23.2.2 Land Cover, Land Use, Very High Resolution, High Spatial Resolution

Chapter Contents (Back)
High Resolution. VHR, HR.
See also Very High Resolution Land Cover Change Analysis.
See also Subpixel Target, Subpixel Land Use, Tiny Objects.

Ehlers, M.[Manfred], Gähler, M.[Monika], Janowsky, R.[Ronald],
Automated analysis of ultra high resolution remote sensing data for biotope type mapping: new possibilities and challenges,
PandRS(57), No. 5-6, April 2003, pp. 315-326.
Elsevier DOI 0307
BibRef

Chen, X., Fang, T., Huo, H., Li, D.,
Graph-Based Feature Selection for Object-Oriented Classification in VHR Airborne Imagery,
GeoRS(49), No. 1, January 2011, pp. 353-365.
IEEE DOI 1101
BibRef

Qian, Y.G.[Yu-Guo], Zhou, W.Q.[Wei-Qi], Yan, J.L.[Jing-Li], Li, W.F.[Wei-Feng], Han, L.J.[Li-Jian],
Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery,
RS(7), No. 1, 2014, pp. 153-168.
DOI Link 1502
BibRef

Baraldi, A., Boschetti, L., Humber, M.L.,
Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images,
GeoRS(52), No. 1, January 2014, pp. 701-760.
IEEE DOI 1402
decision trees BibRef

Lv, Z.Y.[Zhi-Yong], He, H.Q.[Hai-Qing], Benediktsson, J.A.[Jón Atli], Huang, H.[Hong],
A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery,
RS(8), No. 10, 2016, pp. 814.
DOI Link 1609
Regions based for classification. BibRef

Shi, C.[Cheng], Lv, Z.Y.[Zhi-Yong], Yang, X.H.[Xiu-Hong], Xu, P.F.[Peng-Fei], Bibi, I.[Irfana],
Hierarchical Multi-View Semi-Supervised Learning for Very High-Resolution Remote Sensing Image Classification,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Witharana, C.[Chandi], Lynch, H.J.[Heather J.],
An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images,
RS(8), No. 5, 2016, pp. 375.
DOI Link 1606
BibRef

Lv, Z.Y.[Zhi-Yong], Shi, W.Z.[Wen-Zhong], Benediktsson, J.A.[Jón Atli], Ning, X.J.[Xiao-Juan],
Novel Object-Based Filter for Improving Land-Cover Classification of Aerial Imagery with Very High Spatial Resolution,
RS(8), No. 12, 2016, pp. 1023.
DOI Link 1612
BibRef

Lv, Z.Y.[Zhi-Yong], Zhang, P.L.[Peng-Lin], Benediktsson, J.A.[Jón Atli],
Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler's First Law of Geography for Very High Resolution Aerial Imagery Classification,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Georganos, S.[Stefanos], Grippa, T.[Tais], Lennert, M.[Moritz], Vanhuysse, S.[Sabine], Johnson, B.A.[Brian Alan], Wolff, E.[Eléonore],
Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
For very high resolution, use regions (objects). BibRef

Marcos, D.[Diego], Volpi, M.[Michele], Kellenberger, B.[Benjamin], Tuia, D.[Devis],
Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models,
PandRS(145), 2018, pp. 96-107.
Elsevier DOI 1810
Semantic labeling, Deep learning, Rotation invariance, Sub-decimeter resolution BibRef

Zhang, L., Bai, M., Liao, R., Urtasun, R., Marcos, D., Tuia, D., Kellenberger, B.,
Learning Deep Structured Active Contours End-to-End,
CVPR18(8877-8885)
IEEE DOI 1812
Buildings, Image segmentation, Active contours, Force, Training, Inference algorithms, Semantics BibRef

Liu, Y.C.[Yong-Cheng], Fan, B.[Bin], Wang, L.F.[Ling-Feng], Bai, J.[Jun], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network,
PandRS(145), 2018, pp. 78-95.
Elsevier DOI 1810
Semantic labeling, Convolutional neural networks (CNNs), Multi-scale contexts, End-to-end BibRef

Pan, X.[Xin], Zhao, J.[Jian],
High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network and Restricted Conditional Random Field,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Pan, X.[Xin], Zhang, C.[Ce], Xu, J.[Jun], Zhao, J.[Jian],
Simplified Object-Based Deep Neural Network for Very High Resolution Remote Sensing Image Classification,
PandRS(181), 2021, pp. 218-237.
Elsevier DOI 2110
CNN, Very high resolution, Semantic segmentation, Classification, OBIA BibRef

Diao, Q.[Qi], Dai, Y.P.[Ya-Ping], Wang, J.C.[Jia-Cheng], Feng, X.X.[Xiao-Xue], Pan, F.[Feng], Zhang, C.[Ce],
Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image Classification,
RS(16), No. 6, 2024, pp. 937.
DOI Link 2403
BibRef

Lu, Y.B.[Yuan-Bing], Li, H.P.[Hua-Peng], Zhang, C.[Ce], Zhang, S.Q.[Shu-Qing],
Object-Based Semi-Supervised Spatial Attention Residual UNet for Urban High-Resolution Remote Sensing Image Classification,
RS(16), No. 8, 2024, pp. 1444.
DOI Link 2405
BibRef

Pan, X.[Xin], Xu, J.[Jun], Zhao, J.[Jian], Li, X.F.[Xiao-Feng],
Hierarchical Object-Focused and Grid-Based Deep Unsupervised Segmentation Method for High-Resolution Remote Sensing Images,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, Y.H.[Yu-Hao], Liang, B.X.[Bin-Xiu], Ding, M.[Meng], Li, J.Y.[Jiang-Yun],
Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and Decoder for High-Resolution Remote Sensing Imagery,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Wang, Y.H.[Yu-Hao], Chen, C.[Chen], Ding, M.[Meng], Li, J.Y.[Jiang-Yun],
Real-Time Dense Semantic Labeling with Dual-Path Framework for High-Resolution Remote Sensing Image,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Flores, E.[Eliezer], Zortea, M.[Maciel], Scharcanski, J.[Jacob],
Dictionaries of deep features for land-use scene classification of very high spatial resolution images,
PR(89), 2019, pp. 32-44.
Elsevier DOI 1902
Deep learning, Dictionary learning, Feature learning, Land-use classification, Sparse representation BibRef

Xu, L.[Lu], Ming, D.P.[Dong-Ping], Zhou, W.[Wen], Bao, H.Q.[Han-Qing], Chen, Y.Y.[Yang-Yang], Ling, X.[Xiao],
Farmland Extraction from High Spatial Resolution Remote Sensing Images Based on Stratified Scale Pre-Estimation,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Mo, N.[Nan], Yan, L.[Li], Zhu, R.X.[Rui-Xi], Xie, H.[Hong],
Class-Specific Anchor Based and Context-Guided Multi-Class Object Detection in High Resolution Remote Sensing Imagery with a Convolutional Neural Network,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Mboga, N.[Nicholus], Georganos, S.[Stefanos], Grippa, T.[Tais], Lennert, M.[Moritz], Vanhuysse, S.[Sabine], Wolff, E.[Eléonore],
Fully Convolutional Networks and Geographic Object-Based Image Analysis for the Classification of VHR Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Geiß, C.[Christian], Pelizari, P.A.[Patrick Aravena], Blickensdörfer, L.[Lukas], Taubenböck, H.[Hannes],
Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery,
PandRS(151), 2019, pp. 42-58.
Elsevier DOI 1904
Classification, Support Vector Machines, Self-learning, Active learning heuristics, Very high spatial resolution imagery BibRef

Zhang, H.[Heng], Eziz, A.[Anwar], Xiao, J.[Jian], Tao, S.L.[Sheng-Li], Wang, S.P.[Shao-Peng], Tang, Z.Y.[Zhi-Yao], Zhu, J.L.[Jiang-Ling], Fang, J.Y.[Jing-Yun],
High-Resolution Vegetation Mapping Using eXtreme Gradient Boosting Based on Extensive Features,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Huang, H.[Hong], Xu, K.[Kejie],
Combing Triple-Part Features of Convolutional Neural Networks for Scene Classification in Remote Sensing,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Guo, J.[Jifa], Du, S.H.[Shi-Hong], Huo, H.Y.[Hong-Yuan], Du, S.J.[Shou-Ji], Zhang, X.Y.[Xiu-Yuan],
Modelling the Spectral Uncertainty of Geographic Features in High-Resolution Remote Sensing Images: Semi-Supervising and Weighted Interval Type-2 Fuzzy C-Means Clustering,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Liu, X.L.[Xin-Long], He, C.[Chu], Xiong, D.[Dehui], Liao, M.S.[Ming-Sheng],
Pattern Statistics Network for Classification of High-Resolution SAR Images,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Stoian, A.[Andrei], Poulain, V.[Vincent], Inglada, J.[Jordi], Poughon, V.[Victor], Derksen, D.[Dawa],
Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Zhu, R.X.[Rui-Xi], Yan, L.[Li], Mo, N.[Nan], Liu, Y.[Yi],
Retraction: Attention-Based Deep Feature Fusion for the Scene Classification of High-Resolution Remote Sensing Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef
And: Retraction: RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Yue, K.[Kai], Yang, L.[Lei], Li, R.R.[Rui-Rui], Hu, W.[Wei], Zhang, F.[Fan], Li, W.[Wei],
TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation,
PandRS(156), 2019, pp. 1-13.
Elsevier DOI 1909
Aerial imagery, Semantic segmentation, Tree structures, Adaptive network, ISPRS, CNN BibRef

Kiani, A.[Abbas], Ebadi, H.[Hamid], Ahmadi, F.F.[Farshid Farnood],
Development of an Object-Based Interpretive System Based on Weighted Scoring Method in a Multi-Scale Manner,
IJGI(8), No. 9, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Lv, Z.Y.[Zhi-Yong], Li, G.F.[Guang-Fei], Chen, Y.X.[Yi-Xiang], Benediktsson, J.A.[Jón Atli],
Novel Multi-Scale Filter Profile-Based Framework for VHR Remote Sensing Image Classification,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Lei, T.[Tao], Li, L.Z.[Lin-Ze], Lv, Z.Y.[Zhi-Yong], Zhu, M.Z.[Ming-Zhe], Du, X.G.[Xiao-Gang], Nandi, A.K.[Asoke K.],
Multi-Modality and Multi-Scale Attention Fusion Network for Land Cover Classification from VHR Remote Sensing Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Li, H.P.[Hua-Peng], Zhang, C.[Ce], Zhang, S.Q.[Shu-Qing], Atkinson, P.M.[Peter M.],
A hybrid OSVM-OCNN Method for Crop Classification from Fine Spatial Resolution Remotely Sensed Imagery,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Abdollahnejad, A.[Azadeh], Panagiotidis, D.[Dimitrios], Bílek, L.[Lukáš],
An Integrated GIS and Remote Sensing Approach for Monitoring Harvested Areas from Very High-Resolution, Low-Cost Satellite Images,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Li, Y.S.[Yan-Shan], Xu, J.J.[Jian-Jie], Xia, R.J.[Rong-Jie], Wang, X.C.[Xian-Chen], Xie, W.X.[Wei-Xin],
A two-stage framework of target detection in high-resolution hyperspectral images,
SIViP(13), No. 7, October 2019, pp. 1339-1346.
Springer DOI 1911
BibRef

Tong, H.J.[Heng-Jian], Tong, F.[Fei], Zhou, W.[Wei], Zhang, Y.[Yun],
Purifying SLIC Superpixels to Optimize Superpixel-Based Classification of High Spatial Resolution Remote Sensing Image,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Tang, J.C.[Jie-Chen], Tong, H.J.[Heng-Jian], Tong, F.[Fei], Zhang, Y.[Yun], Chen, W.T.[Wei-Tao],
Exploiting Superpixel-Based Contextual Information on Active Learning for High Spatial Resolution Remote Sensing Image Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Wu, Y.D.[Ying-Dan], Di, L.P.[Li-Ping], Ming, Y.[Yang], Lv, H.[Hui], Tan, H.[Han],
High-Resolution Optical Remote Sensing Image Registration via Reweighted Random Walk Based Hyper-Graph Matching,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Li, E.[Erzhu], Samat, A.[Alim], Liu, W.[Wei], Lin, C.[Cong], Bai, X.[Xuyu],
High-Resolution Imagery Classification Based on Different Levels of Information,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Zhang, G.[Gang], Lei, T.[Tao], Cui, Y.[Yi], Jiang, P.[Ping],
A Dual-Path and Lightweight Convolutional Neural Network for High-Resolution Aerial Image Segmentation,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Zhang, S.Y.[Shu-Yu], Li, C.R.[Chuan-Rong], Qiu, S.[Shi], Gao, C.X.[Cai-Xia], Zhang, F.[Feng], Du, Z.H.[Zhen-Hong], Liu, R.Y.[Ren-Yi],
EMMCNN: An ETPS-Based Multi-Scale and Multi-Feature Method Using CNN for High Spatial Resolution Image Land-Cover Classification,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Gong, Y., Xiao, Z., Tan, X., Sui, H., Xu, C., Duan, H., Li, D.,
Context-Aware Convolutional Neural Network for Object Detection in VHR Remote Sensing Imagery,
GeoRS(58), No. 1, January 2020, pp. 34-44.
IEEE DOI 2001
Feature extraction, Object detection, Proposals, Semantics, Context modeling, Convolutional codes, object detection BibRef

Zhang, X.[Xin], Han, L.X.[Liang-Xiu], Han, L.H.[Liang-Hao], Zhu, L.[Liang],
How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery?,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Liang, W.W.[Wan-Wan], Abidi, M.[Mongi], Carrasco, L.[Luis], McNelis, J.[Jack], Tran, L.[Liem], Li, Y.K.[Ying-Kui], Grant, J.[Jerome],
Mapping Vegetation at Species Level with High-Resolution Multispectral and Lidar Data Over a Large Spatial Area: A Case Study with Kudzu,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Lin, W.J.[Wen-Jie], Li, Y.[Yu],
Parallel Regional Segmentation Method of High-Resolution Remote Sensing Image Based on Minimum Spanning Tree,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Pan, X.[Xin], Zhao, J.[Jian], Xu, J.[Jun],
An End-to-End and Localized Post-Processing Method for Correcting High-Resolution Remote Sensing Classification Result Images,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Meier, E.S.[Eliane Seraina], Indermaur, A.[Alexander], Ginzler, C.[Christian], Psomas, A.[Achilleas],
An Effective Way to Map Land-Use Intensity with a High Spatial Resolution Based on Habitat Type and Environmental Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Zhang, X.G.[Xin-Gang], Yan, H.[Haowen], Zhang, L.M.[Li-Ming], Wang, H.[Hao],
High-Resolution Remote Sensing Image Integrity Authentication Method Considering Both Global and Local Features,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Samasse, K.[Kaboro], Hanan, N.P.[Niall P.], Anchang, J.Y.[Julius Y.], Diallo, Y.[Yacouba],
A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Zhao, X.L.[Xiao-Lei], Zhang, J.[Jing], Tian, J.[Jimiao], Zhuo, L.[Li], Zhang, J.[Jie],
Residual Dense Network Based on Channel-Spatial Attention for the Scene Classification of a High-Resolution Remote Sensing Image,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Körez, A.[Atakan], Barisçi, N.[Necaattin], Çetin, A.[Aydin], Ergün, U.[Uçman],
Weighted Ensemble Object Detection with Optimized Coefficients for Remote Sensing Images,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Ding, L., Zhang, J., Bruzzone, L.,
Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture,
GeoRS(58), No. 8, August 2020, pp. 5367-5376.
IEEE DOI 2007
Semantics, Training, Image segmentation, Feature extraction, Remote sensing, Convolution, semantic segmentation BibRef

Li, Y., Melgani, F.[Farid], He, B.,
CSVM Architectures for Pixel-Wise Object Detection in High-Resolution Remote Sensing Images,
GeoRS(58), No. 9, September 2020, pp. 6059-6070.
IEEE DOI 2008
Object detection, Convolution, Remote sensing, Feature extraction, Training, Image resolution, Support vector machines, very high resolution (VHR) BibRef

Qi, X.M.[Xiao-Man], Zhu, P.P.[Pan-Pan], Wang, Y.B.[Yue-Bin], Zhang, L.Q.[Li-Qiang], Peng, J.H.[Jun-Huan], Wu, M.F.[Meng-Fan], Chen, J.L.[Jia-Long], Zhao, X.D.[Xu-Dong], Zang, N.[Ning], Mathiopoulos, P.T.[P. Takis],
MLRSNet: A multi-label high spatial resolution remote sensing dataset for semantic scene understanding,
PandRS(169), 2020, pp. 337-350.
Elsevier DOI 2011
Multi-label image dataset, Semantic scene understanding, Convolutional Neural Network (CNN), Image classification, Image retrieval BibRef

Li, F.P.[Feng-Peng], Feng, R.[Ruyi], Han, W.[Wei], Wang, L.Z.[Li-Zhe],
High-Resolution Remote Sensing Image Scene Classification via Key Filter Bank Based on Convolutional Neural Network,
GeoRS(58), No. 11, November 2020, pp. 8077-8092.
IEEE DOI 2011
Feature extraction, Task analysis, Data models, Remote sensing, Benchmark testing, Computational modeling, scene classification BibRef

Li, M.M.[Meng-Meng], Stein, A.[Alfred],
Mapping Land Use from High Resolution Satellite Images by Exploiting the Spatial Arrangement of Land Cover Objects,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Lv, Z., Li, G., Jin, Z., Benediktsson, J.A., Foody, G.M.,
Iterative Training Sample Expansion to Increase and Balance the Accuracy of Land Classification From VHR Imagery,
GeoRS(59), No. 1, January 2021, pp. 139-150.
IEEE DOI 2012
Training, Sensors, Hyperspectral imaging, Iterative methods, Feature extraction, Land cover classification, very high-resolution remote-sensing image BibRef

Gao, H.[Han], Guo, J.H.[Jin-Hui], Guo, P.[Peng], Chen, X.W.[Xiu-Wan],
Classification of Very-High-Spatial-Resolution Aerial Images Based on Multiscale Features with Limited Semantic Information,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Huang, Z.[Zhou], Chen, H.X.[Huai-Xin], Zhou, T.[Tao], Yang, Y.Z.[Yun-Zhi], Wang, C.Y.[Chang-Yin], Liu, B.Y.[Bi-Yuan],
Contrast-weighted dictionary learning based saliency detection for VHR optical remote sensing images,
PR(113), 2021, pp. 107757.
Elsevier DOI 2103
Contrast-weighted dictionary, Dictionary learning, Gradient optimization, Remote sensing, Saliency detection BibRef

Fan, J.L.[Jin-Long], Zhang, X.Y.[Xiao-Yu], Zhao, C.L.[Chun-Liang], Qin, Z.H.[Zhi-Hao], de Vroey, M.[Mathilde], Defourny, P.[Pierre],
Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Luo, X.[Xin], Du, H.Q.[Hua-Qiang], Zhou, G.[Guomo], Li, X.J.[Xue-Jian], Mao, F.J.[Fang-Jie], Zhu, D.[Di'en], Xu, Y.X.[Yan-Xin], Zhang, M.[Meng], He, S.B.[Shao-Bai], Huang, Z.H.[Zi-Hao],
A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Chen, Y.L.[Yu-Ling], Teng, W.T.[Wen-Tao], Li, Z.[Zhen], Zhu, Q.Q.[Qi-Qi], Guan, Q.F.[Qing-Feng],
Cross-Domain Scene Classification Based on a Spatial Generalized Neural Architecture Search for High Spatial Resolution Remote Sensing Images,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Shi, H.[Hao], Fan, J.H.[Jia-He], Wang, Y.P.[Yu-Pei], Chen, L.[Liang],
Dual Attention Feature Fusion and Adaptive Context for Accurate Segmentation of Very High-Resolution Remote Sensing Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Guo, Y.J.[Yong-Jie], Wang, F.[Feng], Xiang, Y.M.[Yu-Ming], You, H.J.[Hong-Jian],
DGFNet: Dual Gate Fusion Network for Land Cover Classification in Very High-Resolution Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Lin, F.C.[Feng-Cheng], Chuang, Y.C.[Yung-Chung],
Interoperability Study of Data Preprocessing for Deep Learning and High-Resolution Aerial Photographs for Forest and Vegetation Type Identification,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Shi, G.[Guang], Zhang, J.S.[Jiang-She], Liu, J.M.[Jun-Min], Zhang, C.X.[Chun-Xia], Zhou, C.S.[Chang-Sheng], Yang, S.Y.[Shu-Yun],
Global Context-Augmented Objection Detection in VHR Optical Remote Sensing Images,
GeoRS(59), No. 12, December 2021, pp. 10604-10617.
IEEE DOI 2112
Object detection, Remote sensing, Feature extraction, Geospatial analysis, Optical sensors, Optical imaging, Convolution, rotation invariant BibRef

Gong, Y.P.[Yi-Ping], Zhang, F.[Fan], Jia, X.Y.[Xiang-Yang], Mao, Z.[Zhu], Huang, X.F.[Xian-Feng], Li, D.R.[De-Ren],
Instance Segmentation in Very High Resolution Remote Sensing Imagery Based on Hard-to-Segment Instance Learning and Boundary Shape Analysis,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Kwong, I.H.Y.[Ivan H. Y.], Wong, F.K.K.[Frankie K. K.], Fung, T.[Tung], Liu, E.K.Y.[Eric K. Y.], Lee, R.H.[Roger H.], Ng, T.P.T.[Terence P. T.],
A Multi-Stage Approach Combining Very High-Resolution Satellite Image, GIS Database and Post-Classification Modification Rules for Habitat Mapping in Hong Kong,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Yao, H.T.[Hong-Tai], Wang, X.P.[Xian-Pei], Zhao, L.[Le], Tian, M.[Meng], Jian, Z.[Zini], Gong, L.[Li], Li, B.[Bowen],
An Object-Based Markov Random Field with Partition-Global Alternately Updated for Semantic Segmentation of High Spatial Resolution Remote Sensing Image,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Akcay, O.[Ozgun], Kinaci, A.C.[Ahmet Cumhur], Avsar, E.O.[Emin Ozgur], Aydar, U.[Umut],
Semantic Segmentation of High-Resolution Airborne Images with Dual-Stream DeepLabV3+,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Qin, R.J.[Rong-Jun], Liu, T.[Tao],
A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images: Analysis Unit, Model Scalability and Transferability,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Bhatt, P.[Parth], Maclean, A.[Ann], Dickinson, Y.[Yvette], Kumar, C.[Chandan],
Fine-Scale Mapping of Natural Ecological Communities Using Machine Learning Approaches,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zheng, Y.[Yalan], Yang, M.Y.[Meng-Yuan], Wang, M.[Min], Qian, X.J.[Xiao-Jun], Yang, R.[Rui], Zhang, X.[Xin], Dong, W.[Wen],
Semi-Supervised Adversarial Semantic Segmentation Network Using Transformer and Multiscale Convolution for High-Resolution Remote Sensing Imagery,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Luo, Y.C.[Yu-Chuan], Zhang, Z.[Zhao], Zhang, L.L.[Liang-Liang], Han, J.C.[Ji-Chong], Cao, J.[Juan], Zhang, J.[Jing],
Developing High-Resolution Crop Maps for Major Crops in the European Union Based on Transductive Transfer Learning and Limited Ground Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Xu, Y.Z.[Yi-Zhe], Jiang, J.[Jie],
High-Resolution Boundary-Constrained and Context-Enhanced Network for Remote Sensing Image Segmentation,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Chen, F.L.[Feng-Lei], Liu, H.J.[Hai-Jun], Zeng, Z.H.[Zhi-Hong], Zhou, X.C.[Xi-Chuan], Tan, X.H.[Xiao-Heng],
BES-Net: Boundary Enhancing Semantic Context Network for High-Resolution Image Semantic Segmentation,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Diao, C.Y.[Chun-Yuan], Li, G.[Geyang],
Near-Surface and High-Resolution Satellite Time Series for Detecting Crop Phenology,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Li, Z.Q.[Zhu-Qiang], Chen, S.B.[Sheng-Bo], Meng, X.Y.[Xiang-Yu], Zhu, R.F.[Rui-Fei], Lu, J.Y.[Jun-Yan], Cao, L.[Lisai], Lu, P.[Peng],
Full Convolution Neural Network Combined with Contextual Feature Representation for Cropland Extraction from High-Resolution Remote Sensing Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Yuan, J.[Jianye], Ma, X.[Xin], Han, G.[Ge], Li, S.[Song], Gong, W.[Wei],
Research on Lightweight Disaster Classification Based on High-Resolution Remote Sensing Images,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Sharma, R.C.[Ram C.],
An Ultra-Resolution Features Extraction Suite for Community-Level Vegetation Differentiation and Mapping at a Sub-Meter Resolution,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Wang, C.Y.[Chun-Yan], Wang, X.[Xiang], Wu, D.F.[Dan-Feng], Kuang, M.[Minchi], Li, Z.[Zhengtong],
Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Ji, S.P.[Shun-Ping], Wang, D.P.[Ding-Pan], Luo, M.Y.[Mu-Ying],
Generative Adversarial Network-Based Full-Space Domain Adaptation for Land Cover Classification From Multiple-Source Remote Sensing Images,
GeoRS(59), No. 5, May 2021, pp. 3816-3828.
IEEE DOI 2104
Image segmentation, Remote sensing, Training, Decoding, Generative adversarial networks, Feature extraction, remote sensing BibRef

Luo, M.Y.[Mu-Ying], Ji, S.P.[Shun-Ping],
Cross-spatiotemporal land-cover classification from VHR remote sensing images with deep learning based domain adaptation,
PandRS(191), 2022, pp. 105-128.
Elsevier DOI 2208
Domain adaptation, Land cover classification, Very-high resolution images, Deep learning, Cross-spatiotemporal BibRef

Boulila, W.[Wadii], Khlifi, M.K.[Manel Khazri], Ammar, A.[Adel], Koubaa, A.[Anis], Benjdira, B.[Bilel], Farah, I.R.[Imed Riadh],
A Hybrid Privacy-Preserving Deep Learning Approach for Object Classification in Very High-Resolution Satellite Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Li, Z.H.[Zhuo-Hong], Zhang, H.Y.[Hong-Yan], Lu, F.X.[Fang-Xiao], Xue, R.[Ruoyao], Yang, G.Y.[Guang-Yi], Zhang, L.P.[Liang-Pei],
Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels,
PandRS(192), 2022, pp. 244-267.
Elsevier DOI 2209
Multi-resolution, Land-cover mapping, Semantic segmentation, Low-to-high task BibRef

Sertel, E.[Elif], Ekim, B.[Burak], Osgouei, P.E.[Paria Ettehadi], Kabadayi, M.E.[M. Erdem],
Land Use and Land Cover Mapping Using Deep Learning Based Segmentation Approaches and VHR Worldview-3 Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Li, J.[Jia], Liao, Y.J.[Yu-Jia], Zhang, J.J.[Jun-Jie], Zeng, D.[Dan], Qian, X.L.[Xiao-Liang],
Semi-Supervised DEGAN for Optical High-Resolution Remote Sensing Image Scene Classification,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Wang, X.[Xuan], Zhang, Y.[Yue], Lei, T.[Tao], Wang, Y.B.[Ying-Bo], Zhai, Y.J.[Yu-Jie], Nandi, A.K.[Asoke K.],
Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Chaib, S.[Souleyman], Mansouri, D.E.[Dou El_Kefel], Omara, I.[Ibrahim], Hagag, A.[Ahmed], Dhelim, S.[Sahraoui], Bensaber, D.A.[Djamel Amar],
On the Co-Selection of Vision Transformer Features and Images for Very High-Resolution Image Scene Classification,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Luo, Y.Y.[Yi-Yun], Wang, J.N.[Jin-Nian], Yang, X.K.[Xian-Kun], Yu, Z.Y.[Zhen-Yu], Tan, Z.X.[Zi-Xuan],
Pixel Representation Augmented through Cross-Attention for High-Resolution Remote Sensing Imagery Segmentation,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Gun, Z.[Zhao], Chen, J.Y.[Jian-Yu],
Novel Knowledge Graph- and Knowledge Reasoning-Based Classification Prototype for OBIA Using High Resolution Remote Sensing Imagery,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Liu, Y.H.[Yu-Heng], Zhang, Y.F.[Yi-Fan], Wang, Y.[Ye], Mei, S.H.[Shao-Hui],
BiTSRS: A Bi-Decoder Transformer Segmentor for High-Spatial-Resolution Remote Sensing Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Jiang, S.[Shenlu], Tarabalka, Y.[Yuliya], Yao, W.[Wei], Hong, Z.H.[Zhong-Hua], Feng, G.[Guofu],
Space-to-speed architecture supporting acceleration on VHR image processing,
PandRS(198), 2023, pp. 30-44.
Elsevier DOI 2304
Space-to-speed architecture, Building segmentation, Deep neural networks (DNNs), Very high-resolution (VHR) aerial images BibRef

Baiocchi, V.[Valerio], Giannone, F.[Francesca],
New Trends in High-Resolution Imagery Processing,
RS(15), No. 8, 2023, pp. 2164.
DOI Link 2305
BibRef

Fagua, J.C.[J. Camilo], Rodríguez-Buriticá, S.[Susana], Jantz, P.[Patrick],
Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Cuypers, S.[Suzanna], Nascetti, A.[Andrea], Vergauwen, M.[Maarten],
Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Bai, L.[Lubin], Huang, W.M.[Wei-Ming], Zhang, X.Y.[Xiu-Yuan], Du, S.H.[Shi-Hong], Cong, G.[Gao], Wang, H.Y.[Hao-Yu], Liu, B.[Bo],
Geographic mapping with unsupervised multi-modal representation learning from VHR images and POIs,
PandRS(201), 2023, pp. 193-208.
Elsevier DOI 2307
Multi-modal Representation Learning, Remote sensing images, Point-of-interest, Urban Function, Population Density, Geospatial Pretraining BibRef

Fu, H.[Hang], Sun, G.Y.[Gen-Yun], Zhang, L.[Li], Zhang, A.[Aizhu], Ren, J.C.[Jin-Chang], Jia, X.P.[Xiu-Ping], Li, F.[Feng],
Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne hyperspectral benchmark datasets,
PandRS(203), 2023, pp. 115-134.
Elsevier DOI 2310
Precise classification, UAV-borne HSI, Feature extraction, 3DSSA, QUH dataset BibRef

Zhou, L.M.[Li-Ming], Zhao, H.[Hang], Liu, Z.H.[Zhe-Hao], Cai, K.[Kun], Liu, Y.[Yang], Zuo, X.Y.[Xian-Yu],
MHLDet: A Multi-Scale and High-Precision Lightweight Object Detector Based on Large Receptive Field and Attention Mechanism for Remote Sensing Images,
RS(15), No. 18, 2023, pp. 4625.
DOI Link 2310
BibRef

Ye, Y.P.[Yong-Peng], Lu, D.S.[Deng-Sheng], Wu, Z.[Zuohang], Liao, K.[Kuo], Zhou, M.X.[Ming-Xing], Jian, K.[Kai], Li, D.Q.[Deng-Qiu],
Vertical Characteristics of Vegetation Distribution in Wuyishan National Park Based on Multi-Source High-Resolution Remotely Sensed Data,
RS(15), No. 20, 2023, pp. 5023.
DOI Link 2310
BibRef

Chang, Z.[Zhu], Li, H.[Hu], Chen, D.H.[Dong-Hua], Liu, Y.F.[Yu-Feng], Zou, C.[Chen], Chen, J.[Jian], Han, W.J.[Wei-Jie], Liu, S.S.[Sai-Sai], Zhang, N.[Naiming],
Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network,
RS(15), No. 21, 2023, pp. 5088.
DOI Link 2311
BibRef

Longchamps, L.[Louis], Philpot, W.[William],
Full-Season Crop Phenology Monitoring Using Two-Dimensional Normalized Difference Pairs,
RS(15), No. 23, 2023, pp. 5565.
DOI Link 2312
BibRef

Li, S.[Shiou], Fei, X.Y.[Xian-Yun], Chen, P.L.[Pei-Long], Wang, Z.[Zhen], Gao, Y.J.[Ya-Jun], Cheng, K.[Kai], Wang, H.L.[Hui-Long], Zhang, Y.Z.[Yuan-Zhi],
Self-Adaptive-Filling Deep Convolutional Neural Network Classification Method for Mountain Vegetation Type Based on High Spatial Resolution Aerial Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

He, L.[Lei], Liao, K.[Kunwei], Li, Y.X.[Yu-Xia], Li, B.[Bin], Zhang, J.L.[Jing-Lin], Wang, Y.[Yong], Lu, L.M.[Li-Ming], Jian, S.[Sichun], Qin, R.[Rui], Fu, X.J.[Xin-Jun],
Extraction of Tobacco Planting Information Based on UAV High-Resolution Remote Sensing Images,
RS(16), No. 2, 2024, pp. 359.
DOI Link 2402
BibRef

Li, Y.[Yan], Min, S.[Songhan], Song, B.B.[Bin-Bin], Yang, H.[Hui], Wang, B.[Biao], Wu, Y.[Yongchuang],
Multisource High-Resolution Remote Sensing Image Vegetation Extraction with Comprehensive Multifeature Perception,
RS(16), No. 4, 2024, pp. 712.
DOI Link 2402
BibRef

Pampanoni, V.[Valerio], Fascetti, F.[Fabio], Cenci, L.[Luca], Laneve, G.[Giovanni], Santella, C.[Carla], Boccia, V.[Valentina],
Analysing the Relationship between Spatial Resolution, Sharpness and Signal-to-Noise Ratio of Very High Resolution Satellite Imagery Using an Automatic Edge Method,
RS(16), No. 6, 2024, pp. 1041.
DOI Link 2403
BibRef

Shen, Y.Z.[Yu-Zhen], Wei, Y.C.[Yu-Chun], Zhang, H.[Hong], Rui, X.D.[Xu-Dong], Li, B.B.[Bing-Bing], Wang, J.[Junshu],
Unsupervised Change Detection in HR Remote Sensing Imagery Based on Local Histogram Similarity and Progressive Otsu,
RS(16), No. 8, 2024, pp. 1357.
DOI Link 2405
BibRef

Hu, Q.Q.[Qiong-Qiong], Wang, F.T.[Fei-Ting], Li, Y.[Ying],
EAD-Net: Efficiently Asymmetric Network for Semantic Labeling of High-Resolution Remote Sensing Images with Dynamic Routing Mechanism,
RS(16), No. 9, 2024, pp. 1478.
DOI Link 2405
BibRef

Li, H.D.[Hua-Dong], Wei, Y.[Ying], Peng, H.[Han], Zhang, W.[Wei],
DiffuPrompter: Pixel-Level Automatic Annotation for High-Resolution Remote Sensing Images with Foundation Models,
RS(16), No. 11, 2024, pp. 2004.
DOI Link 2406
BibRef

Perregrini, D.[Dario], Casella, V.[Vittorio],
Land Use Recognition by Applying Fuzzy Logic and Object-Based Classification to Very High Resolution Satellite Images,
RS(16), No. 13, 2024, pp. 2273.
DOI Link 2407
BibRef

Xu, C.J.[Cheng-Jun], Shu, J.Q.[Jing-Qian], Wang, Z.[Zhenghan], Wang, J.L.[Jia-Lin],
A Scene Classification Model Based on Global-Local Features and Attention in Lie Group Space,
RS(16), No. 13, 2024, pp. 2323.
DOI Link 2407
BibRef

Li, Z.Y.[Zhi-Yong], Wang, Y.[Youming], Tian, F.[Fa], Zhang, J.[Junbo], Chen, Y.J.[Yi-Jie], Li, K.[Kunhong],
BAFormer: A Novel Boundary-Aware Compensation UNet-like Transformer for High-Resolution Cropland Extraction,
RS(16), No. 14, 2024, pp. 2526.
DOI Link 2408
BibRef

Wang, G.Y.[Guo-Ying], Chen, J.H.[Jia-Hao], Mo, L.[Lufeng], Wu, P.[Peng], Yi, X.M.[Xiao-Mei],
Border-Enhanced Triple Attention Mechanism for High-Resolution Remote Sensing Images and Application to Land Cover Classification,
RS(16), No. 15, 2024, pp. 2814.
DOI Link 2408
BibRef

Sun, Y.H.[Yi-Hao], Wang, M.[Mingrui], Huang, X.Y.[Xiao-Yi], Xin, C.S.[Cheng-Shu], Sun, Y.[Yinan],
Fast Semantic Segmentation of Ultra-High-Resolution Remote Sensing Images via Score Map and Fast Transformer-Based Fusion,
RS(16), No. 17, 2024, pp. 3248.
DOI Link 2409
BibRef

Huang, Z.X.[Zhong-Xin], Jing, H.T.[Hai-Tao], Liu, Y.M.[Yue-Ming], Yang, X.M.[Xiao-Mei], Wang, Z.H.[Zhi-Hua], Liu, X.L.[Xiao-Liang], Gao, K.[Ku], Luo, H.F.[Hao-Feng],
Segment Anything Model Combined with Multi-Scale Segmentation for Extracting Complex Cultivated Land Parcels in High-Resolution Remote Sensing Images,
RS(16), No. 18, 2024, pp. 3489.
DOI Link 2410
BibRef


Ophoff, T.[Tanguy], van Beeck, K.[Kristof], Goedemé, T.[Toon],
Improving Object Detection in VHR Aerial Orthomosaics,
CVCivil22(268-282).
Springer DOI 2304
BibRef

Xia, J.[Junshi], Yokoya, N.[Naoto], Adriano, B.[Bruno], Broni-Bediako, C.[Clifford],
OpenEarthMap: A Benchmark Dataset for Global High-Resolution Land Cover Mapping,
WACV23(6243-6253)
IEEE DOI 2302
Adaptation models, Image segmentation, Satellites, Computational modeling, Benchmark testing, visual reasoning BibRef

Mallet, C., Le Bris, A.,
Current Challenges In Operational Very High Resolution Land-cover Mapping,
ISPRS20(B2:703-710).
DOI Link 2012
BibRef

Pluto-Kossakowska, J.,
Automatic Detection of Grey Infrastructure Based on VHR Image,
ISPRS20(B3:181-187).
DOI Link 2012
BibRef

James, D., Collin, A., Mury, A., Costa, S.,
Very High Resolution Land Use and Land Cover Mapping Using Pleiades-1 Stereo Imagery and Machine Learning,
ISPRS20(B2:675-682).
DOI Link 2012
BibRef

Robinson, C.[Caleb], Hou, L.[Le], Malkin, K.[Kolya], Soobitsky, R.[Rachel], Czawlytko, J.[Jacob], Dilkina, B.[Bistra], Jojic, N.[Nebojsa],
Large Scale High-Resolution Land Cover Mapping With Multi-Resolution Data,
CVPR19(12718-12727).
IEEE DOI 2002
BibRef

Xu, Y., Hu, X., Wei, Y., Yang, Y., Wang, D.,
A Machine Learning Dataset for Large-scope High Resolution Remote Sensing Image Interpretation Considering Landscape Spatial Heterogeneity,
IWIDF19(731-736).
DOI Link 1912
BibRef

Chen, Y., Ming, D.,
Superpixel Classification of High Spatial Resolution Remote Sensing Image Based On Multi-Scale CNN and Scale Parameter Estimation,
IWIDF19(681-685).
DOI Link 1912
BibRef

Wu, L.[Linmei], Shen, L.[Li], Li, Z.P.[Zhi-Peng],
A Kernel Method Based On Topic Model For Very High Spatial Resolution (VHSR) Remote Sensing Image Classification,
ISPRS16(B7: 399-403).
DOI Link 1610
BibRef

Fan, J., Chen, T., Lu, S.,
Vegetation coverage detection from very high resolution satellite imagery,
VCIP15(1-4)
IEEE DOI 1605
Histograms BibRef

Taberner, M., Shutler, J., Walker, P., Poulter, D., Piolle, J.F., Donlon, C., Guidetti, V.,
The ESA FELYX High Resolution Diagnostic Data Set System Design and Implementation,
SSG13(243-249).
DOI Link 1402
BibRef

Bindel, M., Hese, S., Berger, C., Schmullius, C.,
Feature selection from high resolution remote sensing data for biotope mapping,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Arroyo, L.A.[Lara A.], Johansen, K.[Kasper], Phinn, S.R.[Stuart R.],
Mapping Land Cover Types from Very High Spatial Resolution Imagery: Automatic Application of an Object Based Classification Scheme,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Carleer, A.P., Wolff, E.,
Region-based classification potential for land-cover classification with very high spatial resolution satellite data,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Agrafiotis, P., Georgopoulos, A.,
Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery,
PIA15(1-7).
DOI Link 1504
BibRef

Aminipouri, M., Sliuzas, R., Kuffer, M.,
Object-Oriented Analysis of Very High Resolution Orthophotos for Estimating the Population of Slum Areas, A Case of Dar-Es-Salaam, Tanzania,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Zhang, J.Q.[Jian-Qing], Zhang, Z.X.[Zu-Xun],
Strict Geometric Model Based on Affine Transformation for Remote Sensing Image with High Resolution,
PCV02(B: 309). 0305
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Land Cover, Land Use, Super-Resolution Techniques .


Last update:Sep 28, 2024 at 17:47:54