Sochen, N.A.[Nir A.],
Affine Invariant Flows in the Beltrami Framework,
JMIV(20), No. 1-2, January-March 2004, pp. 133-146.
DOI Link
0403
BibRef
Earlier:
On affine Invariance in the Beltrami Framework for Vision,
LevelSet01(xx-yy).
0106
BibRef
And:
Stochastic Processes in Vision: From Langevin to Beltrami,
ICCV01(I: 288-293).
IEEE DOI
0106
Beltrami framework: Nonlinear diffusion technique.
BibRef
Sochen, N.A.,
Deriche, R.,
Lopez Perez, L.,
The Beltrami flow over implicit manifolds,
ICCV03(832-839).
IEEE DOI
0311
BibRef
And:
Variational Beltrami flows over manifolds,
ICIP03(I: 861-864).
IEEE DOI
0312
Denoising medical images.
BibRef
Dascal, L.[Lorina],
Ditkowski, A.[Adi],
Sochen, N.A.[Nir A.],
On the Discrete Maximum Principle for the Beltrami Color Flow,
JMIV(29), No. 1, Septmeber 2007, pp. 63-77.
Springer DOI
0709
BibRef
Earlier: A1, A3, Only:
The Maximum Principle for Beltrami Color Flow,
ScaleSpace03(196-208).
Springer DOI
0310
BibRef
Rosman, G.[Guy],
Dascal, L.[Lorina],
Tai, X.C.[Xue-Cheng],
Kimmel, R.[Ron],
On Semi-implicit Splitting Schemes for the Beltrami Color Image
Filtering,
JMIV(40), No. 2, June 2011, pp. 199-213.
WWW Link.
1103
BibRef
Earlier: A2, A1, A3, A4:
On Semi-implicit Splitting Schemes for the Beltrami Color Flow,
SSVM09(259-270).
Springer DOI
0906
BibRef
Rosman, G.[Guy],
Dascal, L.[Lorina],
Sidi, A.[Avram],
Kimmel, R.[Ron],
Efficient Beltrami Image Filtering Via Vector Extrapolation Methods,
SIIMS(2), No. 3, 2009, pp. 858-878.
diffusion; partial differential equation; Beltrami; extrapolation; filtering; denoising
DOI Link
BibRef
0900
Earlier: A2, A1, A4, Only:
Efficient Beltrami Filtering of Color Images Via Vector Extrapolation,
SSVM07(92-103).
Springer DOI
0705
BibRef
Spira, A.[Alon],
Kimmel, R.[Ron],
Sochen, N.A.[Nir A.],
A Short- Time Beltrami Kernel for Smoothing Images and Manifolds,
IP(16), No. 6, June 2007, pp. 1628-1636.
IEEE DOI
0706
BibRef
Earlier:
Efficient Beltrami Flow Using a Short Time Kernel,
ScaleSpace03(511-522).
Springer DOI
0310
BibRef
Wetzler, A.[Aaron],
Kimmel, R.[Ron],
Efficient Beltrami Flow in Patch-Space,
SSVM11(134-143).
Springer DOI
1201
BibRef
Spira, A.[Alon],
Kimmel, R.[Ron],
Enhancing Images Painted on Manifolds,
ScaleSpace05(492-502).
Springer DOI
0505
BibRef
Kimmel, R.[Ron],
Sochen, N.A.[Nir A.],
Using Beltrami Framework for Orientation Diffusion in Image Processing,
VF01(346 ff.).
Springer DOI
0209
selective smoothing of orientation using the geometric Beltrami framework
BibRef
Gilboa, G.[Guy],
Sochen, N.A.[Nir A.],
Zeevi, Y.Y.[Yehoshua Y.],
Variational Denoising of Partly Textured Images by Spatially Varying
Constraints,
IP(15), No. 8, August 2006, pp. 2281-2289.
IEEE DOI
0606
See also Nonlinear Scale Space with Spatially Varying Stopping Time.
BibRef
Gilboa, G.[Guy],
Sochen, N.A.[Nir A.],
Zeevi, Y.Y.[Yehoshua Y.],
Image Sharpening by Flows Based on Triple Well Potentials,
JMIV(20), No. 1-2, January-March 2004, pp. 121-131.
DOI Link
0403
BibRef
Gilboa, G.[Guy],
Sochen, N.A.[Nir A.],
Zeevi, Y.Y.[Yehoshua Y.],
Estimation of Optimal PDE-Based Denoising in the SNR Sense,
IP(15), No. 8, August 2006, pp. 2269-2280.
IEEE DOI
0606
BibRef
Earlier:
Estimation of the Optimal Variational Parameter via SNR Analysis,
ScaleSpace05(230-241).
Springer DOI
0505
BibRef
Earlier: A1, A3, A2:
PDE-based denoising of complex scenes using a spatially-varying
fidelity term,
ICIP03(I: 865-868).
IEEE DOI
0312
BibRef
Reuter, M.[Martin],
Hierarchical Shape Segmentation and Registration via Topological
Features of Laplace-Beltrami Eigenfunctions,
IJCV(89), No. 2-3, September 2010, pp. xx-yy.
Springer DOI
1006
Part based segmentation for articulated shapes. Then matching of these
representation.
BibRef
Wang, Z.,
Zhu, J.,
Yan, F.,
Xie, M.,
Fidelity-Beltrami-Sparsity Model for Inverse Problems in Multichannel
Image Processing,
SIIMS(6), No. 4, 2013, pp. 2685-2713.
DOI Link
1402
BibRef
Hu, J.X.[Jia-Xi],
Hua, J.[Jing],
Pose analysis using spectral geometry,
VC(29), No. 9, September 2013, pp. 949-958.
WWW Link.
1307
3D models represented by meshes.
Use spectrum domain defined by Laplace-Beltrami operator.
BibRef
Lai, R.J.[Rong-Jie],
Zhao, H.K.[Hong-Kai],
Multiscale Nonrigid Point Cloud Registration Using Rotation-Invariant
Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap,
SIIMS(10), No. 2, 2017, pp. 449-483.
DOI Link
1708
BibRef
Xiang, R.[Rui],
Lai, R.J.[Rong-Jie],
Zhao, H.K.[Hong-Kai],
Efficient and Robust Shape Correspondence via Sparsity-Enforced
Quadratic Assignment,
CVPR20(9510-9519)
IEEE DOI
2008
Shape, Sparse matrices, Stochastic processes, Iterative methods,
Kernel, Manifolds, Perturbation methods
BibRef
Liu, Y.S.[Yu-Song],
Su, Z.X.[Zhi-Xun],
Cao, J.J.[Jun-Jie],
Wang, H.[Hui],
Harmonic mean normalized Laplace-Beltrami spectral descriptor,
VC(32), No. 9, September 2016, pp. 1097-1108.
WWW Link.
1609
BibRef
Naffouti, S.E.[Seif Eddine],
Fougerolle, Y.[Yohan],
Sakly, A.[Anis],
Mériaudeau, F.[Fabrice],
An advanced global point signature for 3D shape recognition and
retrieval,
SP:IC(58), No. 1, 2017, pp. 228-239.
Elsevier DOI
1710
Laplace-Beltrami operator
BibRef
Naffouti, S.E.[Seif Eddine],
Fougerolle, Y.[Yohan],
Aouissaoui, I.[Ichraf],
Sakly, A.[Anis],
Mériaudeau, F.[Fabrice],
Heuristic optimization-based wave kernel descriptor for deformable 3D
shape matching and retrieval,
SIViP(12), No. 5, July 2018, pp. 915-923.
Springer DOI
WWW Link.
1806
BibRef
Caissard, T.[Thomas],
Coeurjolly, D.[David],
Lachaud, J.O.[Jacques-Olivier],
Roussillon, T.[Tristan],
Laplace-Beltrami Operator on Digital Surfaces,
JMIV(61), No. 3, March 2019, pp. 359-379.
Springer DOI
1903
BibRef
Earlier:
Heat Kernel Laplace-Beltrami Operator on Digital Surfaces,
DGCI17(241-253).
Springer DOI
1711
variational problems involving the discretization of the
Laplace-Beltrami operator.
BibRef
Niu, D.M.[Dong-Mei],
Guo, H.[Han],
Zhao, X.Y.[Xiu-Yang],
Zhang, C.M.[Cai-Ming],
Three-dimensional salient point detection based on the Laplace-Beltrami
eigenfunctions,
VC(36), No. 4, April 2020, pp. 767-784.
WWW Link.
2004
BibRef
Lin, C.[Chenran],
Lui, L.M.[Lok Ming],
Harmonic Beltrami Signature: A Novel 2D Shape Representation for
Object Classification,
SIIMS(15), No. 4, 2022, pp. 1851-1893.
DOI Link
2212
BibRef
Shtern, A.[Alon],
Kimmel, R.[Ron],
Iterative Closest Spectral Kernel Maps,
3DV14(499-505)
IEEE DOI
1503
Laplace-Beltrami operator; correspondence; shape matching.
Measure of similarity of shapes.
BibRef
Andreux, M.[Mathieu],
Rodolà, E.[Emanuele],
Aubry, M.[Mathieu],
Cremers, D.[Daniel],
Anisotropic Laplace-Beltrami Operators for Shape Analysis,
NORDIA14(299-312).
Springer DOI
1504
BibRef
Arteaga, R.J.[Reynaldo J.],
Ruuth, S.J.[Steven J.],
Laplace-Beltrami spectra for shape comparison of surfaces in 3D using
the closest point method,
ICIP15(4511-4515)
IEEE DOI
1512
Laplace-Beltrami spectra
BibRef
Wetzler, A.[Aaron],
Aflalo, Y.[Yonathan],
Dubrovina, A.[Anastasia],
Kimmel, R.[Ron],
The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape
Processing,
ISMM13(302-316).
Springer DOI
1305
Filtering
BibRef
Rieux, F.[Frédéric],
Discrete Simulation of a Chladni Experiment,
ISMM13(496-507).
Springer DOI
1305
diffusion via Laplace-Beltrami operator.
Symmetries and intersections.
See also Adaptive Discrete Laplace Operator.
BibRef
Wu, H.Y.[Huai-Yu],
Zha, H.B.[Hong-Bin],
Robust consistent correspondence between 3D non-rigid shapes based on
'Dual Shape-DNA',
ICCV11(587-594).
IEEE DOI
1201
Dual Laplace-Beltrami spectral embedding.
BibRef
Wang, X.L.[Xu-Lei],
Zha, H.B.[Hong-Bin],
Contour canonical form: an efficient intrinsic embedding approach to
matching non-rigid 3D objects,
ICMR12(31).
DOI Link
1301
intrinsic embedding technique, the contour canonical
form, to express the isometry-invariant.
BibRef
Liang, J.[Jian],
Lai, R.J.[Rong-Jie],
Wong, T.W.[Tsz Wai],
Zhao, H.K.[Hong-Kai],
Geometric understanding of point clouds using Laplace-Beltrami operator,
CVPR12(214-221).
IEEE DOI
1208
BibRef
Lai, R.J.[Rong-Jie],
Shi, Y.G.[Yong-Gang],
Scheibel, K.[Kevin],
Fears, S.[Scott],
Woods, R.[Roger],
Toga, A.W.[Arthur W.],
Chan, T.F.[Tony F.],
Metric-induced optimal embedding for intrinsic 3D shape analysis,
CVPR10(2871-2878).
IEEE DOI
1006
Laplace-Beltrami (LB) embedding has problems.
BibRef
Dubrovina, A.[Anastasia],
Kimmel, R.[Ron],
Matching shapes by eigendecomposition of the Laplace-Beltrami operator,
3DPVT10(xx-yy).
WWW Link.
1005
Correspondences for non-rigid shapes (3D).
BibRef
Batard, T.[Thomas],
Berthier, M.[Michel],
The Clifford-Hodge Flow: An Extension of the Beltrami Flow,
CAIP09(394-401).
Springer DOI
0909
BibRef
Ghaderpanah, M.[Mohammadreza],
Abbas, A.[Abdullah],
Ben Hamza, A.[Abdessamad],
Entropic hashing of 3D objects using Laplace-Beltrami operator,
ICIP08(3104-3107).
IEEE DOI
0810
Mesh into sub mesh, encode each submesh.
BibRef
Shi, Y.G.[Yong-Gang],
Lai, R.J.[Rong-Jie],
Krishna, S.[Sheila],
Sicotte, N.[Nancy],
Dinov, I.D.[Ivo D.],
Toga, A.W.[Arthur W.],
Anisotropic Laplace-Beltrami eigenmaps:
Bridging Reeb graphs and skeletons,
MMBIA08(1-7).
IEEE DOI
0806
BibRef
Malladi, R.,
Ravve, I.,
Fast Difference Schemes for Edge Enhancing Beltrami Flow,
ECCV02(I: 343 ff.).
Springer DOI
0205
BibRef