Chen, Q.[Qiang],
Cheng, A.[Anda],
He, X.Y.[Xiang-Yu],
Wang, P.S.[Pei-Song],
Cheng, J.[Jian],
SpatialFlow: Bridging All Tasks for Panoptic Segmentation,
CirSysVideo(31), No. 6, June 2021, pp. 2288-2300.
IEEE DOI
2106
Task analysis, Image segmentation, Head, Object detection, Detectors,
Semantics, Benchmark testing, Panoptic segmentation,
location-aware
BibRef
Chu, T.[Tao],
Cai, W.J.[Wen-Jie],
Liu, Q.[Qiong],
Learning panoptic segmentation through feature discriminability,
PR(122), 2022, pp. 108240.
Elsevier DOI
2112
Panoptic segmentation, Feature discriminability, Region refinement
BibRef
de Carvalho, O.L.F.[Osmar Luiz Ferreira],
de Carvalho Júnior, O.A.[Osmar Abílio],
Rosa e Silva, C.[Cristiano],
de Albuquerque, A.O.[Anesmar Olino],
Santana, N.C.[Nickolas Castro],
Borges, D.L.[Dibio Leandro],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
Guimarăes, R.F.[Renato Fontes],
Panoptic Segmentation Meets Remote Sensing,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, W.Q.[Wei-Qi],
You, X.[Xiong],
Yang, J.[Jian],
Su, M.Z.[Ming-Zhan],
Zhang, L.T.[Lan-Tian],
Yang, Z.K.[Zhen-Kai],
Kuang, Y.C.[Ying-Cai],
LiDAR-Based Real-Time Panoptic Segmentation via Spatiotemporal
Sequential Data Fusion,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Kim, D.[Dahun],
Woo, S.[Sanghyun],
Lee, J.Y.[Joon-Young],
Kweon, I.S.[In So],
Dense Pixel-Level Interpretation of Dynamic Scenes With Video
Panoptic Segmentation,
IP(31), 2022, pp. 5383-5395.
IEEE DOI
2208
Task analysis, Image segmentation, Measurement, Electron tubes,
Semantics, Head, Benchmark testing, Video panoptic segmentation,
scene parsing
BibRef
Lv, K.F.[Ke-Feng],
Zhang, Y.S.[Yong-Sheng],
Yu, Y.[Ying],
Zhang, Z.C.[Zhen-Chao],
Li, L.[Lei],
Visual Localization and Target Perception Based on Panoptic
Segmentation,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, Z.[Zhi],
Zhang, B.[Bowen],
Chen, H.[Hao],
Shen, C.H.[Chun-Hua],
Instance and Panoptic Segmentation Using Conditional Convolutions,
PAMI(45), No. 1, January 2023, pp. 669-680.
IEEE DOI
2212
Head, Magnetic heads, Image segmentation, Task analysis, Semantics,
Convolutional codes, Detectors, Fully convolutional networks,
panoptic segmentation
BibRef
Wang, L.[Le],
Liu, H.Z.[Hong-Zhen],
Zhou, S.P.[San-Ping],
Tang, W.[Wei],
Hua, G.[Gang],
Instance Motion Tendency Learning for Video Panoptic Segmentation,
IP(32), 2023, pp. 764-778.
IEEE DOI
2301
Image segmentation, Motion segmentation, Task analysis, Tracking,
Optical flow, Transformers, Target tracking,
deep neural network
BibRef
Chang, S.E.[Shuo-En],
Chen, Y.[Yi],
Yang, Y.C.[Yi-Cheng],
Lin, E.T.[En-Ting],
Hsiao, P.Y.[Pei-Yung],
Fu, L.C.[Li-Chen],
SE-PSNet: Silhouette-based Enhancement Feature for Panoptic
Segmentation Network,
JVCIR(90), 2023, pp. 103736.
Elsevier DOI
2301
Deep learning, Panoptic segmentation, Instance segmentation,
Silhouette, confidence score
BibRef
Li, Y.W.[Yan-Wei],
Zhao, H.S.[Heng-Shuang],
Qi, X.J.[Xiao-Juan],
Chen, Y.[Yukang],
Qi, L.[Lu],
Wang, L.W.[Li-Wei],
Li, Z.M.[Ze-Ming],
Sun, J.[Jian],
Jia, J.Y.[Jia-Ya],
Fully Convolutional Networks for Panoptic Segmentation With
Point-Based Supervision,
PAMI(45), No. 4, April 2023, pp. 4552-4568.
IEEE DOI
2303
BibRef
Earlier: A1, A2, A3, A6, A7, A8, A9, Only:
Fully Convolutional Networks for Panoptic Segmentation,
CVPR21(214-223)
IEEE DOI
2111
Kernel, Annotations, Semantics, Image segmentation, Generators, Costs,
Task analysis, Fully convolutional networks, point-based supervision.
Convolutional codes, Location awareness, Semantics, Pipelines.
BibRef
Lei, H.W.[Hai-Wei],
He, F.[Fangyuan],
Jia, B.[Bohui],
Wu, Q.[Qian],
MFNet: Panoptic segmentation network based on multiscale feature
weighted fusion and frequency domain attention mechanism,
IET-CV(17), No. 1, 2023, pp. 88-97.
DOI Link
2303
BibRef
Jaus, A.[Alexander],
Yang, K.[Kailun],
Stiefelhagen, R.[Rainer],
Panoramic Panoptic Segmentation: Insights Into Surrounding Parsing
for Mobile Agents via Unsupervised Contrastive Learning,
ITS(24), No. 4, April 2023, pp. 4438-4453.
IEEE DOI
2304
Image segmentation, Task analysis, Training, Standards,
Mobile agents, Semantics, Transformers, Panoptic segmentation,
contrastive learning
BibRef
Šaric, J.[Josip],
Oršic, M.[Marin],
Šegvic, S.[Siniša],
Panoptic SwiftNet:
Pyramidal Fusion for Real-Time Panoptic Segmentation,
RS(15), No. 8, 2023, pp. 1968.
DOI Link
2305
BibRef
Kreuzberg, L.[Lars],
Zulfikar, I.E.[Idil Esen],
Mahadevan, S.[Sabarinath],
Engelmann, F.[Francis],
Leibe, B.[Bastian],
4d-stop: Panoptic Segmentation of 4d Lidar Using Spatio-temporal Object
Proposal Generation and Aggregation,
AVVision22(537-553).
Springer DOI
2304
BibRef
Sun, B.[Bo],
Kuen, J.[Jason],
Lin, Z.[Zhe],
Mordohai, P.[Philippos],
Chen, S.[Simon],
PRN: Panoptic Refinement Network,
WACV23(3952-3962)
IEEE DOI
2302
Training, Image segmentation, Semantics, Refining, Predictive models,
Algorithms: Image recognition and understanding (object detection,
image and video synthesis
BibRef
de Geus, D.[Daan],
Dubbelman, G.[Gijs],
Intra-Batch Supervision for Panoptic Segmentation on High-Resolution
Images,
WACV23(3164-3172)
IEEE DOI
2302
Training, Measurement, Image segmentation, Crops, Task analysis,
Algorithms: Image recognition and understanding
(object detection, segmentation)
BibRef
Petrovai, A.[Andra],
Nedevschi, S.[Sergiu],
MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to
Depth-aware Video Panoptic Segmentation,
WACV23(3076-3085)
IEEE DOI
2302
Training, Image segmentation, Motion segmentation, Video sequences,
Semantics, Estimation, Algorithms: 3D computer vision
BibRef
Fan, J.S.[Jun-Song],
Zhang, Z.X.[Zhao-Xiang],
Tan, T.N.[Tie-Niu],
Pointly-Supervised Panoptic Segmentation,
ECCV22(XXX:319-336).
Springer DOI
2211
BibRef
Xu, S.L.[Shi-Lin],
Li, X.[Xiangtai],
Yang, Y.[Yibo],
Li, H.Y.[Hong-Yang],
Cheng, G.L.[Guang-Liang],
Tong, Y.[Yunhai],
Query Learning of Both Thing and Stuff for Panoptic Segmentation,
ICIP22(716-720)
IEEE DOI
2211
Training, Image segmentation, Schedules, Image coding,
Design methodology, Pipelines, Semantics, Panoptic segmentation,
Computer vision
BibRef
Liu, Q.F.[Qing-Feng],
El-Khamy, M.[Mostafa],
Panoptic-Deeplab-DVA: Improving Panoptic Deeplab with Dual Value
Attention and Instance Boundary Aware Regression,
ICIP22(3888-3892)
IEEE DOI
2211
Training, Performance evaluation, Mobile handsets,
Complexity theory, Task analysis, Information exchange, Panoptic DeepLab
BibRef
Mei, J.[Jieru],
Zhu, A.Z.[Alex Zihao],
Yan, X.C.[Xin-Chen],
Yan, H.[Hang],
Qiao, S.Y.[Si-Yuan],
Chen, L.C.[Liang-Chieh],
Kretzschmar, H.[Henrik],
Waymo Open Dataset: Panoramic Video Panoptic Segmentation,
ECCV22(XXIX:53-72).
Springer DOI
2211
BibRef
Li, X.[Xiangtai],
Xu, S.L.[Shi-Lin],
Yang, Y.[Yibo],
Cheng, G.L.[Guang-Liang],
Tong, Y.[Yunhai],
Tao, D.C.[Da-Cheng],
Panoptic-PartFormer: Learning a Unified Model for Panoptic Part
Segmentation,
ECCV22(XXVII:729-747).
Springer DOI
2211
BibRef
Yuan, H.[Haobo],
Li, X.[Xiangtai],
Yang, Y.[Yibo],
Cheng, G.L.[Guang-Liang],
Zhang, J.[Jing],
Tong, Y.[Yunhai],
Zhang, L.[Lefei],
Tao, D.C.[Da-Cheng],
PolyphonicFormer: Unified Query Learning for Depth-Aware Video Panoptic
Segmentation,
ECCV22(XXVII:582-599).
Springer DOI
2211
BibRef
Kundu, A.[Abhijit],
Genova, K.[Kyle],
Yin, X.Q.[Xiao-Qi],
Fathi, A.[Alireza],
Pantofaru, C.[Caroline],
Guibas, L.J.[Leonidas J.],
Tagliasacchi, A.[Andrea],
Dellaert, F.[Frank],
Funkhouser, T.[Thomas],
Panoptic Neural Fields:
A Semantic Object-Aware Neural Scene Representation,
CVPR22(12861-12871)
IEEE DOI
2210
Image segmentation, Solid modeling, Semantics, Color,
Predictive models, Rendering (computer graphics),
Scene analysis and understanding
BibRef
Zhou, Y.[Yi],
Zhang, H.[Hui],
Lee, H.[Hana],
Sun, S.[Shuyang],
Li, P.J.[Ping-Jun],
Zhu, Y.G.[Yang-Guang],
Yoo, B.I.[Byung-In],
Qi, X.J.[Xiao-Juan],
Han, J.J.[Jae-Joon],
Slot-VPS: Object-centric Representation Learning for Video Panoptic
Segmentation,
CVPR22(3083-3093)
IEEE DOI
2210
Representation learning, Tracking, Semantics, Pipelines,
Benchmark testing, Pattern recognition,
Motion and tracking
BibRef
Graber, C.[Colin],
Jazra, C.[Cyril],
Luo, W.J.[Wen-Jie],
Gui, L.[Liangyan],
Schwing, A.[Alexander],
Joint Forecasting of Panoptic Segmentations with Difference Attention,
CVPR22(2617-2626)
IEEE DOI
2210
BibRef
And:
Precognition22(2558-2567)
IEEE DOI
2210
Measurement, Image analysis, Shape, Predictive models, Transformers,
Pattern recognition, Scene analysis and understanding,
grouping and shape analysis
BibRef
Gao, N.[Naiyu],
He, F.[Fei],
Jia, J.[Jian],
Shan, Y.[Yanhu],
Zhang, H.Y.[Hao-Yang],
Zhao, X.[Xin],
Huang, K.Q.[Kai-Qi],
PanopticDepth: A Unified Framework for Depth-aware Panoptic
Segmentation,
CVPR22(1622-1632)
IEEE DOI
2210
Image segmentation, Head, Semantics, Estimation, Lead,
Pattern recognition, 3D from single images,
Video analysis and understanding
BibRef
Borse, S.[Shubhankar],
Park, H.[Hyojin],
Cai, H.[Hong],
Das, D.[Debasmit],
Garrepalli, R.[Risheek],
Porikli, F.M.[Fatih M.],
Panoptic, Instance and Semantic Relations: A Relational Context
Encoder to Enhance Panoptic Segmentation,
CVPR22(1259-1269)
IEEE DOI
2210
Visualization, Roads, Semantics, Computer architecture,
Benchmark testing, Feature extraction, Segmentation, Representation learning
BibRef
Fazlali, H.[Hamidreza],
Xu, Y.X.[Yi-Xuan],
Ren, Y.[Yuan],
Liu, B.B.[Bing-Bing],
A Versatile Multi-View Framework for LiDAR-based 3D Object Detection
with Guidance from Panoptic Segmentation,
CVPR22(17171-17180)
IEEE DOI
2210
Heating systems, Laser radar, Semantics, Object detection,
Performance gain, Feature extraction, Vision applications and systems
BibRef
Mohan, R.[Rohit],
Valada, A.[Abhinav],
Amodal Panoptic Segmentation,
CVPR22(20991-21000)
IEEE DOI
2210
Measurement, Computational modeling, Semantics,
Computer architecture, Benchmark testing, Pattern recognition,
Scene analysis and understanding
BibRef
Miao, J.[Jiaxu],
Wang, X.H.[Xiao-Han],
Wu, Y.[Yu],
Li, W.[Wei],
Zhang, X.[Xu],
Wei, Y.C.[Yun-Chao],
Yang, Y.[Yi],
Large-scale Video Panoptic Segmentation in the Wild: A Benchmark,
CVPR22(21001-21011)
IEEE DOI
2210
Annotations, Shape, Semantics, Benchmark testing,
Pattern recognition, Task analysis, Datasets and evaluation,
grouping and shape analysis
BibRef
Zendel, O.[Oliver],
Schörghuber, M.[Matthias],
Rainer, B.[Bernhard],
Murschitz, M.[Markus],
Beleznai, C.[Csaba],
Unifying Panoptic Segmentation for Autonomous Driving,
CVPR22(21319-21328)
IEEE DOI
2210
Training, Visualization, Semantics, Data visualization,
Benchmark testing, Licenses, Robustness, Datasets and evaluation,
grouping and shape analysis
BibRef
Chen, Q.[Qi],
Vora, S.[Sourabh],
Proposal-free Lidar Panoptic Segmentation with Pillar-level Affinity,
WAD22(4528-4535)
IEEE DOI
2210
Laser radar, Semantics, Merging, Clustering algorithms, Object detection
BibRef
Li, Z.Q.[Zhi-Qi],
Wang, W.[Wenhai],
Xie, E.[Enze],
Yu, Z.D.[Zhi-Ding],
Anandkumar, A.[Anima],
Alvarez, J.M.[Jose M.],
Luo, P.[Ping],
Lu, T.[Tong],
Panoptic SegFormer:
Delving Deeper into Panoptic Segmentation with Transformers,
CVPR22(1270-1279)
IEEE DOI
2210
Training, Image segmentation, Costs, Semantics, Interference,
Transformers, Segmentation, grouping and shape analysis,
Scene analysis and understanding
BibRef
Li, J.[Jinke],
He, X.[Xiao],
Wen, Y.[Yang],
Gao, Y.[Yuan],
Cheng, X.Q.[Xiao-Qiang],
Zhang, D.[Dan],
Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic
Segmentation via Clustering Pseudo Heatmap,
CVPR22(11799-11808)
IEEE DOI
2210
Heating systems, Laser radar, Fuses, Shape, Navigation, Semantics,
grouping and shape analysis, Segmentation
BibRef
Raivio, L.[Leevi],
Rahtu, E.[Esa],
Online Panoptic 3D Reconstruction as a Linear Assignment Problem,
CIAP22(II:39-50).
Springer DOI
2205
BibRef
Quattrocchi, C.[Camillo],
Mauro, D.D.[Daniele Di],
Furnari, A.[Antonino],
Farinella, G.M.[Giovanni Maria],
Panoptic Segmentation in Industrial Environments Using Synthetic and
Real Data,
CIAP22(II:275-286).
Springer DOI
2205
BibRef
Hwang, S.[Sukjun],
Oh, S.W.[Seoung Wug],
Kim, S.J.[Seon Joo],
Single-shot Path Integrated Panoptic Segmentation,
WACV22(1939-1948)
IEEE DOI
2202
Computational modeling, Semantics,
Benchmark testing, Information filters, Task analysis, Scene Understanding
BibRef
Petrovai, A.[Andra],
Nedevschi, S.[Sergiu],
Time-Space Transformers for Video Panoptic Segmentation,
WACV22(2643-2652)
IEEE DOI
2202
Image resolution, Correlation, Computational modeling, Aggregates,
Semantics, Computer architecture, Transformers, Segmentation,
Vision Systems and Applications
BibRef
Zhao, Y.M.[Yi-Ming],
Zhang, X.[Xiao],
Huang, X.M.[Xin-Ming],
A Technical Survey and Evaluation of Traditional Point Cloud
Clustering Methods for LiDAR Panoptic Segmentation,
TradiCV21(2464-2473)
IEEE DOI
2112
Deep learning, Laser radar, Codes,
Semantics, Pipelines, Clustering algorithms
BibRef
Kerola, T.[Tommi],
Li, J.[Jie],
Kanehira, A.[Atsushi],
Kudo, Y.[Yasunori],
Vallet, A.[Alexis],
Gaidon, A.[Adrien],
Hierarchical Lovász Embeddings for Proposal-free Panoptic
Segmentation,
CVPR21(14408-14418)
IEEE DOI
2111
Semantics, Fasteners, Predictive models, Ontologies,
Stability analysis, Pattern recognition, Proposals
BibRef
Shen, Y.H.[Yun-Hang],
Cao, L.J.[Liu-Juan],
Chen, Z.W.[Zhi-Wei],
Lian, F.H.[Fei-Hong],
Zhang, B.C.[Bao-Chang],
Su, C.[Chi],
Wu, Y.J.[Yong-Jian],
Huang, F.Y.[Fei-Yue],
Ji, R.R.[Rong-Rong],
Toward Joint Thing-and-Stuff Mining for Weakly Supervised Panoptic
Segmentation,
CVPR21(16689-16700)
IEEE DOI
2111
Location awareness, Image segmentation, Semantics,
Spatial coherence, Object detection, Feature extraction
BibRef
Zhou, Z.X.[Zi-Xiang],
Zhang, Y.[Yang],
Foroosh, H.[Hassan],
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic
Segmentation,
CVPR21(13189-13198)
IEEE DOI
2111
Laser radar, Semantics, Real-time systems,
Pattern recognition, Complexity theory
BibRef
de Geus, D.[Daan],
Meletis, P.[Panagiotis],
Lu, C.Y.[Chen-Yang],
Wen, X.X.[Xiao-Xiao],
Dubbelman, G.[Gijs],
Part-aware Panoptic Segmentation,
CVPR21(5481-5490)
IEEE DOI
2111
Measurement, Training, Technological innovation,
Codes, Annotations, Merging
BibRef
Yu, Q.H.[Qi-Hang],
Wang, H.Y.[Hui-Yu],
Kim, D.[Dahun],
Qiao, S.Y.[Si-Yuan],
Collins, M.[Maxwell],
Zhu, Y.K.[Yu-Kun],
Adam, H.[Hartwig],
Yuille, A.Y.[Alan Y.],
Chen, L.C.[Liang-Chieh],
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation,
CVPR22(2550-2560)
IEEE DOI
2210
Art, Computer architecture, Transformers, Pattern recognition,
Task analysis, Segmentation, grouping and shape analysis
BibRef
Wang, H.Y.[Hui-Yu],
Zhu, Y.K.[Yu-Kun],
Adam, H.[Hartwig],
Yuille, A.L.[Alan L.],
Chen, L.C.[Liang-Chieh],
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers,
CVPR21(5459-5470)
IEEE DOI
2111
Merging, Pipelines, Computer architecture,
Transformers, Pattern recognition, Task analysis
BibRef
Qiao, S.Y.[Si-Yuan],
Zhu, Y.K.[Yu-Kun],
Adam, H.[Hartwig],
Yuille, A.L.[Alan L.],
Chen, L.C.[Liang-Chieh],
ViP-DeepLab: Learning Visual Perception with Depth-aware Video
Panoptic Segmentation,
CVPR21(3996-4007)
IEEE DOI
2111
Measurement, Solid modeling, Semantics,
Estimation, Predictive models, Pattern recognition
BibRef
Woo, S.[Sanghyun],
Kim, D.[Dahun],
Lee, J.Y.[Joon-Young],
Kweon, I.S.[In So],
Learning to Associate Every Segment for Video Panoptic Segmentation,
CVPR21(2704-2713)
IEEE DOI
2111
Learning systems, Computational modeling,
Linear programming, Pattern recognition, Proposals, Task analysis
BibRef
Hwang, J.[Jaedong],
Oh, S.W.[Seoung Wug],
Lee, J.Y.[Joon-Young],
Han, B.H.[Bo-Hyung],
Exemplar-Based Open-Set Panoptic Segmentation Network,
CVPR21(1175-1184)
IEEE DOI
2111
Training, Image segmentation, Solid modeling,
Benchmark testing, Solids, Pattern recognition
BibRef
Aygün, M.[Mehmet],
Ošep, A.[Aljoša],
Weber, M.[Mark],
Maximov, M.[Maxim],
Stachniss, C.[Cyrill],
Behley, J.[Jens],
Leal-Taixé, L.[Laura],
4D Panoptic LiDAR Segmentation,
CVPR21(5523-5533)
IEEE DOI
2111
Measurement, Laser radar, Roads,
Computational modeling, Semantics, Benchmark testing
BibRef
Porzi, L.[Lorenzo],
Bulň, S.R.[Samuel Rota],
Kontschieder, P.[Peter],
Improving Panoptic Segmentation at All Scales,
CVPR21(7298-7307)
IEEE DOI
2111
Training, Measurement, Image segmentation,
Image resolution, Memory management, Crops
BibRef
Huang, J.X.[Jia-Xing],
Guan, D.[Dayan],
Xiao, A.[Aoran],
Lu, S.J.[Shi-Jian],
Cross-View Regularization for Domain Adaptive Panoptic Segmentation,
CVPR21(10128-10139)
IEEE DOI
2111
Image segmentation, Adaptive systems, Semantics,
Supervised learning, Pattern recognition, Task analysis
BibRef
Graber, C.[Colin],
Tsai, G.[Grace],
Firman, M.[Michael],
Brostow, G.[Gabriel],
Schwing, A.[Alexander],
Panoptic Segmentation Forecasting,
CVPR21(12512-12521)
IEEE DOI
2111
Image segmentation, Motion segmentation, Semantics, Dynamics,
Predictive models, Cameras, Real-time systems
BibRef
Hong, F.Z.[Fang-Zhou],
Zhou, H.[Hui],
Zhu, X.G.[Xin-Ge],
Li, H.S.[Hong-Sheng],
Liu, Z.[Ziwei],
LiDAR-based Panoptic Segmentation via Dynamic Shifting Network,
CVPR21(13085-13094)
IEEE DOI
2111
Measurement, Laser radar, Semantics,
Feature extraction, Robustness, Sensors
BibRef
Hong, W.X.[Wei-Xiang],
Guo, Q.[Qingpei],
Zhang, W.[Wei],
Chen, J.D.[Jing-Dong],
Chu, W.[Wei],
LPSNet: A lightweight solution for fast panoptic segmentation,
CVPR21(16741-16749)
IEEE DOI
2111
Costs, Semantics, Memory management, Pipelines,
Object detection, Real-time systems
BibRef
Bonde, U.[Ujwal],
Alcantarilla, P.F.[Pablo F.],
Leutenegger, S.[Stefan],
Towards Bounding-Box Free Panoptic Segmentation,
GCPR20(316-330).
Springer DOI
2110
BibRef
Graber, C.[Colin],
Tsai, G.[Grace],
Firman, M.[Michael],
Brostow, G.[Gabriel],
Schwing, A.[Alexander],
Panoptic Segmentation Forecasting,
Precognition21(2279-2288)
IEEE DOI
2109
Image segmentation, Motion segmentation, Semantics, Dynamics,
Predictive models, Cameras, Real-time systems
BibRef
Chang, C.Y.[Chia-Yuan],
Chang, S.E.[Shuo-En],
Hsiao, P.Y.[Pei-Yung],
Fu, L.C.[Li-Chen],
Epsnet: Efficient Panoptic Segmentation Network with Cross-layer
Attention Fusion,
ACCV20(I:689-705).
Springer DOI
2103
BibRef
Qin, Z.Q.[Ze-Qun],
Zhang, P.Y.[Peng-Yi],
Wu, F.[Fei],
Li, X.[Xi],
FcaNet: Frequency Channel Attention Networks,
ICCV21(763-772)
IEEE DOI
2203
Image segmentation, Codes, Frequency-domain analysis,
Computational modeling, Object detection,
BibRef
Chen, Y.F.[Yi-Feng],
Lin, G.C.[Guang-Chen],
Li, S.Y.[Song-Yuan],
Bourahla, O.[Omar],
Wu, Y.M.[Yi-Ming],
Wang, F.F.[Fang-Fang],
Feng, J.Y.[Jun-Yi],
Xu, M.L.[Ming-Liang],
Li, X.[Xi],
BANet: Bidirectional Aggregation Network With Occlusion Handling for
Panoptic Segmentation,
CVPR20(3792-3801)
IEEE DOI
2008
Semantics, Image segmentation, Agriculture, Task analysis,
Feature extraction, Pipelines, Convolution
BibRef
Dundar, A.,
Sapra, K.,
Liu, G.,
Tao, A.,
Catanzaro, B.,
Panoptic-Based Image Synthesis,
CVPR20(8067-8076)
IEEE DOI
2008
Convolution, Semantics, Image generation, Task analysis, Generators,
Image resolution, Windows
BibRef
Hou, R.,
Li, J.,
Bhargava, A.,
Raventos, A.,
Guizilini, V.,
Fang, C.,
Lynch, J.,
Gaidon, A.,
Real-Time Panoptic Segmentation From Dense Detections,
CVPR20(8520-8529)
IEEE DOI
2008
Semantics, Real-time systems, Image segmentation, Task analysis,
Object detection, Proposals, Prediction algorithms
BibRef
Wu, Y.,
Zhang, G.,
Gao, Y.,
Deng, X.,
Gong, K.,
Liang, X.,
Lin, L.,
Bidirectional Graph Reasoning Network for Panoptic Segmentation,
CVPR20(9077-9086)
IEEE DOI
2008
Image segmentation, Semantics, Cognition, Task analysis,
Feature extraction, Visualization, Proposals
BibRef
Wang, H.,
Luo, R.,
Maire, M.,
Shakhnarovich, G.,
Pixel Consensus Voting for Panoptic Segmentation,
CVPR20(9461-9470)
IEEE DOI
2008
Semantics, Transforms, Heating systems, Feature extraction,
Image segmentation, Task analysis, Training
BibRef
Kim, D.,
Woo, S.,
Lee, J.,
Kweon, I.S.,
Video Panoptic Segmentation,
CVPR20(9856-9865)
IEEE DOI
2008
Task analysis, Image segmentation, Electron tubes, Measurement,
Semantics, Head
BibRef
Lazarow, J.,
Lee, K.,
Shi, K.,
Tu, Z.,
Learning Instance Occlusion for Panoptic Segmentation,
CVPR20(10717-10726)
IEEE DOI
2008
Head, Semantics, Image segmentation, Proposals, Task analysis, Nickel
BibRef
Cheng, B.,
Collins, M.D.,
Zhu, Y.,
Liu, T.,
Huang, T.S.,
Adam, H.,
Chen, L.,
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up
Panoptic Segmentation,
CVPR20(12472-12482)
IEEE DOI
2008
Semantics, Image segmentation, Decoding, Task analysis,
Spatial resolution, Convolution, Feature extraction
BibRef
Li, Q.,
Qi, X.,
Torr, P.H.S.,
Unifying Training and Inference for Panoptic Segmentation,
CVPR20(13317-13325)
IEEE DOI
2008
Semantics, Training, Head, Pipelines, Feature extraction,
Object detection, Image segmentation
BibRef
Liu, D.,
Zhang, D.,
Song, Y.,
Zhang, F.,
O'Donnell, L.,
Huang, H.,
Chen, M.,
Cai, W.,
Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-Weighting,
CVPR20(4242-4251)
IEEE DOI
2008
Image segmentation, Task analysis, Semantics, Microscopy,
Adaptation models, Object detection, Training
BibRef
Kirillov, A.[Alexander],
He, K.[Kaiming],
Girshick, R.[Ross],
Rother, C.[Carsten],
Dollar, P.[Piotr],
Panoptic Segmentation,
CVPR19(9396-9405).
IEEE DOI
2002
BibRef
Liu, H.Y.[Huan-Yu],
Peng, C.[Chao],
Yu, C.Q.[Chang-Qian],
Wang, J.[Jingbo],
Liu, X.[Xu],
Yu, G.[Gang],
Jiang, W.[Wei],
An End-To-End Network for Panoptic Segmentation,
CVPR19(6165-6174).
IEEE DOI
2002
BibRef
Li, Y.W.[Yan-Wei],
Chen, X.[Xinze],
Zhu, Z.[Zheng],
Xie, L.X.[Ling-Xi],
Huang, G.[Guan],
Du, D.L.[Da-Long],
Wang, X.G.[Xin-Gang],
Attention-Guided Unified Network for Panoptic Segmentation,
CVPR19(7019-7028).
IEEE DOI
2002
BibRef
Xiong, Y.[Yuwen],
Liao, R.J.[Ren-Jie],
Zhao, H.S.[Heng-Shuang],
Hu, R.[Rui],
Bai, M.[Min],
Yumer, E.[Ersin],
Urtasun, R.[Raquel],
UPSNet: A Unified Panoptic Segmentation Network,
CVPR19(8810-8818).
IEEE DOI
2002
BibRef
Li, Q.Z.[Qi-Zhu],
Arnab, A.[Anurag],
Torr, P.H.S.[Philip H. S.],
Weakly- and Semi-supervised Panoptic Segmentation,
ECCV18(XV: 106-124).
Springer DOI
1810
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Co-Segmentation, Cosegmentation .