22.1.5.3 Land Cover, Land Use, Very High Resolution

Chapter Contents (Back)
High Resolution. VHR, HR.

Ehlers, M.[Manfred], Gähler, M.[Monika], Janowsky, R.[Ronald],
Automated analysis of ultra high resolution remote sensing data for biotope type mapping: new possibilities and challenges,
PandRS(57), No. 5-6, April 2003, pp. 315-326.
Elsevier DOI 0307
BibRef

Qian, Y.[Yuguo], Zhou, W.Q.[Wei-Qi], Yan, J.L.[Jing-Li], Li, W.F.[Wei-Feng], Han, L.J.[Li-Jian],
Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery,
RS(7), No. 1, 2014, pp. 153-168.
DOI Link 1502
BibRef

Baraldi, A., Boschetti, L., Humber, M.L.,
Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images,
GeoRS(52), No. 1, January 2014, pp. 701-760.
IEEE DOI 1402
decision trees BibRef

Lv, Z.Y.[Zhi-Yong], He, H.Q.[Hai-Qing], Benediktsson, J.A.[Jón Atli], Huang, H.[Hong],
A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery,
RS(8), No. 10, 2016, pp. 814.
DOI Link 1609
Regions based for classification. BibRef

Witharana, C.[Chandi], Lynch, H.J.[Heather J.],
An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images,
RS(8), No. 5, 2016, pp. 375.
DOI Link 1606
BibRef

Lv, Z.Y.[Zhi-Yong], Shi, W.Z.[Wen-Zhong], Benediktsson, J.A.[Jón Atli], Ning, X.J.[Xiao-Juan],
Novel Object-Based Filter for Improving Land-Cover Classification of Aerial Imagery with Very High Spatial Resolution,
RS(8), No. 12, 2016, pp. 1023.
DOI Link 1612
BibRef

Lv, Z.Y.[Zhi-Yong], Zhang, P.L.[Peng-Lin], Benediktsson, J.A.[Jón Atli],
Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler's First Law of Geography for Very High Resolution Aerial Imagery Classification,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Wang, M.[Min], Cui, Q.[Qi], Sun, Y.[Yujie], Wang, Q.[Qiao],
Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching,
PandRS(141), 2018, pp. 100-111.
Elsevier DOI 1806
Photovoltaic panel, Object-based image analysis, Region-line primitive association framework, High-resolution imagery BibRef

Georganos, S.[Stefanos], Grippa, T.[Tais], Lennert, M.[Moritz], Vanhuysse, S.[Sabine], Johnson, B.A.[Brian Alan], Wolff, E.[Eléonore],
Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
For very high resolution, use regions (objects). BibRef

Marcos, D.[Diego], Volpi, M.[Michele], Kellenberger, B.[Benjamin], Tuia, D.[Devis],
Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models,
PandRS(145), 2018, pp. 96-107.
Elsevier DOI 1810
Semantic labeling, Deep learning, Rotation invariance, Sub-decimeter resolution BibRef

Zhang, L., Bai, M., Liao, R., Urtasun, R., Marcos, D., Tuia, D., Kellenberger, B.,
Learning Deep Structured Active Contours End-to-End,
CVPR18(8877-8885)
IEEE DOI 1812
Buildings, Image segmentation, Active contours, Force, Training, Inference algorithms, Semantics BibRef

Liu, Y.C.[Yong-Cheng], Fan, B.[Bin], Wang, L.F.[Ling-Feng], Bai, J.[Jun], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network,
PandRS(145), 2018, pp. 78-95.
Elsevier DOI 1810
Semantic labeling, Convolutional neural networks (CNNs), Multi-scale contexts, End-to-end BibRef

Hong, D.F.[Dan-Feng], Yokoya, N.[Naoto], Ge, N.[Nan], Chanussot, J.[Jocelyn], Zhu, X.X.[Xiao Xiang],
Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification,
PandRS(147), 2019, pp. 193-205.
Elsevier DOI 1901
Cross-modality, Graph learning, Hyperspectral, Manifold alignment, Multispectral, Remote sensing, Semi-supervised learning BibRef

Nogueira, K.[Keiller], Dalla Mura, M., Chanussot, J.[Jocelyn], Schwartz, W.R., dos Santos, J.A.[Jefersson A.],
Learning to Semantically Segment High-Resolution Remote Sensing Images,
ICPR16(3566-3571)
IEEE DOI 1705
Context, Feature extraction, Image segmentation, Machine learning, Remote sensing, Semantics, Visualization, Deep Learning, Feature Learning, High-resolution Images, Land-cover Mapping, Pixel-wise Classification, Remote Sensing, Semantic, Segmentation BibRef

Luo, B.[Bin], Chanussot, J.[Jocelyn],
Geometrical features for the classification of very high resolution multispectral remote-sensing images,
ICIP10(1045-1048).
IEEE DOI 1009
BibRef

Wang, Y.[Yuhao], Liang, B.X.[Bin-Xiu], Ding, M.[Meng], Li, J.Y.[Jiang-Yun],
Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and Decoder for High-Resolution Remote Sensing Imagery,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Flores, E.[Eliezer], Zortea, M.[Maciel], Scharcanski, J.[Jacob],
Dictionaries of deep features for land-use scene classification of very high spatial resolution images,
PR(89), 2019, pp. 32-44.
Elsevier DOI 1902
Deep learning, Dictionary learning, Feature learning, Land-use classification, Sparse representation BibRef

Xu, L.[Lu], Ming, D.P.[Dong-Ping], Zhou, W.[Wen], Bao, H.Q.[Han-Qing], Chen, Y.Y.[Yang-Yang], Ling, X.[Xiao],
Farmland Extraction from High Spatial Resolution Remote Sensing Images Based on Stratified Scale Pre-Estimation,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Mo, N.[Nan], Yan, L.[Li], Zhu, R.X.[Rui-Xi], Xie, H.[Hong],
Class-Specific Anchor Based and Context-Guided Multi-Class Object Detection in High Resolution Remote Sensing Imagery with a Convolutional Neural Network,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Mboga, N.[Nicholus], Georganos, S.[Stefanos], Grippa, T.[Tais], Lennert, M.[Moritz], Vanhuysse, S.[Sabine], Wolff, E.[Eléonore],
Fully Convolutional Networks and Geographic Object-Based Image Analysis for the Classification of VHR Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Geiß, C.[Christian], Pelizari, P.A.[Patrick Aravena], Blickensdörfer, L.[Lukas], Taubenböck, H.[Hannes],
Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery,
PandRS(151), 2019, pp. 42-58.
Elsevier DOI 1904
Classification, Support Vector Machines, Self-learning, Active learning heuristics, Very high spatial resolution imagery BibRef


Wu, L.[Linmei], Shen, L.[Li], Li, Z.P.[Zhi-Peng],
A Kernel Method Based On Topic Model For Very High Spatial Resolution (VHSR) Remote Sensing Image Classification,
ISPRS16(B7: 399-403).
DOI Link 1610
BibRef

Fan, J., Chen, T., Lu, S.,
Vegetation coverage detection from very high resolution satellite imagery,
VCIP15(1-4)
IEEE DOI 1605
Histograms BibRef

Taberner, M., Shutler, J., Walker, P., Poulter, D., Piolle, J.F., Donlon, C., Guidetti, V.,
The ESA FELYX High Resolution Diagnostic Data Set System Design and Implementation,
SSG13(243-249).
DOI Link 1402
BibRef

Bindel, M., Hese, S., Berger, C., Schmullius, C.,
Feature selection from high resolution remote sensing data for biotope mapping,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Arroyo, L.A.[Lara A.], Johansen, K.[Kasper], Phinn, S.R.[Stuart R.],
Mapping Land Cover Types from Very High Spatial Resolution Imagery: Automatic Application of an Object Based Classification Scheme,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Carleer, A.P., Wolff, E.,
Region-based classification potential for land-cover classification with very high spatial resolution satellite data,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Agrafiotis, P., Georgopoulos, A.,
Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery,
PIA15(1-7).
DOI Link 1504
BibRef

Aminipouri, M., Sliuzas, R., Kuffer, M.,
Object-Oriented Analysis of Very High Resolution Orthophotos for Estimating the Population of Slum Areas, A Case of Dar-Es-Salaam, Tanzania,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Zhang, J.Q.[Jian-Qing], Zhang, Z.X.[Zu-Xun],
Strict Geometric Model Based on Affine Transformation for Remote Sensing Image with High Resolution,
PCV02(B: 309). 0305
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Object Based Land Cover, Region Based Land Cover, Land Use Analysis .


Last update:Jun 13, 2019 at 09:53:00