Arcelli, C., and
Levialdi, S.,
Parallel Shrinking in Three Dimensions,
CGIP(1), No. 1, April 1972, pp. 21-30.
Elsevier DOI superposition of 2-D shrinking algorithms.
BibRef
7204
Lobregt, S.,
Verbeek, P.W., and
Groen, F.C.A.,
Three-Dimensional Skeletonization: Principle and Algorithm,
PAMI(2), No. 1, January 1980, pp. 75-77.
BibRef
8001
Kanade, T.[Takeo],
Recovery of the Three-Dimensional Shape of and Object from a
Single View,
AI(17), No. 1-3, August 1981, pp. 409-460.
Elsevier DOI
BibRef
8108
And:
CMU-CS-TR-79-153, CMU CS Dept., October 1979.
Skew Symmetry.
Perceptual Grouping. Parallel lines in a drawing are parallel lines in space.
Skewed symmetry in a drawing is a bilateral symmetry in space.
Thus skew symmetric figures are excluded from recognition.
BibRef
Nackman, L.R., and
Pizer, S.M.,
Three-Dimensional Shape Description Using the
Symmetric Axis Transform,
PAMI(7), No. 2, March 1985, pp. 187-202.
BibRef
8503
And: A1 only:
Ph.D.Thesis, Univ. of NC, 1982.
See also Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform.
BibRef
Nackman, L.R.[Lee R.],
Curvature Relations in Three-Dimensional Symmetric Axes,
CGIP(20), No. 1, September 1982, pp. 43-57.
Elsevier DOI Radius curvature and boundary curvature.
BibRef
8209
Hafford, K.J.[Kimberly Jyl],
Preston, Jr., K.[Kendall],
Three-Dimensional Skeletonization of Elongated Solids,
CVGIP(27), No. 1, July 1984, pp. 78-91.
Elsevier DOI Tetradecahedral neighborhood.
BibRef
8407
Wolter, J.D.,
Woo, T.C.,
Volz, R.A.,
Optimal Algorithms for Symmetry Detection in Two and Three Dimensions,
VC(1), 1985, pp. 37-48.
BibRef
8500
Fukushima, S.,
Okumura, T.,
Modeling a Three-Dimensional Shape from a Silhouette by
Detecting Symmetry,
IEICE(J74-D-II), No. 12, 1991, pp. 1697-1705.
BibRef
9100
And:
English version:
SCJ(24), No. 3, 1993, pp. 59-69.
BibRef
Saint-Marc, P.,
Rom, H., and
Medioni, G.G.,
B-Spline Contour Representation and Symmetry Detection,
PAMI(15), No. 11, November 1993, pp. 1191-1197.
IEEE DOI Eariler with A1, A3 only:
BibRef
9311
B-Spline Contour Representations and Symmetry Detection,
ECCV90(604-606).
Springer DOI Detect Symmetries for shape from contour.
BibRef
Manninen, A.T.,
Statistical Calculations of 3D-Orientation Parameters of
Flat Symmetrical Polyhedrons,
PRL(14), 1993, pp. 207-211.
BibRef
9300
Cham, T.J.[Tat-Jen],
Cipolla, R.[Roberto],
Symmetry Detection Through Local Skewed Symmetries,
IVC(13), No. 5, June 1995, pp. 439-450.
Elsevier DOI
BibRef
9506
And:
Cambridge UniversityTechnical Report CUED/F-INFENG/TR183, November 1994.
BibRef
Earlier:
Skewed Symmetry Detection Through Local Skewed Symmetries,
BMVC94(xx-yy).
PDF File.
9409
BibRef
And:
A Local Approach To Recovering Global Skewed Symmetry,
ICPR94(A:222-226).
IEEE DOI
Hough Transform. Detect global symmetry prior to segmentation.
BibRef
Sherbrooke, E.C.,
Patrikalakis, N.M.,
Brisson, E.,
An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids,
VCG(2), No. 1, March 1996, pp. 44-61.
BibRef
9603
Sheehy, D.J.,
Armstrong, C.G.,
Robinson, D.J.,
Shape-Description by Medial Surface Construction,
VCG(2), No. 1, March 1996, pp. 62-72.
BibRef
9603
Grupen, R.A.,
Henderson, T.C.,
Hansen, C.D.,
Apparent Symmetries in Range Data,
PRL(7), 1988, pp. 107-111.
BibRef
8800
Sun, C.M.[Chang Ming],
Sherrah, J.[Jamie],
3D Symmetry Detection Using the Extended Gaussian Image,
PAMI(19), No. 2, February 1997, pp. 164-168.
IEEE DOI
9703
Detect the symmetry by converting to a Gaussian Image, then convolve
the GI.
BibRef
Forsyth, D.A.,
Recognizing Algebraic Surfaces from Their Outlines,
IJCV(18), No. 1, April 1996, pp. 21-40.
Springer DOI
9605
BibRef
Earlier:
ICCV93(476-480).
IEEE DOI Theory.
BibRef
Zisserman, A.[Andrew],
Mundy, J.L.[Joe L.],
Forsyth, D.A.[David A.],
Liu, J.[Jane],
Pillow, N.[Nic],
Rothwell, C.A.[Charlie A.],
Utcke, S.[Sven],
Class-Based Grouping in Perspective Images,
ICCV95(183-188).
IEEE DOI Extract generalized cylinders using perspective, from the countours.
BibRef
9500
Forsyth, D.A.,
Mundy, J.L.,
Zisserman, A.,
Rothwell, C.A.,
Recognizing Rotationally Symmetric Surfaces from Their Outlines,
ECCV92(639-647).
Springer DOI
BibRef
9200
Shimshoni, I.[Ilan],
Moses, Y.[Yael],
Lindenbaum, M.[Michael],
Shape Reconstruction of 3D Bilaterally Symmetric Surfaces,
IJCV(39), No. 2, September 2000, pp. 97-110.
DOI Link
0008
BibRef
Earlier:
CIAP99(76-81).
IEEE DOI
9909
BibRef
Prasad, V.S.N.[V. Shiv Naga],
Yegnanarayana, B.,
Finding axes of symmetry from potential fields,
IP(13), No. 12, December 2004, pp. 1559-1566.
IEEE DOI
0412
BibRef
Robert-Inacio, F.[Frédérique],
Symmetry parameters for 3D pattern classification,
PRL(26), No. 11, August 2005, pp. 1732-1739.
Elsevier DOI
0506
Generalization of 2D symmetry to 3D.
BibRef
Penman, D.W.[David W.],
Alwesh, N.S.[Nawar S.],
3D Pose estimation of symmetrical objects of unknown shape,
IVC(24), No. 5, 1 May 2006, pp. 447-454.
Elsevier DOI
0606
Orientation; Pose estimation; Symmetry; Range data
Given a plane of bilateral symmetry.
BibRef
Penman, D.W.[David W.],
Valkenburg, R.J.,
Alwesh, N.S.[Nawar S.],
Robust calibration of the position of reference targets for a six
degrees of freedom pose sensor,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Bucksch, A.[Alexander],
Lindenbergh, R.[Roderik],
CAMPINO: A skeletonization method for point cloud processing,
PandRS(63), No. 1, January 2008, pp. 115-127.
Elsevier DOI
0711
Skeletonization; CAMPINO; Point cloud; Terrestrial laser scanning
(C)ollapsing (A)nd (M)erging (P)rocedures (IN) (O)ctree-graphs.
BibRef
Bucksch, A.[Alexander],
Lindenbergh, R.[Roderik],
Menenti, M.[Massimo],
SkelTre: Robust skeleton extraction from imperfect point clouds,
VC(26), No. 10, October 2010, pp. 1283-1300.
WWW Link.
1101
BibRef
Raviv, D.[Dan],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Kimmel, R.[Ron],
Full and Partial Symmetries of Non-rigid Shapes,
IJCV(89), No. 1, August 2010, pp. xx-yy.
Springer DOI
1004
BibRef
Earlier:
Symmetries of non-rigid shapes,
NRTL07(1-7).
IEEE DOI
0710
See also Partial Similarity of Objects, or How to Compare a Centaur to a Horse.
BibRef
Aflalo, Y.[Yonathan],
Kimmel, R.[Ron],
Raviv, D.[Dan],
Scale Invariant Geometry for Nonrigid Shapes,
SIIMS(6), No. 3, 2013, pp. 1579-1597.
DOI Link
1310
BibRef
Raviv, D.[Dan],
Bayro-Corrochano, E.[Eduardo],
Raskar, R.[Ramesh],
LRA: Local Rigid Averaging of Stretchable Non-rigid Shapes,
IJCV(124), No. 2, September 2017, pp. 132-144.
Springer DOI
1708
the mean structure of non-rigid stretchable shapes.
BibRef
Raviv, D.[Dan],
Dubrovina, A.[Anastasia],
Kimmel, R.[Ron],
Hierarchical Matching of Non-rigid Shapes,
SSVM11(604-615).
Springer DOI
1201
BibRef
Aflalo, Y.[Yonathan],
Brezis, H.[Haim],
Kimmel, R.[Ron],
On the Optimality of Shape and Data Representation in the Spectral
Domain,
SIIMS(8), No. 2, 2015, pp. 1141-1160.
DOI Link
1507
representing smooth functions on surfaces.
BibRef
Aflalo, Y.[Yonathan],
Kimmel, R.[Ron],
Spectral multidimensional scaling,
NAS(110), No. 45, 2013, pp. 18,052-18,057.
DOI Link
1608
BibRef
Aflalo, Y.[Yonathan],
Bronstein, A.M.[Alexander M.],
Kimmel, R.[Ron],
On convex relaxation of graph isomorphism,
NAS(112), No. 10, 2015, pp. 2942-2947.
DOI Link
1608
BibRef
Aflalo, Y.[Yonathan],
Dubrovina, A.[Anastasia],
Kimmel, R.[Ron],
Spectral Generalized Multi-dimensional Scaling,
IJCV(118), No. 3, July 2016, pp. 380-392.
Springer DOI
1608
Embed a given set of points into a simple domain.
BibRef
Raviv, D.[Dan],
Raskar, R.[Ramesh],
Scale Invariant Metrics of Volumetric Datasets,
SIIMS(8), No. 1, 2015, pp. 403-425.
DOI Link
1503
BibRef
Raviv, D.[Dan],
Kimmel, R.[Ron],
Affine Invariant Geometry for Non-rigid Shapes,
IJCV(111), No. 1, January 2015, pp. 1-11.
WWW Link.
1502
BibRef
Raviv, D.[Dan],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Kimmel, R.[Ron],
Sapiro, G.[Guillermo],
Diffusion symmetries of non-rigid shapes.,
3DPVT10(xx-yy).
WWW Link.
1005
BibRef
Raviv, D.[Dan],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Waisman, D.[Dan],
Sochen, N.A.[Nir A.],
Kimmel, R.[Ron],
Equi-affine Invariant Geometry for Shape Analysis,
JMIV(50), No. 1-2, September 2014, pp. 144-16.
Springer DOI
1408
BibRef
Earlier: A1, A2, A3, A6, A5, Only:
Equi-Affine Invariant Geometries of Articulated Objects,
WTFCV11(177-190).
Springer DOI
1210
BibRef
And: A1, A3, A2, A6, A5, Only:
Affine-invariant diffusion geometry for the analysis of deformable 3D
shapes,
CVPR11(2361-2367).
IEEE DOI
1106
BibRef
Rosman, G.[Guy],
Bronstein, A.M.[Alex M.],
Bronstein, M.M.[Michael M.],
Tai, X.C.[Xue-Cheng],
Kimmel, R.[Ron],
Group-Valued Regularization for Analysis of Articulated Motion,
NORDIA12(I: 52-62).
Springer DOI
1210
BibRef
Rosman, G.[Guy],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Kimmel, R.[Ron],
Articulated Motion Segmentation Of Point Clouds
by Group-Valued Regularization,
3DOR12(77-84)
DOI Link
1301
BibRef
Rosman, G.[Guy],
Bronstein, M.M.[Michael M.],
Bronstein, A.M.[Alexander M.],
Wolf, A.[Alon],
Kimmel, R.[Ron],
Group-Valued Regularization Framework for Motion Segmentation of
Dynamic Non-rigid Shapes,
SSVM11(725-736).
Springer DOI
1201
BibRef
Devir, Y.S.[Yohai S.],
Rosman, G.[Guy],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Kimmel, R.[Ron],
On reconstruction of non-rigid shapes with intrinsic regularization,
NORDIA09(272-279).
IEEE DOI
0910
BibRef
Bermanis, A.[Amit],
Averbuch, A.[Amir],
Keller, Y.[Yosi],
3-D Symmetry Detection and Analysis Using the Pseudo-polar Fourier
Transform,
IJCV(90), No. 2, November 2010, pp. 166-182.
WWW Link.
1011
BibRef
Han, D.J.[Dong-Jin],
Hahn, H.S.[Hern-Soo],
Axis estimation and grouping of rotationally symmetric object
segments,
PR(47), No. 1, 2014, pp. 296-312.
Elsevier DOI
1310
Axis estimation
BibRef
Han, D.J.[Dong-Jin],
Cooper, D.B.[David B.],
Hahn, H.S.[Hern-Soo],
Fast axis estimation from a segment of rotationally symmetric object,
CVPR12(1154-1161).
IEEE DOI
1208
BibRef
Sawada, T.,
Li, Y.F.[Yun-Feng],
Pizlo, Z.,
Detecting 3-D Mirror Symmetry in a 2-D Camera Image for 3-D Shape
Recovery,
PIEEE(102), No. 10, October 2014, pp. 1588-1606.
IEEE DOI
1410
eye
BibRef
Sfikas, K.[Konstantinos],
Theoharis, T.[Theoharis],
Pratikakis, I.E.[Ioannis E.],
Pose normalization of 3D models via reflective symmetry on panoramic
views,
VC(30), No. 11, November 2014, pp. 1261-1274.
Springer DOI
1411
using symmetry plane.
BibRef
Aguilar, W.[Wendy],
Bribiesca, E.[Ernesto],
Symmetry detection in 3D chain coded discrete curves and trees,
PR(48), No. 4, 2015, pp. 1420-1439.
Elsevier DOI
1502
Shape-of-curve symmetry
BibRef
Nagar, R.,
Raman, S.,
Revealing Hidden 3-D Reflection Symmetry,
SPLetters(23), No. 12, December 2016, pp. 1776-1780.
IEEE DOI
1612
computer vision
BibRef
Esser, G.[Gregor],
Becken, W.[Wolfgang],
Altheimer, H.[Helmut],
Muller, W.[Werner],
Generalization of the Minkwitz theorem to nonumbilical lines of
symmetrical surfaces,
JOSA-A(34), No. 3, March 2017, pp. 441-448.
DOI Link
1703
Mathematical methods (general)
BibRef
Brégier, R.[Romain],
Devernay, F.[Frédéric],
Leyrit, L.[Laetitia],
Crowley, J.L.[James L.],
Defining the Pose of Any 3D Rigid Object and an Associated Distance,
IJCV(126), No. 6, June 2018, pp. 571-596.
Springer DOI
1804
BibRef
Earlier:
Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation
in Scenes of Many Parts in Bulk,
6DPose17(2209-2218)
IEEE DOI
1802
Cameras, Object detection, Performance evaluation, Pose estimation,
Solid modeling,
BibRef
Wen, C.[Cheng],
Yu, B.[Baosheng],
Tao, D.C.[Da-Cheng],
Learnable Skeleton-Aware 3D Point Cloud Sampling,
CVPR23(17671-17681)
IEEE DOI
2309
BibRef
Insafutdinov, E.[Eldar],
Campbell, D.[Dylan],
Henriques, J.F.[Joăo F.],
Vedaldi, A.[Andrea],
SNeS: Learning Probably Symmetric Neural Surfaces from Incomplete Data,
ECCV22(XXXII:367-383).
Springer DOI
2211
BibRef
Zhou, Y.[Yichao],
Liu, S.[Shichen],
Ma, Y.[Yi],
NeRD: Neural 3D Reflection Symmetry Detector,
CVPR21(15935-15944)
IEEE DOI
2111
Costs,
Pose estimation, Detectors, Reflection, Pattern recognition
BibRef
Jain, H.[Hardik],
Hellwich, O.[Olaf],
GenIcoNet: Generative Icosahedral Mesh Convolutional Network,
3DV21(64-73)
IEEE DOI
2201
Convolutional codes, Training, Interpolation,
Surface reconstruction, Systematics, Shape, Surface Mesh, Mesh Arithmetic
BibRef
Jain, H.[Hardik],
Wöllhaf, M.,
Hellwich, O.[Olaf],
Learning to Reconstruct Symmetric Shapes using Planar
Parameterization of 3D Surface,
GMDL19(4133-4140)
IEEE DOI
2004
Code, Symmetry.
WWW Link. Gaussian processes, geometry, image reconstruction,
image representation, iterative methods,
ShapeNet
BibRef
Ecins, A.,
Fermüller, C.,
Aloimonos, Y.,
Detecting Reflectional Symmetries in 3D Data Through Symmetrical
Fitting,
Symmetry17(1779-1783)
IEEE DOI
1802
Measurement, Shape, Solid modeling,
BibRef
Su, J.Y.,
Cheng, S.C.,
Hsieh, J.W.,
Hsu, T.H.,
Moment-based symmetry detection for scene modeling and recognition
using RGB-D images,
ICPR16(3621-3626)
IEEE DOI
1705
Algorithm design and analysis, Classification algorithms,
Computational modeling, Detectors, Feature extraction, Reflection,
RGB-D images,
moment-based symmetry detection, part-based scene modeling,
symmetric patch detection, unsupervised, feature, representation
BibRef
Mukhopadhyay, A.,
Bhandarkar, S.M.,
Porikli, F.M.[Fatih M.],
Detection and characterization of Intrinsic symmetry of 3D shapes,
ICPR16(1815-1820)
IEEE DOI
1705
Complexity theory, Geometry, Level measurement, Manifolds, Shape,
Space vehicles, Three-dimensional, displays
BibRef
Zhou, C.[Chen],
Guney, F.[Fatma],
Wang, Y.Z.[Yi-Zhou],
Geiger, A.[Andreas],
Exploiting Object Similarity in 3D Reconstruction,
ICCV15(2201-2209)
IEEE DOI
1602
Buildings
BibRef
Korman, S.[Simon],
Ofek, E.[Eyal],
Avidan, S.[Shai],
Peeking Template Matching for Depth Extension,
ICCV15(2174-2182)
IEEE DOI
1602
Extend depth image into unseen regions. Repeated structures.
BibRef
Kakarala, R.[Ramakrishna],
Kaliamoorthi, P.[Prabhu],
Premachandran, V.[Vittal],
Three-Dimensional Bilateral Symmetry Plane Estimation in the Phase
Domain,
CVPR13(249-256)
IEEE DOI
1309
phase; sampling; spherical harmonics; symmetry
BibRef
Potapova, E.[Ekaterina],
Zillich, M.[Michael],
Vincze, M.[Markus],
Local 3D Symmetry for Visual Saliency in 2.5D Point Clouds,
ACCV12(I:434-445).
Springer DOI
1304
BibRef
Grushko, C.[Carmi],
Raviv, D.[Dan],
Kimmel, R.[Ron],
Intrinsic Local Symmetries: A Computational Framework,
3DOR12(33-38)
DOI Link
1301
BibRef
Sinha, S.N.[Sudipta N.],
Ramnath, K.[Krishnan],
Szeliski, R.S.[Richard S.],
Detecting and Reconstructing 3D Mirror Symmetric Objects,
ECCV12(II: 586-600).
Springer DOI
1210
BibRef
Mitra, N.J.[Niloy J.],
Bronstein, A.M.[Alex M.],
Bronstein, M.M.[Michael M.],
Intrinsic Regularity Detection in 3D Geometry,
ECCV10(III: 398-410).
Springer DOI
1009
Symmetries, regularity, retpetitve structures.
Reduce to 2D grid problem.
BibRef
Kakarala, R.[Ramakrishna],
Mao, D.S.[Dan-Sheng],
A theory of phase-sensitive rotation invariance with spherical harmonic
and moment-based representations,
CVPR10(105-112).
IEEE DOI
1006
bispectrum for rotations and moments. Distinguish rotations from reflections.
BibRef
Cailliere, D.,
Denis, F.,
Pele, D.,
Baskurt, A.,
3D mirror symmetry detection using Hough transform,
ICIP08(1772-1775).
IEEE DOI
0810
BibRef
Sawada, T.[Tadamasa],
Pizlo, Z.[Zygmunt],
Detecting mirror-symmetry of a volumetric shape from its single 2D
image,
Tensor08(1-8).
IEEE DOI
0806
BibRef
Fujimori, T.[Tomoyuki],
Kobayashi, Y.[Yohei],
Suzuki, H.[Hiromasa],
Separated Medial Surface Extraction from CT Data of Machine Parts,
GMP06(313-324).
Springer DOI
0607
BibRef
Pan, G.[Gang],
Wang, Y.M.[Yue-Ming],
Qi, Y.P.[Yi-Peng],
Wu, Z.H.[Zhao-Hui],
Finding Symmetry Plane of 3D Face Shape,
ICPR06(III: 1143-1146).
IEEE DOI
0609
BibRef
Huynh, D.,
Affine Reconstruction from Monocular Vision in the Presence of a
Symmetry Plane,
ICCV99(476-482).
IEEE DOI
BibRef
9900
Imamura, H.,
Kitaoka, Y.[Yoshiyuki],
Katsuma, Y.,
Kenmochi, Y.,
Kotani, K.,
Estimation of Stereo Image Pairs from Single Camera Views for a
Roatating Spherical Object covered with Moving Texture,
ICIP99(IV:400-404).
IEEE DOI Smoothly Varying Surface
BibRef
9900
Yiwu, L.[Lei],
Cheong, W.[Wong],
A Novel Method for Detecting and Localising of Reflectional
and Rotational Symmetry Under Weak Perspective Projection,
ICPR98(Vol I: 417-419).
IEEE DOI
9808
BibRef
Carlsson, S.,
Symmetry in perspective,
ECCV98(I: 249).
Springer DOI
BibRef
9800
Nishimura, K.,
Tanaka, H.,
Active Shape Inferring Based on the Symmetry in Stable Poses:
Shape from Function Approach,
ICPR96(I: 136-140).
IEEE DOI
9608
(Ritsumeikan Univ., J)
BibRef
Tan, T.N.,
Monocular Reconstruction of 3-D Bilateral Symmetrical Objects,
BMVC96(Poster Session 1).
9608
BibRef
Earlier:
Structure, Pose and Motion of Bilateral Symmetric Objects,
BMVC95(xx-yy).
PDF File.
9509
University of Reading
BibRef
Labonte, F.,
Shapira, Y., and
Cohen, P.,
A Perceptually Plausible Model for Global Symmetry Detection,
ICCV93(258-263).
IEEE DOI
BibRef
9300
Minovic, P.,
Ishikawa, S.,
Kato, K.,
Three-Dimensional Symmetry Measurement of Medical Entities,
ICPR92(I:457-460).
IEEE DOI
BibRef
9200
Yuen, S.Y.K.[Shiu-Yin Kelvin],
Shape from Contour Using Symmetries,
ECCV90(437-453).
Springer DOI
BibRef
9000
Brown, C.M.,
Symmetry Evaluators,
DARPA84(90-97).
BibRef
8400
Kelley, R.B.,
Birk, J.R.,
Silva, R.,
Identification of Object Symmetry from Multiple Views,
PRIP78(327-330).
BibRef
7800
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Generalized Cylinders -- Use .