**Open Deep Learning Toolkit for Robotics (OpenDR)**,

2021.

WWW Link.
*Code, Deep Learning*.

WWW Link.
**2201**

The toolkit provides more than 20 methods, for human pose estimation,
face detection, recognition, facial expression recognition, semantic
and panoptic segmentation, video and skeleton-based action
recognition, image, multimodal and point cloud-based object detection,
2D and 3D object tracking, speech command recognition, heart anomaly
detection, navigation for wheeled robots, and grasping.

*Schwartz, S.R.*,
*Wah, B.W.[Benjamin W.]*,

**Machine Learning of Computer Vision Algorithms**,

*HPRIP-CV94*(319-359).
BibRef
**9400**

*Fu, K.S.*, ed.,

**Pattern Recognition and Machine Learning**,

*Plenum*Press, New York, 1971.
BibRef
**7100**

*Bhanu, B.*,
*Poggio, T.*,

**Introduction to the Special Section on Learning in Computer Vision**,

*PAMI(16)*, No. 9, September 1994, pp. 865-867.

IEEE Top Reference.
BibRef
**9409**

*Bhanu, B.*,
*Peng, J.*,
*Huang, T.*,
*Draper, B.*,

**Introduction to the Special Issue on Learning in Computer Vision and
Pattern Recognition**,

*SMC-B(35)*, No. 3, June 2005, pp. 391-396.

IEEE DOI
**0508**

BibRef

*Vapnik, V.*,

**The Nature of Statistical Learning Theory**,

*Springer-Verlag*1996.
BibRef
**9600**

*Vapnik, V.*,

**Statistical Learning Theory**,

John
*Wiley*& Sons, 1998.
BibRef
**9800**

*Vapnik, V.[Vladimir]*,

**An overview of statistical learning theory**,

*TNN(10)*, No. 5, 1999, pp. 988-999.
**0906**

BibRef

*Dietterich, T.G.*,

**Machine Learning Research: Four Current Directions**,

*AI Magazine(18)*, No. 4, 1997, pp. 97-136.
BibRef
**9700**

*Poggio, T.[Tomaso]*,
*Shelton, C.R.[Christian R.]*,

**Machine Learning, Machine Vision, and the Brain**,

*AIMag(20)*, No. 3, Fall 1999, pp. 37-55.
*Regularization*.
*Support Vector Machines*.
*Survey, Learning*. Survey of learning focused on a vision domain.
Regularization, Support Vector Machines. Applied to face and
pedestrian recognition.
BibRef
**9900**

*Petrou, M.[Maria]*,

**Learning in Pattern Recognition: Some Thoughts**,

*PRL(22)*, No. 1, January 2001, pp. 3-13.

Elsevier DOI
**0105**

BibRef

*Petrou, M.[Maria]*,

**Learning in Computer Vision: Some Thoughts**,

*CIARP07*(1-12).

Springer DOI
**0711**

BibRef

*Xu, M.[Mai]*,
*Petrou, M.[Maria]*,

**3D Scene interpretation by combining probability theory and logic:
The tower of knowledge**,

*CVIU(115)*, No. 11, November 2011, pp. 1581-1596.

Elsevier DOI
**1110**

BibRef

Earlier:

**Learning Logic Rules for Scene Interpretation Based on Markov Logic
Networks**,

*ACCV09*(III: 341-350).

Springer DOI
**0909**

BibRef

Earlier:

**Recursive Tower of Knowledge for Learning to Interpret Scenes**,

*BMVC08*(xx-yy).

PDF File.
**0809**

Scene labelling systems; Logic and probabilities; Machine learning;
System architecture
BibRef

*Xu, M.[Mai]*,
*Wang, Z.[Zulin]*,
*Petrou, M.[Maria]*,

**Tower of Knowledge for scene interpretation: A survey**,

*PRL(48)*, No. 1, 2014, pp. 42-48.

Elsevier DOI
**1410**

Tower of Knowledge.
Cue of human language, for scene interpretation
BibRef

*Freeman, W.T.[William T.]*,
*Perona, P.[Pietro]*,
*Schölkopf, B.[Bernhard]*,

**Guest Editorial Machine Learning for Vision**,

*IJCV(77)*, No. 1-3, May 2008, pp. 1.

Springer DOI
**0803**

BibRef

*Raducanu, B.[Bogdan]*,
*Vitria, J.[Jordi]*,

**Learning to learn: From smart machines to intelligent machines**,

*PRL(29)*, No. 8, 1 June 2008, pp. 1024-1032.

Elsevier DOI
**0804**

BibRef

Earlier:

**Online Learning for Human-Robot Interaction**,

*Learning07*(1-7).

IEEE DOI
**0706**

Incremental subspace learning based on
Nonparametric Discriminant Analysis.
Number of classes and samples not known and changes over time.
Intelligent systems; Cognitive development; Context; Social robotics;
Face recognition
BibRef

*Raducanu, B.[Bogdan]*,
*Vitria, J.[Jordi]*,
*Leonardis, A.[Ales]*,

**Online pattern recognition and machine learning techniques for
computer-vision: Theory and applications**,

*IVC(28)*, No. 7, July 2010, pp. 1063-1064.

Elsevier DOI
**1006**

Introduction to special issue.
BibRef

*Ioannidou, A.[Anastasia]*,
*Chatzilari, E.[Elisavet]*,
*Nikolopoulos, S.[Spiros]*,
*Kompatsiaris, I.[Ioannis]*,

**Deep Learning Advances in Computer Vision with 3D Data: A Survey**,

*Surveys(50)*, No. 2, June 2017, pp. Article No 20.

DOI Link
**1708**

*Survey, Deep Learning*. This article surveys methods applying deep learning on 3D data and
provides a classification based on how they exploit them. From the
results of the examined works, we conclude that systems employing 2D
views of 3D data typically surpass voxel-based (3D) deep models, which
however, can perform better with more layers and severe data
augmentation. Therefore, larger-scale datasets and increased
resolutions are required.
BibRef

*McCann, M.T.*,
*Jin, K.H.*,
*Unser, M.*,

**Convolutional Neural Networks for Inverse Problems in Imaging:
A Review**,

*SPMag(34)*, No. 6, November 2017, pp. 85-95.

IEEE DOI
**1712**

*Survey, Convolutional Neural Networks*. Computed tomography, Image reconstruction, Image resolution,
Image segmentation, Inverse problems, Linear programming,
Noise reduction
BibRef

*Jin, K.H.*,
*McCann, M.T.*,
*Froustey, E.*,
*Unser, M.*,

**Deep Convolutional Neural Network for Inverse Problems in Imaging**,

*IP(26)*, No. 9, September 2017, pp. 4509-4522.

IEEE DOI
**1708**

computerised tomography, feedforward neural nets,
image resolution, iterative methods,
learning (artificial intelligence), medical image processing,
BibRef

*Arulkumaran, K.*,
*Deisenroth, M.P.*,
*Brundage, M.*,
*Bharath, A.A.*,

**Deep Reinforcement Learning: A Brief Survey**,

*SPMag(34)*, No. 6, November 2017, pp. 26-38.

IEEE DOI
**1712**

*Survey, Deep Learning*. Artificial intelligence, Learning (artificial intelligence),
Machine learning, Neural networks, Signal processing algorithms, Visualization
BibRef

*Fawzi, A.[Alhussein]*,
*Moosavi-Dezfooli, S.M.[Seyed-Mohsen]*,
*Frossard, P.[Pascal]*,

**The Robustness of Deep Networks: A Geometrical Perspective**,

*SPMag(34)*, No. 6, November 2017, pp. 50-62.

IEEE DOI
**1712**

Classification, Machine learning, Neural networks, Robustness, Visualization
BibRef

*Darrell, T.J.*,
*Lampert, C.*,
*Sebe, N.*,
*Wu, Y.*,
*Yan, Y.*,

**Guest Editors' Introduction to the Special Section on Learning with
Shared Information for Computer Vision and Multimedia Analysis**,

*PAMI(40)*, No. 5, May 2018, pp. 1029-1031.

IEEE DOI
**1804**

Collaboration, Information sharing,
Learning systems, Machine learning, Multimedia communication,
Training data
BibRef

*Nagy, G.[George]*,

**Document analysis systems that improve with use**,

*IJDAR(23)*, No. 1, January 2020, pp. 13-29.

WWW Link.
**2003**

BibRef

Earlier:

**Estimation, Learning, and Adaptation: Systems That Improve with Use**,

*SSSPR12*(1-10).

Springer DOI
**1211**

BibRef

Earlier:

**Persistent Issues in Learning and Estimation**,

*ICPR98*(Vol I: 561-564).

IEEE DOI
**9808**

BibRef

*Qin, H.T.[Hao-Tong]*,
*Gong, R.H.[Rui-Hao]*,
*Liu, X.L.[Xiang-Long]*,
*Bai, X.[Xiao]*,
*Song, J.K.[Jing-Kuan]*,
*Sebe, N.[Nicu]*,

**Binary neural networks: A survey**,

*PR(105)*, 2020, pp. 107281.

Elsevier DOI
**2006**

Binary neural network, Deep learning, Model compression,
Network quantization, Model acceleration
BibRef

*Serban, A.[Alex]*,
*Poll, E.[Erik]*,
*Visser, J.[Joost]*,

**Adversarial Examples on Object Recognition: A Comprehensive Survey**,

*Surveys(53)*, No. 3, June 2020, pp. xx-yy.

DOI Link
**2007**

*Survey, Adversairal Networks*. security, robustness, machine learning, Adversarial examples
BibRef

*Goodfellow, I.[Ian]*,
*Pouget-Abadie, J.[Jean]*,
*Mirza, M.[Mehdi]*,
*Xu, B.[Bing]*,
*Warde-Farley, D.[David]*,
*Ozair, S.[Sherjil]*,
*Courville, A.[Aaron]*,
*Bengio, Y.[Yoshua]*,

**Generative Adversarial Networks**,

*CACM(63)*, No. 11, November 2020, pp. 139-144.

DOI Link
**2010**

*Survey, GAN*.
BibRef

*Wang, Z.W.[Zheng-Wei]*,
*She, Q.[Qi]*,
*Ward, T.E.[Tomas E.]*,

**Generative Adversarial Networks in Computer Vision:
A Survey and Taxonomy**,

*Surveys(54)*, No. 2, February 2021, pp. xx-yy.

DOI Link
**2104**

*Survey, GAN*. Generative adversarial networks, loss-variants,
stabilizing training, architecture-variants
BibRef

*Das, R.[Rangan]*,
*Sen, S.[Sagnik]*,
*Maulik, U.[Ujjwal]*,

**A Survey on Fuzzy Deep Neural Networks**,

*Surveys(53)*, No. 3, May 2020, pp. xx-yy.

DOI Link
**2007**

*Survey, Deep Networks*. parallel models, integrated models, sequential models,
ensemble models, fuzzy systems, Deep architecture
BibRef

*Wang, H.[Hao]*,
*Yeung, D.Y.[Dit-Yan]*,

**A Survey on Bayesian Deep Learning**,

*Surveys(53)*, No. 5, September 2020, pp. xx-yy.

DOI Link
**2010**

generative models, Deep learning, Bayesian networks,
probabilistic graphical models
BibRef

*Samek, W.*,
*Montavon, G.*,
*Lapuschkin, S.*,
*Anders, C.J.*,
*Müller, K.R.*,

**Explaining Deep Neural Networks and Beyond:
A Review of Methods and Applications**,

*PIEEE(109)*, No. 3, March 2021, pp. 247-278.

IEEE DOI
**2103**

*Survey, Deep Learning*. Deep learning, Systematics, Neural networks,
Artificial intelligence, Machine learning, Unsupervised learning,
neural networks
BibRef

*Saxena, D.[Divya]*,
*Cao, J.N.[Jian-Nong]*,

**Generative Adversarial Networks (GANs):
Challenges, Solutions, and Future Directions**,

*Surveys(54)*, No. 3, May 2021, pp. xx-yy.

DOI Link
**2106**

*Survey, GAN*. GANs variants, GANs Survey, Image generation,
GANs challenges, GANs, mode collapse, deep Generative models
BibRef

*Jabbar, A.[Abdul]*,
*Li, X.[Xi]*,
*Omar, B.[Bourahla]*,

**A Survey on Generative Adversarial Networks:
Variants, Applications, and Training**,

*Surveys(54)*, No. 8, October 2021, pp. xx-yy.

DOI Link
**2110**

*Survey, GAN*. architectural-variants, stabilize training,
Generative Adversarial Networks (GANs), applications
BibRef

*Chen, L.Y.[Lei-Yu]*,
*Li, S.B.[Shao-Bo]*,
*Bai, Q.[Qiang]*,
*Yang, J.[Jing]*,
*Jiang, S.L.[San-Long]*,
*Miao, Y.M.[Yan-Ming]*,

**Review of Image Classification Algorithms Based on Convolutional
Neural Networks**,

*RS(13)*, No. 22, 2021, pp. xx-yy.

DOI Link
**2112**

*Survey, CNN*.
BibRef

*Borji, A.[Ali]*,

**Pros and cons of GAN evaluation measures: New developments**,

*CVIU(215)*, 2022, pp. 103329.

Elsevier DOI
**2201**

GAN evaluation, Generative modeling, Deepfakes
BibRef

*Soviany, P.[Petru]*,
*Ionescu, R.T.[Radu Tudor]*,
*Rota, P.[Paolo]*,
*Sebe, N.[Nicu]*,

**Curriculum Learning: A Survey**,

*IJCV(130)*, No. 6, June 2022, pp. 1526-1565.

Springer DOI
**2207**

*Survey, Curriculum Learning*.
BibRef

*Sánchez-Cauce, R.[Raquel]*,
*París, I.[Iago]*,
*Díez, F.J.[Francisco Javier]*,

**Sum-Product Networks: A Survey**,

*PAMI(44)*, No. 7, July 2022, pp. 3821-3839.

IEEE DOI
**2206**

Probabilistic logic, Artificial neural networks,
Probability distribution, Neural networks, Bayes methods,
deep neural networks
BibRef

*Mandal, M.[Murari]*,
*Vipparthi, S.K.[Santosh Kumar]*,

**An Empirical Review of Deep Learning Frameworks for Change Detection:
Model Design, Experimental Frameworks, Challenges and Research Needs**,

*ITS(23)*, No. 7, July 2022, pp. 6101-6122.

IEEE DOI
**2207**

Deep learning, Training, Task analysis, Data models,
Computational modeling, Cameras, Benchmark testing, scene independence
BibRef

*Wang, X.[Xin]*,
*Chen, Y.D.[Yu-Dong]*,
*Zhu, W.W.[Wen-Wu]*,

**A Survey on Curriculum Learning**,

*PAMI(44)*, No. 9, September 2022, pp. 4555-4576.

IEEE DOI
**2208**

Training, Task analysis, Machine learning, Data models, Convergence,
Machine learning algorithms, Computational modeling,
self-paced learning
BibRef

*Hospedales, T.[Timothy]*,
*Antoniou, A.[Antreas]*,
*Micaelli, P.[Paul]*,
*Storkey, A.[Amos]*,

**Meta-Learning in Neural Networks: A Survey**,

*PAMI(44)*, No. 9, September 2022, pp. 5149-5169.

IEEE DOI
**2208**

Task analysis, Optimization, Training, Machine learning algorithms,
Predictive models, Neural networks, Deep learning, Meta-learning,
neural architecture search
BibRef

IEEE DOI

Training, Upper bound, Convolution, Computer architecture, Network architecture, Inference algorithms, Data models, Vision Systems and Applications BibRef

*Minskiy, D.[Dmitry]*,
*Bober, M.[Miroslaw]*,

**Scattering-Based Hybrid Networks: An Evaluation and Design Guide**,

*ICIP21*(2793-2797)

IEEE DOI
**2201**

Training, Image resolution, System performance, Buildings,
Scattering, Training data, scattering, hybrid, network design
BibRef

*Zhou, H.Y.[Hong-Yu]*,
*Lu, C.X.[Chi-Xiang]*,
*Yang, S.[Sibei]*,
*Yu, Y.Z.[Yi-Zhou]*,

**ConvNets vs. Transformers:
Whose Visual Representations are More Transferable?**,

*DeepMTL21*(2230-2238)

IEEE DOI
**2112**

Performance evaluation, Visualization,
Face recognition, Transfer learning, Estimation
BibRef

*Wang, X.H.[Xiao-Han]*,
*Eliott, F.M.[Fernanda M.]*,
*Ainooson, J.[James]*,
*Palmer, J.H.[Joshua H.]*,
*Kunda, M.[Maithilee]*,

**An Object is Worth Six Thousand Pictures:
The Egocentric, Manual, Multi-image (EMMI) Dataset**,

*Egocentric17*(2364-2372)

IEEE DOI

WWW Link.
**1802**

*Dataset, Learning*. Egocentric, Manual, Multi-Image (EMMI) Dataset.
Automobiles, Cameras, Manuals, Object recognition,
Toy manufacturing industry, Training, Visualization
BibRef

*Bala, J.W.*,
*Michalski, R.S.*,
*Wnek, J.*,

**The Prax Approach to Learning a Large Number of
Texture Concepts**,

*AAAI-MLCV93*(xx-yy).
George Mason University.
BibRef
**9300**

*Bala, J.W.*,
*Michalski, R.S.*, and
*Pachowicz, P.W.*,

**Progress on Vision through Learning at George Mason University**,

*ARPA94*(I:191-207).
BibRef
**9400**

*Michalski, R.S.*,
*Rosenfeld, A.*,
*Aloimonos, Y.*,
*Duric, Z.*,
*Maloof, M.A.*,
*Zhang, Q.*,

**Progress on Vision Through Learning**,

*ARPA96*(177-188).
BibRef
**9600**

*Bhanu, B.[Bir]*,
*Bowyer, K.W.[Kevin W.]*,
*Hall, L.O.[Lawrence O.]*, and
*Langley, P.[Pat]*,

**Report of the AAAI Fall Symposium on Machine Learning and
Computer Vision: What, Why and How?**,

*ARPA94*(I:727-731).
BibRef
**9400**

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in

Privacy in Learning .

Last update:Sep 28, 2022 at 16:10:08