Tatem, A.J.,
Lewis, H.G.,
Atkinson, P.M.,
Nixon, M.S.,
Super-resolution land cover pattern prediction using a Hopfield neural
network,
RSE(79), No. 1, January 2002, pp. 1-14.
HTML Version.
0201
BibRef
Boucher, A.[Alexandre],
Kyriakidis, P.C.[Phaedon C.],
Integrating Fine Scale Information in Super-resolution Land-cover
Mapping,
PhEngRS(73), No. 8, August 2007, pp. 913-922.
WWW Link.
0709
Accounting for additional fine spatial resolution information can lead
to super-resolution maps with more realistic spatial patterns.
BibRef
Boucher, A.[Alexandre],
Kyriakidis, P.C.[Phaedon C.],
Cronkite-Ratcliff, C.,
Geostatistical Solutions for Super-Resolution Land Cover Mapping,
GeoRS(46), No. 1, January 2008, pp. 272-283.
IEEE DOI
0712
BibRef
Hong, D.F.[Dan-Feng],
Yokoya, N.[Naoto],
Ge, N.[Nan],
Chanussot, J.[Jocelyn],
Zhu, X.X.[Xiao Xiang],
Learnable manifold alignment (LeMA): A semi-supervised cross-modality
learning framework for land cover and land use classification,
PandRS(147), 2019, pp. 193-205.
Elsevier DOI
1901
Cross-modality, Graph learning, Hyperspectral,
Manifold alignment, Multispectral, Remote sensing, Semi-supervised learning
BibRef
Dong, X.Y.[Xiao-Yu],
Yokoya, N.[Naoto],
Wang, L.G.[Long-Guang],
Uezato, T.[Tatsumi],
Learning Mutual Modulation for Self-supervised Cross-Modal
Super-Resolution,
ECCV22(XIX:1-18).
Springer DOI
2211
BibRef
Nogueira, K.[Keiller],
Dalla Mura, M.,
Chanussot, J.[Jocelyn],
Schwartz, W.R.,
dos Santos, J.A.[Jefersson A.],
Learning to Semantically Segment High-Resolution Remote Sensing
Images,
ICPR16(3566-3571)
IEEE DOI
1705
Context, Feature extraction, Image segmentation, Machine learning,
Remote sensing, Semantics, Visualization, Deep Learning,
Feature Learning, High-resolution Images, Land-cover Mapping,
Pixel-wise Classification, Remote Sensing, Semantic, Segmentation
BibRef
Luo, B.[Bin],
Chanussot, J.[Jocelyn],
Geometrical features for the classification of very high resolution
multispectral remote-sensing images,
ICIP10(1045-1048).
IEEE DOI
1009
BibRef
Yang, X.[Xuan],
Li, S.S.[Shan-Shan],
Chen, Z.C.[Zheng-Chao],
Chanussot, J.[Jocelyn],
Jia, X.P.[Xiu-Ping],
Zhang, B.[Bing],
Li, B.P.[Bai-Peng],
Chen, P.[Pan],
An attention-fused network for semantic segmentation of
very-high-resolution remote sensing imagery,
PandRS(177), 2021, pp. 238-262.
Elsevier DOI
2106
Semantic segmentation, Deep learning,
Very-high-resolution imagery, Attention-fused network, ISPRS,
Convolutional neural network
BibRef
Zhang, Y.H.[Yi-Hang],
Atkinson, P.M.[Peter M.],
Li, X.D.[Xiao-Dong],
Ling, F.[Feng],
Wang, Q.M.[Qun-Ming],
Du, Y.[Yun],
Learning-Based Spatial-Temporal Superresolution Mapping of Forest
Cover With MODIS Images,
GeoRS(55), No. 1, January 2017, pp. 600-614.
IEEE DOI
1701
vegetation mapping
BibRef
Ling, F.[Feng],
Zhang, Y.H.[Yi-Hang],
Foody, G.M.[Giles M.],
Li, X.D.[Xiao-Dong],
Zhang, X.H.[Xiu-Hua],
Fang, S.M.[Shi-Ming],
Li, W.B.[Wen-Bo],
Du, Y.[Yun],
Learning-Based Superresolution Land Cover Mapping,
GeoRS(54), No. 7, July 2016, pp. 3794-3810.
IEEE DOI
1606
Algorithm design and analysis
BibRef
Li, X.D.[Xiao-Dong],
Ling, F.[Feng],
Foody, G.M.[Giles M.],
Ge, Y.[Yong],
Zhang, Y.H.[Yi-Hang],
Wang, L.H.[Li-Hui],
Shi, L.F.[Ling-Fei],
Li, X.Y.[Xin-Yan],
Du, Y.[Yun],
Spatial-Temporal Super-Resolution Land Cover Mapping With a Local
Spatial-Temporal Dependence Model,
GeoRS(57), No. 7, July 2019, pp. 4951-4966.
IEEE DOI
1907
Spatial resolution, Remote sensing, Adaptation models,
Graphical models, Distribution functions, Forestry, Image series,
temporal dependence
See also Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016.
BibRef
Chen, Y.H.[Yue-Hong],
Zhou, Y.[Ya'nan],
Ge, Y.[Yong],
An, R.[Ru],
Chen, Y.[Yu],
Enhancing Land Cover Mapping through Integration of Pixel-Based and
Object-Based Classifications from Remotely Sensed Imagery,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
See also Super-Resolution Mapping of Impervious Surfaces from Remotely Sensed Imagery with Points-of-Interest.
BibRef
Chen, Y.H.[Yue-Hong],
Ge, Y.[Yong],
Heuvelink, G.B.M.[Gerard B.M.],
An, R.[Ru],
Chen, Y.[Yu],
Object-Based Superresolution Land-Cover Mapping From Remotely Sensed
Imagery,
GeoRS(56), No. 1, January 2018, pp. 328-340.
IEEE DOI
1801
geophysical image processing, image classification, land cover,
terrain mapping, advanced object-based classification,
superresolution mapping (SRM)
BibRef
Jia, Y.I.[Yuan-In],
Ge, Y.[Yong],
Chen, Y.H.[Yue-Hong],
Li, S.P.[San-Ping],
Heuvelink, G.B.M.[Gerard B.M.],
Ling, F.[Feng],
Super-Resolution Land Cover Mapping Based on the Convolutional Neural
Network,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Li, X.D.[Xiao-Dong],
Ling, F.[Feng],
Du, Y.[Yun],
Feng, Q.[Qi],
Zhang, Y.H.[Yi-Hang],
A spatial-temporal Hopfield neural network approach for
super-resolution land cover mapping with multi-temporal different
resolution remotely sensed images,
PandRS(93), No. 1, 2014, pp. 76-87.
Elsevier DOI
1407
Land cover
BibRef
Li, X.D.[Xiao-Dong],
Ling, F.[Feng],
Foody, G.M.,
Du, Y.[Yun],
A Superresolution Land-Cover Change Detection Method Using Remotely
Sensed Images With Different Spatial Resolutions,
GeoRS(54), No. 7, July 2016, pp. 3822-3841.
IEEE DOI
1606
Earth
BibRef
Ling, F.,
Foody, G.M.,
Ge, Y.,
Li, X.D.[Xiao-Dong],
Du, Y.,
An Iterative Interpolation Deconvolution Algorithm for
Superresolution Land Cover Mapping,
GeoRS(54), No. 12, December 2016, pp. 7210-7222.
IEEE DOI
1612
geophysical image processing
BibRef
Ling, F.[Feng],
Foody, G.M.[Giles M.],
Li, X.D.[Xiao-Dong],
Zhang, Y.H.[Yi-Hang],
Du, Y.[Yun],
Assessing a Temporal Change Strategy for Sub-Pixel Land Cover Change
Mapping from Multi-Scale Remote Sensing Imagery,
RS(8), No. 8, 2016, pp. 642.
DOI Link
1609
BibRef
Ling, F.[Feng],
Du, Y.[Yun],
Li, X.D.[Xiao-Dong],
Zhang, Y.H.[Yi-Hang],
Xiao, F.[Fei],
Fang, S.M.[Shi-Ming],
Li, W.B.[Wen-Bo],
Superresolution Land Cover Mapping With Multiscale Information by
Fusing Local Smoothness Prior and Downscaled Coarse Fractions,
GeoRS(52), No. 9, Sept 2014, pp. 5677-5692.
IEEE DOI
1407
land cover
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Object Based Land Cover, Parcels, Region Based Land Cover, Land Use Analysis .