12.3.4.4 Laplace-Beltrami Operator, Beltrami Flow

Chapter Contents (Back)
Shape Descriptions. Laplace-Beltrami Operator. Matching, descriptions, registration.

Sochen, N.A.[Nir A.],
Affine Invariant Flows in the Beltrami Framework,
JMIV(20), No. 1-2, January-March 2004, pp. 133-146.
DOI Link 0403
BibRef
Earlier:
On affine Invariance in the Beltrami Framework for Vision,
LevelSet01(xx-yy). 0106
BibRef
And:
Stochastic Processes in Vision: From Langevin to Beltrami,
ICCV01(I: 288-293).
IEEE DOI 0106
Beltrami framework: Nonlinear diffusion technique. BibRef

Sochen, N.A., Deriche, R., Lopez Perez, L.,
The Beltrami flow over implicit manifolds,
ICCV03(832-839).
IEEE DOI 0311
BibRef
And:
Variational Beltrami flows over manifolds,
ICIP03(I: 861-864).
IEEE DOI 0312
Denoising medical images. BibRef

Dascal, L.[Lorina], Ditkowski, A.[Adi], Sochen, N.A.[Nir A.],
On the Discrete Maximum Principle for the Beltrami Color Flow,
JMIV(29), No. 1, Septmeber 2007, pp. 63-77.
Springer DOI 0709
BibRef
Earlier: A1, A3, Only:
The Maximum Principle for Beltrami Color Flow,
ScaleSpace03(196-208).
Springer DOI 0310
BibRef

Rosman, G.[Guy], Dascal, L.[Lorina], Tai, X.C.[Xue-Cheng], Kimmel, R.[Ron],
On Semi-implicit Splitting Schemes for the Beltrami Color Image Filtering,
JMIV(40), No. 2, June 2011, pp. 199-213.
WWW Link. 1103
BibRef
Earlier: A2, A1, A3, A4:
On Semi-implicit Splitting Schemes for the Beltrami Color Flow,
SSVM09(259-270).
Springer DOI 0906
BibRef

Rosman, G.[Guy], Dascal, L.[Lorina], Sidi, A.[Avram], Kimmel, R.[Ron],
Efficient Beltrami Image Filtering Via Vector Extrapolation Methods,
SIIMS(2), No. 3, 2009, pp. 858-878. diffusion; partial differential equation; Beltrami; extrapolation; filtering; denoising
DOI Link BibRef 0900
Earlier: A2, A1, A4, Only:
Efficient Beltrami Filtering of Color Images Via Vector Extrapolation,
SSVM07(92-103).
Springer DOI 0705
BibRef

Spira, A.[Alon], Kimmel, R.[Ron], Sochen, N.A.[Nir A.],
A Short- Time Beltrami Kernel for Smoothing Images and Manifolds,
IP(16), No. 6, June 2007, pp. 1628-1636.
IEEE DOI 0706
BibRef
Earlier:
Efficient Beltrami Flow Using a Short Time Kernel,
ScaleSpace03(511-522).
Springer DOI 0310
BibRef

Wetzler, A.[Aaron], Kimmel, R.[Ron],
Efficient Beltrami Flow in Patch-Space,
SSVM11(134-143).
Springer DOI 1201
BibRef

Spira, A.[Alon], Kimmel, R.[Ron],
Enhancing Images Painted on Manifolds,
ScaleSpace05(492-502).
Springer DOI 0505
BibRef

Kimmel, R.[Ron], Sochen, N.A.[Nir A.],
Using Beltrami Framework for Orientation Diffusion in Image Processing,
VF01(346 ff.).
Springer DOI 0209
selective smoothing of orientation using the geometric Beltrami framework BibRef

Gilboa, G.[Guy], Sochen, N.A.[Nir A.], Zeevi, Y.Y.[Yehoshua Y.],
Variational Denoising of Partly Textured Images by Spatially Varying Constraints,
IP(15), No. 8, August 2006, pp. 2281-2289.
IEEE DOI 0606

See also Nonlinear Scale Space with Spatially Varying Stopping Time. BibRef

Gilboa, G.[Guy], Sochen, N.A.[Nir A.], Zeevi, Y.Y.[Yehoshua Y.],
Image Sharpening by Flows Based on Triple Well Potentials,
JMIV(20), No. 1-2, January-March 2004, pp. 121-131.
DOI Link 0403
BibRef

Gilboa, G.[Guy], Sochen, N.A.[Nir A.], Zeevi, Y.Y.[Yehoshua Y.],
Estimation of Optimal PDE-Based Denoising in the SNR Sense,
IP(15), No. 8, August 2006, pp. 2269-2280.
IEEE DOI 0606
BibRef
Earlier:
Estimation of the Optimal Variational Parameter via SNR Analysis,
ScaleSpace05(230-241).
Springer DOI 0505
BibRef
Earlier: A1, A3, A2:
PDE-based denoising of complex scenes using a spatially-varying fidelity term,
ICIP03(I: 865-868).
IEEE DOI 0312
BibRef

Reuter, M.[Martin],
Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions,
IJCV(89), No. 2-3, September 2010, pp. xx-yy.
Springer DOI 1006
Part based segmentation for articulated shapes. Then matching of these representation. BibRef

Wang, Z., Zhu, J., Yan, F., Xie, M.,
Fidelity-Beltrami-Sparsity Model for Inverse Problems in Multichannel Image Processing,
SIIMS(6), No. 4, 2013, pp. 2685-2713.
DOI Link 1402
BibRef

Hu, J.X.[Jia-Xi], Hua, J.[Jing],
Pose analysis using spectral geometry,
VC(29), No. 9, September 2013, pp. 949-958.
WWW Link. 1307
3D models represented by meshes. Use spectrum domain defined by Laplace-Beltrami operator. BibRef

Lai, R.J.[Rong-Jie], Zhao, H.K.[Hong-Kai],
Multiscale Nonrigid Point Cloud Registration Using Rotation-Invariant Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap,
SIIMS(10), No. 2, 2017, pp. 449-483.
DOI Link 1708
BibRef

Xiang, R.[Rui], Lai, R.J.[Rong-Jie], Zhao, H.K.[Hong-Kai],
Efficient and Robust Shape Correspondence via Sparsity-Enforced Quadratic Assignment,
CVPR20(9510-9519)
IEEE DOI 2008
Shape, Sparse matrices, Stochastic processes, Iterative methods, Kernel, Manifolds, Perturbation methods BibRef

Liu, Y.S.[Yu-Song], Su, Z.X.[Zhi-Xun], Cao, J.J.[Jun-Jie], Wang, H.[Hui],
Harmonic mean normalized Laplace-Beltrami spectral descriptor,
VC(32), No. 9, September 2016, pp. 1097-1108.
WWW Link. 1609
BibRef

Naffouti, S.E.[Seif Eddine], Fougerolle, Y.[Yohan], Sakly, A.[Anis], Mériaudeau, F.[Fabrice],
An advanced global point signature for 3D shape recognition and retrieval,
SP:IC(58), No. 1, 2017, pp. 228-239.
Elsevier DOI 1710
Laplace-Beltrami operator BibRef

Naffouti, S.E.[Seif Eddine], Fougerolle, Y.[Yohan], Aouissaoui, I.[Ichraf], Sakly, A.[Anis], Mériaudeau, F.[Fabrice],
Heuristic optimization-based wave kernel descriptor for deformable 3D shape matching and retrieval,
SIViP(12), No. 5, July 2018, pp. 915-923.
Springer DOI
WWW Link. 1806
BibRef

Caissard, T.[Thomas], Coeurjolly, D.[David], Lachaud, J.O.[Jacques-Olivier], Roussillon, T.[Tristan],
Laplace-Beltrami Operator on Digital Surfaces,
JMIV(61), No. 3, March 2019, pp. 359-379.
Springer DOI 1903
BibRef
Earlier:
Heat Kernel Laplace-Beltrami Operator on Digital Surfaces,
DGCI17(241-253).
Springer DOI 1711
variational problems involving the discretization of the Laplace-Beltrami operator. BibRef

Niu, D.M.[Dong-Mei], Guo, H.[Han], Zhao, X.Y.[Xiu-Yang], Zhang, C.M.[Cai-Ming],
Three-dimensional salient point detection based on the Laplace-Beltrami eigenfunctions,
VC(36), No. 4, April 2020, pp. 767-784.
WWW Link. 2004
BibRef

Lin, C.[Chenran], Lui, L.M.[Lok Ming],
Harmonic Beltrami Signature: A Novel 2D Shape Representation for Object Classification,
SIIMS(15), No. 4, 2022, pp. 1851-1893.
DOI Link 2212
BibRef


Weber, S.[Simon], Dages, T.[Thomas], Gao, M.L.[Mao-Lin], Cremers, D.[Daniel],
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis,
CVPR24(3131-3140)
IEEE DOI 2410
Heating systems, Manifolds, Geometry, Deep learning, Shape, Reviews, Shape analysis, Riemannian manifolds, Finsler manifolds, Geometric deep learning BibRef

Shtern, A.[Alon], Kimmel, R.[Ron],
Iterative Closest Spectral Kernel Maps,
3DV14(499-505)
IEEE DOI 1503
Laplace-Beltrami operator; correspondence; shape matching. Measure of similarity of shapes. BibRef

Andreux, M.[Mathieu], Rodolà, E.[Emanuele], Aubry, M.[Mathieu], Cremers, D.[Daniel],
Anisotropic Laplace-Beltrami Operators for Shape Analysis,
NORDIA14(299-312).
Springer DOI 1504
BibRef

Arteaga, R.J.[Reynaldo J.], Ruuth, S.J.[Steven J.],
Laplace-Beltrami spectra for shape comparison of surfaces in 3D using the closest point method,
ICIP15(4511-4515)
IEEE DOI 1512
Laplace-Beltrami spectra BibRef

Wetzler, A.[Aaron], Aflalo, Y.[Yonathan], Dubrovina, A.[Anastasia], Kimmel, R.[Ron],
The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape Processing,
ISMM13(302-316).
Springer DOI 1305
Filtering BibRef

Rieux, F.[Frédéric],
Discrete Simulation of a Chladni Experiment,
ISMM13(496-507).
Springer DOI 1305
diffusion via Laplace-Beltrami operator. Symmetries and intersections.
See also Adaptive Discrete Laplace Operator. BibRef

Wu, H.Y.[Huai-Yu], Zha, H.B.[Hong-Bin],
Robust consistent correspondence between 3D non-rigid shapes based on 'Dual Shape-DNA',
ICCV11(587-594).
IEEE DOI 1201
Dual Laplace-Beltrami spectral embedding. BibRef

Wang, X.L.[Xu-Lei], Zha, H.B.[Hong-Bin],
Contour canonical form: an efficient intrinsic embedding approach to matching non-rigid 3D objects,
ICMR12(31).
DOI Link 1301
intrinsic embedding technique, the contour canonical form, to express the isometry-invariant. BibRef

Liang, J.[Jian], Lai, R.J.[Rong-Jie], Wong, T.W.[Tsz Wai], Zhao, H.K.[Hong-Kai],
Geometric understanding of point clouds using Laplace-Beltrami operator,
CVPR12(214-221).
IEEE DOI 1208
BibRef

Lai, R.J.[Rong-Jie], Shi, Y.G.[Yong-Gang], Scheibel, K.[Kevin], Fears, S.[Scott], Woods, R.[Roger], Toga, A.W.[Arthur W.], Chan, T.F.[Tony F.],
Metric-induced optimal embedding for intrinsic 3D shape analysis,
CVPR10(2871-2878).
IEEE DOI 1006
Laplace-Beltrami (LB) embedding has problems. BibRef

Dubrovina, A.[Anastasia], Kimmel, R.[Ron],
Matching shapes by eigendecomposition of the Laplace-Beltrami operator,
3DPVT10(xx-yy).
WWW Link. 1005
Correspondences for non-rigid shapes (3D). BibRef

Batard, T.[Thomas], Berthier, M.[Michel],
The Clifford-Hodge Flow: An Extension of the Beltrami Flow,
CAIP09(394-401).
Springer DOI 0909
BibRef

Ghaderpanah, M.[Mohammadreza], Abbas, A.[Abdullah], Ben Hamza, A.[Abdessamad],
Entropic hashing of 3D objects using Laplace-Beltrami operator,
ICIP08(3104-3107).
IEEE DOI 0810
Mesh into sub mesh, encode each submesh. BibRef

Shi, Y.G.[Yong-Gang], Lai, R.J.[Rong-Jie], Krishna, S.[Sheila], Sicotte, N.[Nancy], Dinov, I.D.[Ivo D.], Toga, A.W.[Arthur W.],
Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons,
MMBIA08(1-7).
IEEE DOI 0806
BibRef

Malladi, R., Ravve, I.,
Fast Difference Schemes for Edge Enhancing Beltrami Flow,
ECCV02(I: 343 ff.).
Springer DOI 0205
BibRef


Last update:Sep 10, 2025 at 12:00:25