay, M.T., Ferree, T.C.,
Weighted regularization in electrical impedance tomography with applications to acute cerebral stroke,
MedImg(21), No. 6, June 2002, pp. 629-637.
IEEE Top Reference. 0208
BibRef

Schormann, T., Kraemer, M.,
Voxel-guided morphometry ('VGM') and application to stroke,
MedImg(22), No. 1, January 2003, pp. 62-74.
IEEE Top Reference. 0304
BibRef

Charalampidis, D., Pascotto, M., Kerut, E.K., Lindner, J.R.,
Anatomy and Flow in Normal and Ischemic Microvasculature Based on a Novel Temporal Fractal Dimension Analysis Algorithm Using Contrast Enhanced Ultrasound,
MedImg(25), No. 8, August 2006, pp. 1079-1086.
IEEE DOI 0608
BibRef

Tan, T.L., Sim, K.S., Tso, C.P., Chong, A.K.,
Contrast enhancement of computed tomography images by adaptive histogram equalization-application for improved ischemic stroke detection,
IJIST(22), No. 3, September 2012, pp. 153-160.
DOI Link 1208
BibRef

Bae, K.T.[Kyongtae Ty], Park, S.H.[Sung-Hong], Shim, H.[Hackjoon], Moon, C.H.[Chan-Hong], Kim, J.H.[Jung-Hwan], Nemoto, E.M.[Edwin M.],
Application of compatible dual-echo arteriovenography in stroke: Preliminary observations,
IJIST(23), No. 2, 2013, pp. 152-156.
DOI Link 1307
stroke, compatible dual-echo arteriovenography, vessel enhancement filtering, susceptibility weighted imaging, time-of-flight, blood oxygenation level-dependent, angiogram, venogram BibRef

Mamatjan, Y.[Yasin],
Imaging of hemorrhagic stroke in magnetic induction tomography: An in vitro study,
IJIST(24), No. 2, 2014, pp. 161-166.
DOI Link 1405
magnetic induction tomography BibRef

Wen, B.[Bo], Ma, L.[Lin], Weng, C.S.[Chang-Shui],
The impact of constraint induced movement therapy on brain activation in chronic stroke patients with upper extremity paralysis: An fMRI study,
IJIST(24), No. 3, 2014, pp. 270-275.
DOI Link 1408
fMRI, brain reorganization, CIMT, stroke BibRef

Park, S.I.[Sang-In], Lee, J.H.[Jin-Hee], Chung, Y.A.[Yong-An], Park, M.S.[Moon-Seo], Sunwoo, H.[Hyun], Lee, K.S.[Kwan-Sung], Sunwoo, Y.Y.[Yun-Young],
The neuroprotective effect of a traditional herbal (kyung-ok-ko) on transient middle cerebral artery occlusion-Induced ischemic rat brain,
IJIST(25), No. 2, 2015, pp. 131-138.
DOI Link 1506
stroke, transient ischemia, MCAO, Kyung-ok-ko, herb medicine BibRef

Menze, B.H., van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., Gruber, P., Wegener, S., Weber, M.A., Székely, G., Ayache, N., Golland, P.,
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation: With Application to Tumor and Stroke,
MedImg(35), No. 4, April 2016, pp. 933-946.
IEEE DOI 1604
Gaussian processes BibRef

Jang, J.H.[Jin-Hee], Ahn, K.J.[Kook-Jin], Kim, B.Y.[Bom-Yi], Porter, D.[David], Stemmer, A.[Alto], Choi, H.S.[Hyun Seok], Jung, S.L.[So-Lyung], Kim, B.S.[Bum-Soo],
The usefulness of diffusion-weighted readout-segmented EPI and fast spin echo with BLADE (PROPELLER) k-space sampling: A comparison with single-shot EPI for diffusion-weighted imaging in ischemic stroke patients,
IJIST(26), No. 3, 2016, pp. 216-224.
DOI Link 1609
acute ischemic stroke BibRef

Karthik, R., Menaka, R.,
A critical appraisal on wavelet based features from brain MR images for efficient characterization of ischemic stroke injuries,
ELCVIA(15), No. 3, 2016, pp. 1.
DOI Link 1701
Ischemic Stroke, Watershed transformation, Discrete Wavelet, Feature statistics BibRef

Wang, L.[Lulu],
Electromagnetic induction holography imaging for stroke detection,
JOSA-A(34), No. 2, February 2017, pp. 294-298.
DOI Link 1702
Image reconstruction techniques BibRef

Sivakumar, P., Ganeshkumar, P.,
An efficient automated methodology for detecting and segmenting the ischemic stroke in brain MRI images,
IJIST(27), No. 3, 2017, pp. 265-272.
DOI Link 1708
brain stroke, classification, ischemic stroke, morphological features, , texture, features BibRef

Zhang, R., Zhao, L., Lou, W., Abrigo, J.M., Mok, V.C.T., Chu, W.C.W., Wang, D., Shi, L.,
Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets,
MedImg(37), No. 9, September 2018, pp. 2149-2160.
IEEE DOI 1809
Lesions, Image segmentation, Biomedical imaging, Solid modeling, deep learning BibRef

Choi, W.J., Li, Y., Wang, R.K.,
Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,
MedImg(38), No. 6, June 2019, pp. 1427-1437.
IEEE DOI 1906
Imaging, Mice, Scattering, Injuries, Blood, Attenuation, Acute ischemic stroke, hemodynamic and tissue scattering responses BibRef

Ho, K.C., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., Arnold, C.W.,
A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging,
MedImg(38), No. 7, July 2019, pp. 1666-1676.
IEEE DOI 1907
Deep learning, Stroke (medical condition), Feature extraction, Magnetic resonance imaging, Biomedical imaging, Deep learning, MR perfusion imaging BibRef

Anbumozhi, S.[Selladurai],
Computer aided detection and diagnosis methodology for brain stroke using adaptive neuro fuzzy inference system classifier,
IJIST(30), No. 1, 2020, pp. 196-202.
DOI Link 2002
diagnosis, features, impulse noise, skull, stroke BibRef

Doke, P.[Piyush], Shrivastava, D.[Dhiraj], Pan, C.[Chichun], Zhou, Q.H.[Qing-Hua], Zhang, Y.D.[Yu-Dong],
Using CNN with Bayesian optimization to identify cerebral micro-bleeds,
MVA(31), No. 5, July 2020, pp. Article36.
Springer DOI 2006
BibRef

Xiang, J., Dong, Y., Yang, Y.,
Multi-Frequency Electromagnetic Tomography for Acute Stroke Detection Using Frequency-Constrained Sparse Bayesian Learning,
MedImg(39), No. 12, December 2020, pp. 4102-4112.
IEEE DOI 2012
Coils, Conductivity, Tomography, Sensitivity, Image reconstruction, Data models, Acute stroke, electromagnetic tomography, sparse Bayesian learning BibRef

Xiao, W.[Wei], Gao, Q.[Qian], Kumar, R.[Rahul], Yu, C.L.E.[C. L. Edwin], Ho, Y.E.J.[Y. E. Janice], Sheykhahmad, F.R.[Fatima Rashid],
Implementation of convolutional neural network categorizers in coronary ischemia detection,
IJIST(31), No. 1, 2021, pp. 313-326.
DOI Link 2102
cardiac artery illness, convolutional neural networks categorizers, software-based detection BibRef

Su, R.[Ruisheng], Cornelissen, S.A.P.[Sandra A. P.], van der Sluijs, M.[Matthijs], van Es, A.C.G.M.[Adriaan C. G. M.], van Zwam, W.H.[Wim H.], Dippel, D.W.J.[Diederik W. J.], Lycklama, G.[Geert], van Doormaal, P.J.[Pieter Jan], Niessen, W.J.[Wiro J.], van der Lugt, A.[Aad], van Walsum, T.[Theo],
autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients,
MedImg(40), No. 9, September 2021, pp. 2380-2391.
IEEE DOI 2109
Biomedical imaging, Imaging, Visualization, Radiology, Motion segmentation, Image segmentation, Brain, Stroke, DSA, autoTICI, MR CLEAN Registry BibRef

Zhang, L.[Long], Zhu, C.[Chuang], Wu, Y.W.[Yue-Wei], Yang, Y.[Yang], Luo, Y.H.[Yi-Hao], Song, R.N.[Ruo-Ning], Liu, L.[Lian], Yang, J.[Jie],
SFCN: Symmetric feature comparison network for detecting ischemic stroke lesions on CT images,
IET-IPR(15), No. 12, 2021, pp. 2818-2832.
DOI Link 2109
BibRef

Zhu, J.Y.[Jing-Yi], Liu, C.[Chao], Liu, Y.[Yan], Chen, J.B.[Jiang-Bo], Zhang, Y.[Yachao], Yao, K.[Kuanming], Wang, L.[Lidai],
Self-Fluence-Compensated Functional Photoacoustic Microscopy,
MedImg(40), No. 12, December 2021, pp. 3856-3866.
IEEE DOI 2112
Optical imaging, Biomedical optical imaging, Optical attenuators, Optical scattering, Optical saturation, Adaptive optics, ischemic stroke BibRef

Guo, L., Nguyen-Trong, N., AI-Saffar, A., Stancombe, A., Bialkowski, K., Abbosh, A.,
Calibrated Frequency-Division Distorted Born Iterative Tomography for Real-Life Head Imaging,
MedImg(41), No. 5, May 2022, pp. 1087-1103.
IEEE DOI 2205
Antenna measurements, Radio frequency, Transmitting antennas, Phantoms, Tomography, Microwave theory and techniques, stroke imaging BibRef

Zhao, B.[Bin], Liu, Z.[Zhiyang], Liu, G.H.[Guo-Hua], Wu, M.[Mengran], Cao, C.[Chen], Jin, S.[Song], Wu, H.[Hong], Ding, S.[Shuxue],
Combine unlabeled with labeled MR images to measure acute ischemic stroke lesion by stepwise learning,
IET-IPR(16), No. 14, 2022, pp. 3965-3976.
DOI Link 2212
BibRef


Upadhyay, U.[Ujjwal], Ranjan, M.[Mukul], Golla, S.[Satish], Tanamala, S.[Swetha], Sreenivas, P.[Preetham], Chilamkurthy, S.[Sasank], Pandian, J.[Jeyaraj], Tarpley, J.[Jason],
Deep-aspects: A Segmentation-assisted Model for Stroke Severity Measurement,
MCV22(330-339).
Springer DOI 2304
BibRef

Wan, Q.[Qin], Kuang, Z.[Zhuo], Deng, X.[Xianbo], Yu, L.[Li],
BGSNet: Bidirectional-Guided Semi-3D Network for Prediction of Hematoma Expansion,
ICIP22(1106-1110)
IEEE DOI 2211
Training, Deep learning, Visualization, Solid modeling, Predictive models, Feature extraction, Prediction, Attention mechanism BibRef

Kalmutskiy, K.[Kirill], Tulupov, A.[Andrey], Berikov, V.[Vladimir],
Recognition of Tomographic Images in the Diagnosis of Stroke,
IMTA20(166-171).
Springer DOI 2103
BibRef

Bensalah, A.[Asma], Chen, J.[Jialuo], Fornés, A.[Alicia], Carmona-Duarte, C.[Cristina], Lladós, J.[Josep], Ferrer, M.Á.[Miguel Ángel],
Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches,
AIHA20(476-489).
Springer DOI 2103
BibRef

Wang, Y., Wang, H., Chen, S., Katsaggelos, A.K., Martersteck, A., Higgins, J., Hill, V.B., Parrish, T.B.,
A 3D Cross-Hemisphere Neighborhood Difference Convnet for Chronic Stroke Lesion Segmentation,
ICIP19(1545-1549)
IEEE DOI 1910
stroke lesion segmentation, brain symmetry, convolutional neural networks BibRef

Ho, K.C., Scalzo, F., Sarma, K.V., El-Saden, S., Arnold, C.W.,
A temporal deep learning approach for MR perfusion parameter estimation in stroke,
ICPR16(1315-1320)
IEEE DOI 1705
Biological neural networks, Biological tissues, Convolution, Deconvolution, Estimation, Imaging, Parameter, estimation BibRef

Yahiaoui, A.F.Z., Bessaid, A.,
Segmentation of ischemic stroke area from CT brain images,
ISIVC16(13-17)
IEEE DOI 1704
Band-pass filters BibRef

Wang, Y., Katsaggelos, A.K., Wang, X., Parrish, T.B.,
A deep symmetry convnet for stroke lesion segmentation,
ICIP16(111-115)
IEEE DOI 1610
Biological neural networks BibRef

Giacalone, M., Frindel, C., Robini, M., Rousseau, D.,
Interest of non-negativity constraint in perfusion DSC-MRI deconvolution for acute stroke,
WSSIP16(1-4)
IEEE DOI 1608
biomedical MRI BibRef

O'Reilly, C.[Christian], Plamondon, R.[Rejean],
Looking for the brain stroke signature,
ICPR12(1811-1814).
WWW Link. 1302
BibRef

Mujumdar, S.[Shashank], Varma, R., Kishore, L.T.,
A novel framework for segmentation of stroke lesions in Diffusion Weighted MRI using multiple b-value data,
ICPR12(3762-3765).
WWW Link. 1302
BibRef

Scalzo, F.[Fabien], Hao, Q.[Qing], Alger, J.R.[Jeffrey R.], Hu, X.[Xiao], Liebeskind, D.S.[David S.],
Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models,
ISVC10(II: 292-301).
Springer DOI 1011
BibRef

Scalzo, F.[Fabien], Hao, Q.[Qing], Walczak, A.M.[Alan M.], Hu, X.[Xiao], Hoi, Y.[Yiemeng], Hoffmann, K.R.[Kenneth R.], Liebeskind, D.S.[David S.],
Computational Hemodynamics in Intracranial Vessels Reconstructed from Biplane Angiograms,
ISVC10(III: 359-367).
Springer DOI 1011
BibRef

Chang, T.C.[Tzyh-Chyang], Lee, J.D.[Jiann-Der], Huang, C.H.[Chung-Hsien], Wu, T.[Tony], Chen, C.J.[Chi-Jen], Wu, S.J.[Shwu-Jiuan],
The Diagnostic Application of Brain Image Processing and Analysis System for Ischemic Stroke,
ISVC06(II: 31-38).
Springer DOI 0611
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain Development Analysis, Infant Brain .


Last update:Jun 1, 2023 at 10:05:03