5.3.10.4 Blind Image Quality Evaluation

Chapter Contents (Back)
Image Quality. Blind Quality.
See also No-Reference Image Quality Evaluation.
See also Screen Content Image Quality Evaluation.

Chow, T.W.S., Tan, H.Z.,
Order-recursive blind identification of linear models using mixed cumulants,
VISP(147), No. 2, April 2000, pp. 139. 0005
BibRef

Gabarda, S.[Salvador], Cristóbal, G.[Gabriel],
Blind image quality assessment through anisotropy,
JOSA-A(24), No. 12, December 2007, pp. B42-B51.
DOI Link 0801
BibRef

Gabarda, S.[Salvador], Cristobal, G.[Gabriel],
An evolutionary blind image deconvolution algorithm through the pseudo-Wigner distribution,
JVCIR(17), No. 5, October 2006, pp. 1040-1052.
Elsevier DOI 0711
Evolutionary algorithms; Wigner distribution; Image fusion; Image enhancement; Quality assessment BibRef

Li, Q.H.[Qiao-Hong], Lin, W.S.[Wei-Si], Xu, J.T.[Jing-Tao], Fang, Y.M.[Yu-Ming],
Blind Image Quality Assessment Using Statistical Structural and Luminance Features,
MultMed(18), No. 12, December 2016, pp. 2457-2469.
IEEE DOI 1612
Data mining BibRef

Li, A.[Aobo], Wu, J.J.[Jin-Jian], Liu, Y.X.[Yong-Xu], Li, L.[Leida], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming],
Blind Image Quality Assessment Based on Perceptual Comparison,
MultMed(26), 2024, pp. 9671-9682.
IEEE DOI 2410
Feature extraction, Task analysis, Distortion, Image quality, Training, Visualization, Robustness, perceptual comparison BibRef

Wu, J.J.[Jin-Jian], Zeng, J.C.[Ji-Chen], Liu, Y.X.[Yong-Xu], Shi, G.M.[Guang-Ming], Lin, W.S.[Wei-Si],
Hierarchical Feature Degradation Based Blind Image Quality Assessment,
PBVDL17(510-517)
IEEE DOI 1802
Degradation, Distortion, Feature extraction, Image quality, Semantics, Visual perception, Visualization BibRef

Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D.,
dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs,
IP(26), No. 8, August 2017, pp. 3951-3964.
IEEE DOI 1707
learning (artificial intelligence), DIL inferred quality index, DIP inferred quality index, ListNet algorithm, RankNet, blind image quality assessment, digital image quality prediction, dipIQ index, gigantic image space, group maximum differentiation competition method, learning BIQA model, listwise L2R algorithm, opinion-unaware BIQA, quality-discriminable image lists, Electronics packaging, Training, Blind image quality assessment (BIQA), RankNet, dipIQ, gMAD, learning-to-rank (L2R), quality-discriminable, image, pair, (DIP) BibRef

Gao, F.[Fei], Yu, J.[Jun], Zhu, S.[Suguo], Huang, Q.M.[Qing-Ming], Tian, Q.[Qi],
Blind image quality prediction by exploiting multi-level deep representations,
PR(81), 2018, pp. 432-442.
Elsevier DOI 1806
Image quality assessment, Deep learning, Convolutional Neural Networks (CNN), Support vector regression BibRef

Siahaan, E.[Ernestasia], Hanjalic, A.[Alan], Redi, J.A.[Judith A.],
Semantic-aware blind image quality assessment,
SP:IC(60), No. 1, 2018, pp. 237-252.
Elsevier DOI 1712
Blind image quality assessment BibRef

Ma, K.[Kede], Liu, W.T.[Wen-Tao], Zhang, K.[Kai], Duanmu, Z.F.[Zheng-Fang], Wang, Z.[Zhou], Zuo, W.M.[Wang-Meng],
End-to-End Blind Image Quality Assessment Using Deep Neural Networks,
IP(27), No. 3, March 2018, pp. 1202-1213.
IEEE DOI 1801
distortion, image representation, learning (artificial intelligence), neural nets, MEON index, multi-task learning BibRef

Zhang, W.X.[Wei-Xia], Ma, K.[Kede], Yan, J.[Jia], Deng, D.X.[De-Xiang], Wang, Z.[Zhou],
Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network,
CirSysVideo(30), No. 1, January 2020, pp. 36-47.
IEEE DOI 2002
convolutional neural nets, feature extraction, gradient methods, image classification, image representation, perceptual image processing BibRef

Wang, Z.L.[Zhong-Ling], Athar, S.[Shahrukh], Wang, Z.[Zhou],
Blind Quality Assessment of Multiply Distorted Images Using Deep Neural Networks,
ICIAR19(I:89-101).
Springer DOI 1909
BibRef

Kottayil, N.K., Valenzise, G., Dufaux, F., Cheng, I.,
Blind Quality Estimation by Disentangling Perceptual and Noisy Features in High Dynamic Range Images,
IP(27), No. 3, March 2018, pp. 1512-1525.
IEEE DOI 1801
BibRef
And: A1, A3, A4, A2: ICIP18(281-285)
IEEE DOI 1809
Distortion, Dynamic range, Image quality, Predictive models, Support vector machines, Visual systems, Visualization, no reference quality assessment. Distortion measurement, Mathematical model, Training BibRef

Wu, Q., Li, H., Meng, F., Ngan, K.N.,
Generic Proposal Evaluator: A Lazy Learning Strategy Toward Blind Proposal Quality Assessment,
ITS(19), No. 1, January 2018, pp. 306-319.
IEEE DOI 1801
Algorithm design and analysis, Measurement, Proposals, Quality assessment, Training, Visualization, Object proposal, lazy learning BibRef

Bianco, S.[Simone], Celona, L.[Luigi], Napoletano, P.[Paolo], Schettini, R.[Raimondo],
On the use of deep learning for blind image quality assessment,
SIViP(12), No. 2, February 2018, pp. 355-362.
Springer DOI 1802
BibRef

Gu, J.[Jie], Meng, G.F.[Gao-Feng], Redi, J.A., Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Blind Image Quality Assessment via Vector Regression and Object Oriented Pooling,
MultMed(20), No. 5, May 2018, pp. 1140-1153.
IEEE DOI 1805
Feature extraction, Image quality, Neural networks, Object detection, Object oriented modeling, Proposals, vector regression BibRef

Gu, J.[Jie], Meng, G.F.[Gao-Feng], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Blind image quality assessment via learnable attention-based pooling,
PR(91), 2019, pp. 332-344.
Elsevier DOI 1904
Image quality assessment, Perceptual image quality, Visual attention, Convolutional neural network, Learnable pooling BibRef

Jiang, Q., Shao, F., Lin, W., Gu, K., Jiang, G., Sun, H.,
Optimizing Multistage Discriminative Dictionaries for Blind Image Quality Assessment,
MultMed(20), No. 8, August 2018, pp. 2035-2048.
IEEE DOI 1808
feature extraction, image representation, natural scenes, optimisation, regression analysis, singular value decomposition, reconstruction residual BibRef

Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., Chen, C.W.,
Blind Quality Assessment Based on Pseudo-Reference Image,
MultMed(20), No. 8, August 2018, pp. 2049-2062.
IEEE DOI 1808
distortion, image processing, natural scenes, regression analysis, perfect quality image, distorted image, conventional IQA metrics, noisiness BibRef

Al-Bandawi, H.[Hussein], Deng, G.[Guang],
Blind image quality assessment based on Benford's law,
IET-IPR(12), No. 11, November 2018, pp. 1983-1993.
DOI Link 1810
BibRef

Zhou, Y.[Yu], Li, L.[Leida], Wu, J.J.[Jin-Jian], Gu, K.[Ke], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming],
Blind Quality Index for Multiply Distorted Images Using Biorder Structure Degradation and Nonlocal Statistics,
MultMed(20), No. 11, November 2018, pp. 3019-3032.
IEEE DOI 1810
Distortion, Degradation, Distortion measurement, Graphical models, Distribution functions, Transform coding, Quality evaluation, nonlocal statistics BibRef

Cai, H.[Hao], Li, L.[Leida], Yi, Z.L.[Zi-Li], Gong, M.L.[Ming-Lun],
Towards a blind image quality evaluator using multi-scale second-order statistics,
SP:IC(71), 2019, pp. 88-99.
Elsevier DOI 1901
Image quality assessment, Bivariate statistics, Derivative pattern, No-reference BibRef

Liu, Y.T.[Yu-Tao], Gu, K.[Ke], Wang, S.Q.[Shi-Qi], Zhao, D.B.[De-Bin], Gao, W.[Wen],
Blind Quality Assessment of Camera Images Based on Low-Level and High-Level Statistical Features,
MultMed(21), No. 1, January 2019, pp. 135-146.
IEEE DOI 1901
Feature extraction, Image quality, Distortion, Cameras, Degradation, Computer science, Estimation, Image quality assessment (IQA), natural image statistics BibRef

Liu, Y.[Yue], Ni, Z.K.[Zhang-Kai], Wang, S.Q.[Shi-Qi], Wang, H.[Hanli], Kwong, S.[Sam],
High Dynamic Range Image Quality Assessment Based on Frequency Disparity,
CirSysVideo(33), No. 8, August 2023, pp. 4435-4440.
IEEE DOI 2308
Feature extraction, Gabor filters, Information filters, Image quality, Image edge detection, Image coding, Data mining, Butterworth feature BibRef

Chen, P.F.[Peng-Fei], Li, L.[Leida], Zhang, X.F.[Xin-Feng], Wang, S.S.[Shan-She], Tan, A.[Allen],
Blind quality index for tone-mapped images based on luminance partition,
PR(89), 2019, pp. 108-118.
Elsevier DOI 1902
Tone-mapping operators, Tone-mapped image, Human visual system, Luminance partition, Multi-resolution representation, Random forest regression BibRef

Deng, C., Wang, S., Li, Z., Huang, G., Lin, W.,
Content-Insensitive Blind Image Blurriness Assessment Using Weibull Statistics and Sparse Extreme Learning Machine,
SMCS(49), No. 3, March 2019, pp. 516-527.
IEEE DOI 1902
Image edge detection, Feature extraction, Measurement, Image quality, Discrete cosine transforms, Robustness, Weibull statistics BibRef

Cai, H.[Hao], Li, L.[Leida], Yi, Z.L.[Zi-Li], Gong, M.L.[Ming-Lun],
Blind quality assessment of gamut-mapped images via local and global statistical analysis,
JVCIR(61), 2019, pp. 250-259.
Elsevier DOI 1906
Image quality assessment, Gamut mapping, Natural scene statistics BibRef

Oszust, M.,
Local Feature Descriptor and Derivative Filters for Blind Image Quality Assessment,
SPLetters(26), No. 2, February 2019, pp. 322-326.
IEEE DOI 1902
feature extraction, image filtering, image representation, learning (artificial intelligence), regression analysis, support vector regression BibRef

Wu, J.J.[Jin-Jian], Zeng, J.C.[Ji-Chen], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming], Lin, W.S.[Wei-Si],
Blind Image Quality Assessment with Hierarchy: Degradation from Local Structure to Deep Semantics,
JVCIR(58), 2019, pp. 353-362.
Elsevier DOI 1901
Blind image quality assessment, Hierarchical feature degradation, Local structure, Deep semantics BibRef

Wu, J.J.[Jin-Jian], Lin, W.S.[Wei-Si], Shi, G.M.[Guang-Ming], Liu, A.[Anmin],
Reduced-Reference Image Quality Assessment with Visual Information Fidelity,
MultMed(15), No. 7, 2013, pp. 1700-1705.
IEEE DOI 1312
image processing
See also Just Noticeable Difference Estimation for Images With Free-Energy Principle. BibRef

Li, H.[Hui], Liao, L.[Liang], Chen, C.F.[Chao-Feng], Fan, X.P.[Xiao-Peng], Zuo, W.M.[Wang-Meng], Lin, W.S.[Wei-Si],
Continual Learning of No-Reference Image Quality Assessment With Channel Modulation Kernel,
CirSysVideo(34), No. 12, December 2024, pp. 13029-13043.
IEEE DOI 2501
Continuing education, Task analysis, Distortion, Image quality, Kernel, Face recognition, Cameras, domain-transfer continual learning BibRef

Wu, J.J.[Jin-Jian], Zhang, M.[Man], Shi, G.M.[Guang-Ming], Xie, X.M.[Xue-Mei], Lin, W.S.[Wei-Si],
No-Reference Image Quality Assessment with Orientation Selectivity Mechanism,
ICIP17(3150-3154)
IEEE DOI 1803
Correlation, Databases, Degradation, Distortion, Histograms, Image quality, Visualization, Image Quality Assessment (IQA), Visual Pattern Degradation BibRef

Ji, W.P.[Wei-Ping], Wu, J.J.[Jin-Jian], Shi, G.M.[Guang-Ming], Wan, W.F.[Wen-Fei], Xie, X.M.[Xue-Mei],
Blind Image Quality Assessment with Semantic Information,
JVCIR(58), 2019, pp. 195-204.
Elsevier DOI 1901
No-reference image quality assessment, Human perception, Semantic network, Structural semantics, Spatial semantics BibRef

Wu, J.J.[Jin-Jian], Lin, W.S.[Wei-Si], Shi, G.M.[Guang-Ming],
Image Quality Assessment with Degradation on Spatial Structure,
SPLetters(21), No. 4, April 2014, pp. 437-440.
IEEE DOI 1403
Degradation BibRef

Li, Q.H.[Qiao-Hong], Lin, W.S.[Wei-Si], Xu, J.T.[Jing-Tao], Fang, Y.M.[Yu-Ming], Thalmann, D.[Daniel],
No-reference Image Quality Assessment Based on Structural and Luminance Information,
MMMod16(I: 301-312).
Springer DOI 1601
BibRef

Wu, J.J.[Jin-Jian], Liu, Y.X.[Yong-Xu], Shi, G.M.[Guang-Ming], Lin, W.S.[Wei-Si],
Saliency Change Based Reduced Reference Image Quality Assessment,
VCIP17(1-4)
IEEE DOI 1804
feature extraction, image texture, object detection, LSWH, RR IQA model, global saliency, image processing systems, Visual Saliency BibRef

Yang, W.[Wen], Wu, J.J.[Jin-Jian], Tian, S.W.[Shi-Wei], Li, L.[Leida], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming],
Fine-Grained Image Quality Caption With Hierarchical Semantics Degradation,
IP(31), 2022, pp. 3578-3590.
IEEE DOI 2206
Semantics, Degradation, Image quality, Feature extraction, Distortion, Databases, Bidirectional control, deep neural network BibRef

Wu, Q., Li, H., Meng, F., Ngan, K.N., Luo, B., Huang, C., Zeng, B.,
Blind Image Quality Assessment Based on Multichannel Feature Fusion and Label Transfer,
CirSysVideo(26), No. 3, March 2016, pp. 425-440.
IEEE DOI 1603
Discrete cosine transforms BibRef

Wu, Q., Li, H., Wang, Z., Meng, F., Luo, B., Li, W., Ngan, K.N.,
Blind Image Quality Assessment Based on Rank-Order Regularized Regression,
MultMed(19), No. 11, November 2017, pp. 2490-2504.
IEEE DOI 1710
Distortion, Image quality, Learning systems, Measurement, Optimization, Predictive models, Training, rank-order, regularized regression BibRef

Rodrigues, F., Ascenso, J., Rodrigues, A., Queluz, M.P.,
Blind Quality Assessment of 3-D Synthesized Views Based on Hybrid Feature Classes,
MultMed(21), No. 7, July 2019, pp. 1737-1749.
IEEE DOI 1906
Measurement, Quality assessment, Cameras, Distortion, Rendering (computer graphics), synthesized image dataset BibRef

Sandic-Stankovic, D.D., Kukolj, D.D., Le Callet, P.[Patrick],
Fast Blind Quality Assessment of DIBR-Synthesized Video Based on High-High Wavelet Subband,
IP(28), No. 11, November 2019, pp. 5524-5536.
IEEE DOI 1909
Measurement, Image edge detection, Quality assessment, Nonlinear distortion, synthesized view quality prediction BibRef

Wang, G., Wang, Z., Gu, K., Li, L., Xia, Z., Wu, L.,
Blind Quality Metric of DIBR-Synthesized Images in the Discrete Wavelet Transform Domain,
IP(29), No. 1, 2020, pp. 1802-1814.
IEEE DOI 1912
Distortion, Distortion measurement, Image edge detection, Quality assessment, Complexity theory, Feature extraction, image complexity BibRef

Hosu, V., Lin, H., Sziranyi, T., Saupe, D.,
KonIQ-10k: An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment,
IP(29), 2020, pp. 4041-4056.
IEEE DOI 2002
Image database, diversity sampling, crowdsourcing, blind image quality assessment, deep learning BibRef

Khosravi, M.H., Hassanpour, H.,
Blind Quality Metric for Contrast-Distorted Images Based on Eigendecomposition of Color Histograms,
CirSysVideo(30), No. 1, January 2020, pp. 48-58.
IEEE DOI 2002
distortion, eigenvalues and eigenfunctions, feature extraction, image colour analysis, image enhancement, no-reference/blind BibRef

Liu, Y., Gu, K., Zhang, Y., Li, X., Zhai, G., Zhao, D., Gao, W.,
Unsupervised Blind Image Quality Evaluation via Statistical Measurements of Structure, Naturalness, and Perception,
CirSysVideo(30), No. 4, April 2020, pp. 929-943.
IEEE DOI 2004
Feature extraction, Image quality, Distortion, Brain modeling, Predictive models, Degradation, Distortion measurement, free-energy principle BibRef

Wu, J., Ma, J., Liang, F., Dong, W., Shi, G., Lin, W.,
End-to-End Blind Image Quality Prediction With Cascaded Deep Neural Network,
IP(29), 2020, pp. 7414-7426.
IEEE DOI 2007
Blind image quality assessment (BIQA), hierarchical degradation concatenation, end-to-end, deep convolutional neural network BibRef

Mahmoudpour, S., Schelkens, P.,
A Multi-Attribute Blind Quality Evaluator for Tone-Mapped Images,
MultMed(22), No. 8, August 2020, pp. 1939-1954.
IEEE DOI 2007
Feature extraction, Visualization, Image color analysis, Dynamic range, Brightness, Imaging, High dynamic range imaging, Color harmony BibRef

Chen, Y., Zhao, Y., Li, S., Zuo, W., Jia, W., Liu, X.,
Blind Quality Assessment for Cartoon Images,
CirSysVideo(30), No. 9, September 2020, pp. 3282-3288.
IEEE DOI 2009
Image edge detection, Image coding, Histograms, Distortion, Image quality, Complexity theory, Measurement, Cartoon image, blind image quality assessment (BIQA) BibRef

Chetouani, A.[Aladine], Li, L.[Leida],
On the use of a scanpath predictor and convolutional neural network for blind image quality assessment,
SP:IC(89), 2020, pp. 115963.
Elsevier DOI 2010
Image quality, CNN model, Saliency, Scanpath prediction BibRef

Wang, X.J.[Xue-Jin], Jiang, Q.P.[Qiu-Ping], Shao, F.[Feng], Gu, K.[Ke], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang],
Exploiting Local Degradation Characteristics and Global Statistical Properties for Blind Quality Assessment of Tone-Mapped HDR Images,
MultMed(23), 2021, pp. 692-705.
IEEE DOI 2102
Feature extraction, Distortion, Degradation, Dynamic range, Image quality, Standards, Quality assessment, tone-mapped image, no reference BibRef

Tian, C.Z.[Chong-Zhen], Chai, X.L.[Xiong-Li], Shao, F.[Feng],
Stitched image quality assessment based on local measurement errors and global statistical properties,
JVCIR(81), 2021, pp. 103324.
Elsevier DOI 2112
Image stitching, Stitched image quality assessment, Structural distortion, Geometric error, Quality aggregation BibRef

Xu, J.H.[Jia-Hua], Zhou, W.[Wei], Chen, Z.B.[Zhi-Bo],
Blind Omnidirectional Image Quality Assessment With Viewport Oriented Graph Convolutional Networks,
CirSysVideo(31), No. 5, 2021, pp. 1724-1737.
IEEE DOI 2105
BibRef

Sun, S.[Simeng], Yu, T.[Tao], Xu, J.H.[Jia-Hua], Zhou, W.[Wei], Chen, Z.B.[Zhi-Bo],
GraphIQA: Learning Distortion Graph Representations for Blind Image Quality Assessment,
MultMed(25), 2023, pp. 2912-2925.
IEEE DOI 2307
Distortion, Task analysis, Image quality, Training, Representation learning, Codes, Predictive models, pre-training BibRef

Wang, H.S.[Hua-Sheng], Liu, J.[Jiang], Tan, H.C.[Hong-Chen], Lou, J.X.[Jian-Xun], Liu, X.C.[Xiao-Chang], Zhou, W.[Wei], Liu, H.T.[Han-Tao],
Blind Image Quality Assessment via Adaptive Graph Attention,
CirSysVideo(34), No. 10, October 2024, pp. 10299-10309.
IEEE DOI Code:
WWW Link. 2411
Transformers, Image quality, Feature extraction, Adaptation models, Predictive models, Deep learning, Task analysis, deep learning BibRef

Khalid, H.[Hassan], Ali, D.M.[Dr. Muhammad], Ahmed, N.[Nisar],
Gaussian Process-based Feature-Enriched Blind Image Quality Assessment,
JVCIR(77), 2021, pp. 103092.
Elsevier DOI 2106
Image quality assessment (IQA), No-reference (NR), Natural scene statistics, Feature selection, Blind image quality assessment (BIQA) BibRef

Deng, J.F.[Jing-Fang], Zhang, X.G.[Xiao-Gang], Chen, H.[Hua], Wu, L.Y.[Le-Yuan],
BGT: A blind image quality evaluator via gradient and texture statistical features,
SP:IC(96), 2021, pp. 116315.
Elsevier DOI 2106
Blind image quality assessment (BIQA), Human visual system (HVS), Natural scene statistics (NSS), Joint statistics BibRef

Chang, H.W.[Hua-Wen], Bi, X.D.[Xiao-Dong], Kai, C.[Chen],
Blind Image Quality Assessment by Visual Neuron Matrix,
SPLetters(28), 2021, pp. 1803-1807.
IEEE DOI 2109
Visualization, Feature extraction, Neurons, Training, Image quality, Brain modeling, Image color analysis, Human visual system, image quality assessment BibRef

Han, H.[Han], Zhuo, L.[Li], Li, J.F.[Jia-Feng], Zhang, J.[Jing], Wang, M.[Meng],
Blind Image Quality Assessment with Channel Attention Based Deep Residual Network and Extended LargeVis Dimensionality Reduction,
JVCIR(80), 2021, pp. 103296.
Elsevier DOI 2110
Blind image quality assessment, ResNet-50, Channel attention mechanism, LargeVis dimensionality reduction BibRef

Li, F.[Fan], Zhang, Y.F.[Yang-Fan], Cosman, P.C.[Pamela C.],
MMMNet: An End-to-End Multi-Task Deep Convolution Neural Network With Multi-Scale and Multi-Hierarchy Fusion for Blind Image Quality Assessment,
CirSysVideo(31), No. 12, December 2021, pp. 4798-4811.
IEEE DOI 2112
Task analysis, Feature extraction, Distortion, Image quality, Databases, Visualization, Semantics, Image quality assessment, convolutional neural network BibRef

Gao, R.[Rui], Huang, Z.Q.[Zi-Qing], Liu, S.G.[Shi-Guang],
QL-IQA: Learning distance distribution from quality levels for blind image quality assessment,
SP:IC(101), 2022, pp. 116576.
Elsevier DOI 2201
No-reference image quality assessment, Pseudo Siamese network, Clustering, Convolutional neural network BibRef

Celona, L.[Luigi], Schettini, R.[Raimondo],
Blind quality assessment of authentically distorted images,
JOSA-A(39), No. 6, June 2022, pp. B1-B10.
DOI Link 2503
Image metrics, Image quality, Imaging techniques, Neural networks, Physiology, Spatial resolution BibRef

Zhu, H.C.[Han-Cheng], Li, L.[Leida], Wu, J.J.[Jin-Jian], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming],
Generalizable No-Reference Image Quality Assessment via Deep Meta-Learning,
CirSysVideo(32), No. 3, March 2022, pp. 1048-1060.
IEEE DOI 2203
BibRef
Earlier:
MetaIQA: Deep Meta-Learning for No-Reference Image Quality Assessment,
CVPR20(14131-14140)
IEEE DOI 2008
Distortion, Measurement, Task analysis, Image quality, Adaptation models, Data models, Training, convolutional neural networks. Measurement, Databases BibRef

Huang, Y.[Yipo], Li, L.[Leida], Yang, Y.Z.[Yu-Zhe], Li, Y.Q.[Ya-Qian], Guo, Y.D.[Yan-Dong],
Explainable and Generalizable Blind Image Quality Assessment via Semantic Attribute Reasoning,
MultMed(25), 2023, pp. 7672-7685.
IEEE DOI 2312
BibRef

Viqar, M.[Maryam], Moinuddin, A.A.[Athar A.], Khan, E.[Ekram], Ghanbari, M.,
Frequency-domain blind quality assessment of blurred and blocking-artefact images using Gaussian Process Regression model,
SP:IC(103), 2022, pp. 116651.
Elsevier DOI 2203
Image quality assessment, Multiple distortions, Blocking artefacts, Blurriness, Discrete Fourier Transform BibRef

He, Q.L.[Qing-Lin], Yang, C.[Chao], Yang, F.[Fanxi], An, P.[Ping],
Unsupervised Blind Image Quality Assessment Based on Joint Structure and Natural Scene Statistics Features,
JVCIR(87), 2022, pp. 103579.
Elsevier DOI 2208
Blind image quality assessment, Structure information, Natural scene statistics, Karhunen-Loéve transform BibRef

Wang, Z.H.[Zhi-Hua], Tang, Z.R.[Zhi-Ri], Zhang, J.G.[Jian-Guo], Fang, Y.M.[Yu-Ming],
Toward a blind image quality evaluator in the wild by learning beyond human opinion scores,
PR(137), 2023, pp. 109296.
Elsevier DOI 2302
BibRef
And: Corrigendum: PR(139), 2023, pp. 109465.
Elsevier DOI 2304
Blind image quality assessment, Opinion-free, Pseudo binary label, Unsupervised domain adaptation, gMAD competition BibRef

Liu, Y.[Yun], Yin, X.H.[Xiao-Hua], Yue, G.H.[Guang-Hui], Zheng, Z.[Zhi], Jiang, J.H.[Jin-He], He, Q.G.[Quan-Gui], Li, X.Z.[Xin-Zhuang],
Blind Omnidirectional Image Quality Assessment with Representative Features and Viewport Oriented Statistical Features,
JVCIR(91), 2023, pp. 103770.
Elsevier DOI 2303
Omnidirectional images, Quality assessment, Cross-channel color feature, Natural scene statistics BibRef

Liu, M.[Manni], Huang, J.B.[Jia-Bin], Zeng, D.[Delu], Ding, X.H.[Xing-Hao], Paisley, J.[John],
A Multiscale Approach to Deep Blind Image Quality Assessment,
IP(32), 2023, pp. 1656-1667.
IEEE DOI 2303
Image quality, Feature extraction, Distortion, Sensitivity, Visualization, Task analysis, Predictive models, CNN BibRef

Liu, H.[Hao], Li, C.[Ce], Jin, S.G.[Shan-Gang], Gao, W.Z.[Wei-Zhe], Liu, F.H.[Feng-Hua], Du, S.[Shaoyi], Ying, S.H.[Shi-Hui],
PGF-BIQA: Blind image quality assessment via probability multi-grained cascade forest,
CVIU(232), 2023, pp. 103695.
Elsevier DOI 2305
Blind image quality assessment, Probability gcForest, Equal image classification BibRef

Lee, S.H.[Se-Ho], Kim, S.W.[Seung-Wook],
Dual-branch vision transformer for blind image quality assessment,
JVCIR(94), 2023, pp. 103850.
Elsevier DOI 2306
Blind image quality assessment, No-reference image quality assessment, Vision transformer, Perceptual image processing BibRef

Zhu, Y.C.[Yu-Cheng], Li, Y.H.[Yun-Hao], Sun, W.[Wei], Min, X.K.[Xiong-Kuo], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang],
Blind Image Quality Assessment via Cross-View Consistency,
MultMed(25), 2023, pp. 7607-7620.
IEEE DOI 2311
BibRef

Liu, J.Z.[Jian-Zhao], Zhou, W.[Wei], Li, X.[Xin], Xu, J.H.[Jia-Hua], Chen, Z.B.[Zhi-Bo],
LIQA: Lifelong Blind Image Quality Assessment,
MultMed(25), 2023, pp. 5358-5373.
IEEE DOI 2311
BibRef

Fu, J.[Jun], Zhou, W.[Wei], Jiang, Q.P.[Qiu-Ping], Liu, H.T.[Han-Tao], Zhai, G.T.[Guang-Tao],
Vision-Language Consistency Guided Multi-Modal Prompt Learning for Blind AI Generated Image Quality Assessment,
SPLetters(31), 2024, pp. 1820-1824.
IEEE DOI 2408
Task analysis, Measurement, Visualization, Transformers, Image quality, Correlation, Multi-modal prompt learning, AGIQA BibRef

Zhang, W.X.[Wei-Xia], Li, D.Q.[Ding-Quan], Ma, C.[Chao], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang], Ma, K.[Kede],
Continual Learning for Blind Image Quality Assessment,
PAMI(45), No. 3, March 2023, pp. 2864-2878.
IEEE DOI 2302
Distortion, Training, Image quality, Biological system modeling, Databases, Computational modeling, Robustness, subpopulation shift BibRef

Zhang, W.X.[Wei-Xia], Zhai, G.T.[Guang-Tao], Wei, Y.[Ying], Yang, X.K.[Xiao-Kang], Ma, K.[Kede],
Blind Image Quality Assessment via Vision-Language Correspondence: A Multitask Learning Perspective,
CVPR23(14071-14081)
IEEE DOI 2309
BibRef

Wang, Z.H.[Zhi-Hua], Ma, K.[Kede],
Active Fine-Tuning From gMAD Examples Improves Blind Image Quality Assessment,
PAMI(44), No. 9, September 2022, pp. 4577-4590.
IEEE DOI 2208
Computational modeling, Databases, Adaptation models, Training, Predictive models, Task analysis, Image quality, active learning BibRef

Ma, K.[Kede], Liu, X.L.[Xue-Lin], Fang, Y.M.[Yu-Ming], Simoncelli, E.P.[Eero P.],
Blind Image Quality Assessment by Learning from Multiple Annotators,
ICIP19(2344-2348)
IEEE DOI 1910
Blind image quality assessment, convolutional neural networks, gMAD competition BibRef

Gu, K.[Ke], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang], Zhang, W.J.[Wen-Jun],
Deep Learning Network for Blind Image Quality Assessment,
ICIP14(511-515)
IEEE DOI 1502
Biological neural networks BibRef

Shi, J.S.[Jin-Song], Gao, P.[Pan], Smolic, A.[Aljosa],
Blind Image Quality Assessment via Transformer Predicted Error Map and Perceptual Quality Token,
MultMed(26), 2024, pp. 4641-4651.
IEEE DOI 2403
Distortion, Transformers, Predictive models, Image quality, Feature extraction, Visualization, Task analysis, NR-IQA, pceptual quality token BibRef

Zhang, W.X.[Wei-Xia], Ma, K.[Kede], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang],
Task-Specific Normalization for Continual Learning of Blind Image Quality Models,
IP(33), 2024, pp. 1898-1910.
IEEE DOI 2403
Task analysis, Computational modeling, Training, Head, Convolution, Adaptation models, Learning systems, task-specific normalization BibRef

Zheng, L.M.[Li-Min], Luo, Y.[Yu], Zhou, Z.H.[Zi-Han], Ling, J.[Jie], Yue, G.H.[Guang-Hui],
CDINet: Content Distortion Interaction Network for Blind Image Quality Assessment,
MultMed(26), 2024, pp. 7089-7100.
IEEE DOI 2405
Distortion, Image quality, Image restoration, Feature extraction, Decoding, Dams, Visualization, Blind image quality assessment, deep neural networks BibRef

Chen, H.W.[Hang-Wei], Wang, X.J.[Xue-Jin], Shao, F.[Feng],
Blind cartoon image quality assessment based on local structure and chromatic statistics,
JVCIR(101), 2024, pp. 104152.
Elsevier DOI 2406
No-reference image quality assessment, Cartoon image, Decorative line detection, Multiscale chromatic statistics BibRef

Adhikari, A.[Astha], Lee, S.W.[Sang-Woong],
AM-BQA: Enhancing blind image quality assessment using attention retractable features and multi-dimensional learning,
IVC(147), 2024, pp. 105076.
Elsevier DOI Code:
WWW Link. 2406
Blind image quality assessment, No-reference image quality assessment, Multi-scale feature, Progressive multi-task learning BibRef

Zhou, Z.[Zihan], Li, J.[Jing], Zhong, D.X.[De-Xiang], Xu, Y.[Yong], Le Callet, P.[Patrick],
Deep Blind Image Quality Assessment Using Dynamic Neural Model With Dual-Order Statistics,
CirSysVideo(34), No. 7, July 2024, pp. 6279-6290.
IEEE DOI 2407
Distortion, Feature extraction, Filter banks, Visualization, Image quality, Biological system modeling, Semantics, dynamic regression BibRef

Gu, K., Qiao, J.F., Le Callet, P., Xia, Z., Lin, W.,
Using multiscale analysis for blind quality assessment of DIBR-synthesized images,
ICIP17(745-749)
IEEE DOI 1803
Distortion, Distortion measurement, Geometry, Predictive models, Quality assessment, Reliability, Image quality assessment (IQA), virtual reality (VR) BibRef

Zhou, T.W.[Tian-Wei], Tan, S.B.[Song-Bai], Zhao, B.Q.[Bao-Quan], Yue, G.H.[Guang-Hui],
Multitask Deep Neural Network With Knowledge-Guided Attention for Blind Image Quality Assessment,
CirSysVideo(34), No. 8, August 2024, pp. 7577-7588.
IEEE DOI 2408
Distortion, Task analysis, Feature extraction, Image quality, Databases, Transformers, transformer BibRef

Karimi, M.[Maryam], Nejati, M.[Mansour],
Learning sparse feature representation for blind quality assessment of night-time images,
SP:IC(128), 2024, pp. 117167.
Elsevier DOI 2409
Image quality assessment, Night-time image quality assessment, Unsupervised feature learning, Sparse representation, Ensemble regression BibRef

Ni, Z.K.[Zhang-Kai], Liu, Y.[Yue], Ding, K.[Keyan], Yang, W.H.[Wen-Han], Wang, H.L.[Han-Li], Wang, S.Q.[Shi-Qi],
Opinion-Unaware Blind Image Quality Assessment Using Multi-Scale Deep Feature Statistics,
MultMed(26), 2024, pp. 10211-10224.
IEEE DOI 2410
Feature extraction, Training, Analytical models, Image quality, Data models, Predictive models, Computational modeling, multi-scale deep features BibRef

Tang, L.[Long], Han, Y.M.[Yong-Ming], Yuan, L.[Liang], Zhai, G.T.[Guang-Tao],
FsPN: Blind Image Quality Assessment Based on Feature-Selected Pyramid Network,
SPLetters(32), 2025, pp. 1-5.
IEEE DOI 2501
Feature extraction, Image quality, Convolution, Distortion, Residual neural networks, Computational modeling, Interpolation, spatial selection module BibRef

Yan, J.B.[Jie-Bin], Tan, Z.W.[Zi-Wen], Fang, Y.M.[Yu-Ming], Rao, J.[Jiale], Zuo, Y.F.[Yi-Fan],
Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-Axis Attention,
PR(162), 2025, pp. 111429.
Elsevier DOI Code:
WWW Link. 2503
Omnidirectional images, Perceptual quality assessment, Multi-axis attention BibRef

Li, L., Xia, W., Lin, W.S.[Wei-Si], Fang, Y.M.[Yu-Ming], Wang, S.,
No-Reference and Robust Image Sharpness Evaluation Based on Multiscale Spatial and Spectral Features,
MultMed(19), No. 5, May 2017, pp. 1030-1040.
IEEE DOI 1704
Computational modeling BibRef

Li, Q.H.[Qiao-Hong], Lin, W.S.[Wei-Si], Fang, Y.M.[Yu-Ming],
No-Reference Quality Assessment for Multiply-Distorted Images in Gradient Domain,
SPLetters(23), No. 4, April 2016, pp. 541-545.
IEEE DOI 1604
Databases BibRef

Xu, L.[Long], Li, J.[Jia], Lin, W.S.[Wei-Si], Zhang, Y.B.[Yong-Bing], Ma, L.[Lin], Fang, Y.M.[Yu-Ming], Yan, Y.H.[Yi-Hua],
Multi-Task Rank Learning for Image Quality Assessment,
CirSysVideo(27), No. 9, September 2017, pp. 1833-1843.
IEEE DOI 1709
Distortion, Image quality, Predictive models, Solid modeling, Training, Transform coding, Image quality assessment (IQA), machine learning (ML), mean opinion score (MOS), pairwise comparison, rank, learning BibRef

Song, T.S.[Tian-Shu], Li, L.[Leida], Cheng, D.Q.[De-Qiang], Chen, P.F.[Peng-Fei], Wu, J.J.[Jin-Jian],
Active Learning-Based Sample Selection for Label-Efficient Blind Image Quality Assessment,
CirSysVideo(34), No. 7, July 2024, pp. 5884-5896.
IEEE DOI Code:
WWW Link. 2407
Distortion, Training, Predictive models, Image quality, Uncertainty, Tuning, Task analysis, Image quality assessment, active learning, data-efficient BibRef

Shao, F.[Feng], Tian, W.J.[Wei-Jun], Lin, W.S.[Wei-Si], Jiang, G.Y.[Gang-Yi], Dai, Q.H.[Qiong-Hai],
Learning Sparse Representation for No-Reference Quality Assessment of Multiply Distorted Stereoscopic Images,
MultMed(19), No. 8, August 2017, pp. 1821-1836.
IEEE DOI 1708
Databases, Distortion, Image quality, Measurement, Stereo image processing, Visualization, Blind/no reference, binocular combination, multiply distorted stereoscopic image (MDSI), sparse, representation BibRef

Ma, J.[Jupo], Wu, J.J.[Jin-Jian], Li, L.D.[Lei-Da], Dong, W.S.[Wei-Sheng], Xie, X.M.[Xue-Mei], Shi, G.M.[Guang-Ming], Lin, W.S.[Wei-Si],
Blind Image Quality Assessment With Active Inference,
IP(30), 2021, pp. 3650-3663.
IEEE DOI 2103
Image quality, Generative adversarial networks, Feature extraction, Distortion, Semantics, convolutional neural network BibRef

Song, T.S.[Tian-Shu], Li, L.D.[Lei-Da], Chen, P.F.[Peng-Fei], Liu, H.T.[Han-Tao], Qian, J.S.[Jian-Sheng],
Blind Image Quality Assessment for Authentic Distortions by Intermediary Enhancement and Iterative Training,
CirSysVideo(32), No. 11, November 2022, pp. 7592-7604.
IEEE DOI 2211
Measurement, Training, Distortion, Feature extraction, Image quality, Adaptation models, Neural networks, Image quality assessment, generalization BibRef

Li, L.[Leida], Song, T.S.[Tian-Shu], Wu, J.J.[Jin-Jian], Dong, W.S.[Wei-Sheng], Qian, J.S.[Jian-Sheng], Shi, G.M.[Guang-Ming],
Blind Image Quality Index for Authentic Distortions With Local and Global Deep Feature Aggregation,
CirSysVideo(32), No. 12, December 2022, pp. 8512-8523.
IEEE DOI 2212
Measurement, Feature extraction, Distortion, Image quality, Transformers, Computer architecture, Deep learning, generalization BibRef

Song, T.S.[Tian-Shu], Li, L.D.[Lei-Da], Wu, J.J.[Jin-Jian], Yang, Y.Z.[Yu-Zhe], Li, Y.Q.[Ya-Qian], Guo, Y.D.[Yan-Dong], Shi, G.M.[Guang-Ming],
Knowledge-Guided Blind Image Quality Assessment With Few Training Samples,
MultMed(25), 2023, pp. 8145-8156.
IEEE DOI 2312
BibRef

Hu, B.[Bo], Zhu, G.[Guang], Li, L.[Leida], Gan, J.[Ji], Li, W.S.[Wei-Sheng], Gao, X.B.[Xin-Bo],
Blind Image Quality Index With Cross-Domain Interaction and Cross-Scale Integration,
MultMed(26), 2024, pp. 2729-2739.
IEEE DOI 2402
Measurement, Feature extraction, Distortion, Image quality, Transformers, Databases, Indexes, Image quality assessment, cross-scale integration BibRef

Jiang, Q.P.[Qiu-Ping], Shao, F.[Feng], Gao, W.[Wei], Chen, Z.[Zhuo], Jiang, G.Y.[Gang-Yi], Ho, Y.S.[Yo-Sung],
Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images,
IP(28), No. 4, April 2019, pp. 1866-1881.
IEEE DOI 1901
feature extraction, image reconstruction, learning (artificial intelligence), regression analysis, local visual primitive BibRef

Li, X.[Xiwen], Wang, Z.H.[Zhi-Hua], Xu, B.W.[Bin-Wei],
Blind image quality assessment with semi-supervised learning,
JVCIR(100), 2024, pp. 104100.
Elsevier DOI 2405
Blind image quality assessment, gMAD competition, Learning to rank, Semi-supervised learning BibRef

Gao, Y.X.[Yi-Xuan], Min, X.K.[Xiong-Kuo], Zhu, Y.C.[Yu-Cheng], Zhang, X.P.[Xiao-Ping], Zhai, G.T.[Guang-Tao],
Blind Image Quality Assessment: A Fuzzy Neural Network for Opinion Score Distribution Prediction,
CirSysVideo(34), No. 3, March 2024, pp. 1641-1655.
IEEE DOI 2403
Feature extraction, Image quality, Uncertainty, Databases, Fuzzy neural networks, Fuzzy sets, Standards, cumulative density function BibRef

Gao, Y.X.[Yi-Xuan], Min, X.K.[Xiong-Kuo], Zhu, W.H.[Wen-Han], Zhang, X.P.[Xiao-Ping], Zhai, G.T.[Guang-Tao],
Image Quality Score Distribution Prediction via Alpha Stable Model,
CirSysVideo(33), No. 6, June 2023, pp. 2656-2671.
IEEE DOI 2306
BibRef
Earlier:
Modeling Image Quality Score Distribution Using Alpha Stable Model,
ICIP21(1574-1578)
IEEE DOI 2201
Image quality, Feature extraction, Databases, Histograms, Predictive models, Distortion, Data mining, support vector regressors. Support vector machines, Analytical models, Gaussian distribution BibRef

Gao, Y.X.[Yi-Xuan], Min, X.K.[Xiong-Kuo], Cao, Y.Q.[Yu-Qin], Liu, X.H.[Xiao-Hong], Zhai, G.T.[Guang-Tao],
No-Reference Image Quality Assessment: Obtain MOS From Image Quality Score Distribution,
CirSysVideo(35), No. 2, February 2025, pp. 1840-1854.
IEEE DOI 2502
Image quality, Feature extraction, Visualization, Correlation, Training, Circuits and systems, Visual databases, Standards, loss functions BibRef

Li, X.[Xin], Lu, Y.T.[Yi-Ting], Chen, Z.B.[Zhi-Bo],
FreqAlign: Excavating Perception-Oriented Transferability for Blind Image Quality Assessment From a Frequency Perspective,
MultMed(26), 2024, pp. 4652-4666.
IEEE DOI 2403
Distortion, Frequency-domain analysis, Feature extraction, Image quality, Task analysis, Adaptation models, frequency alignment BibRef

Liu, J.Z.[Jian-Zhao], Li, X.[Xin], Peng, Y.D.[Yan-Ding], Yu, T.[Tao], Chen, Z.B.[Zhi-Bo],
SwinIQA: Learned Swin Distance for Compressed Image Quality Assessment,
CLIC22(1794-1798)
IEEE DOI 2210
Image quality, Learning systems, Image coding, Image representation, Feature extraction, Transformers, Distortion BibRef

Zhou, Z.H.[Ze-Hong], Zhou, F.[Fei], Qiu, G.P.[Guo-Ping],
Blind Image Quality Assessment Based on Separate Representations and Adaptive Interaction of Content and Distortion,
CirSysVideo(34), No. 4, April 2024, pp. 2484-2497.
IEEE DOI 2404
Distortion, Feature extraction, Task analysis, Visualization, Image quality, Adaptation models, Predictive models, feature reweighting BibRef

Ding, Q.[Qing], Shen, L.Q.[Li-Quan], Yu, L.[Liangwei], Yang, H.[Hao], Xu, M.[Mai],
Blind Quality Enhancement for Compressed Video,
MultMed(26), 2024, pp. 5782-5794.
IEEE DOI 2404
Feature extraction, Image coding, Estimation, Video coding, Image enhancement, Noise level, Image denoising, video coding BibRef

Chahine, N.[Nicolas], Ferradans, S.[Sira], Vazquez-Corral, J.[Javier], Ponce, J.[Jean],
Generalized portrait quality assessment,
PRL(189), 2025, pp. 122-128.
Elsevier DOI Code:
WWW Link. 2503
Image quality, Blind image quality BibRef


Fan, K.L.[Kang-Long], Wen, W.[Wen], Li, M.[Mu], Peng, Y.F.[Yi-Fan], Ma, K.[Kede],
Learned Scanpaths Aid Blind Panoramic Video Quality Assessment,
CVPR24(2599-2608)
IEEE DOI 2410
Training, Visualization, Distortion, Generators, Quality assessment BibRef

Alsaafin, M.[Mohammed], Alsheikh, M.[Musab], Anwar, S.[Saeed], Usman, M.[Muhammad],
Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment,
ICIP24(1260-1266)
IEEE DOI Code:
WWW Link. 2411
Image quality, Degradation, Adaptation models, Visualization, Image transformation, Transformers, Feature extraction, Relative Ranking BibRef

Shin, N.H.[Nyeong-Ho], Lee, S.H.[Seon-Ho], Kim, C.S.[Chang-Su],
Blind Image Quality Assessment Based on Geometric Order Learning,
CVPR24(12799-12808)
IEEE DOI Code:
WWW Link. 2410
Image quality, Correlation, Computed tomography, Source coding, Transformers, Vectors, Image quality assessment, order learning BibRef

Roy, S.[Subhadeep], Mitra, S.[Shankhanil], Biswas, S.[Soma], Soundararajan, R.[Rajiv],
Test Time Adaptation for Blind Image Quality Assessment,
ICCV23(16696-16705)
IEEE DOI 2401
BibRef

Zhou, W.[Wei], Wang, Z.[Zhou],
Blind Omnidirectional Image Quality Assessment: Integrating Local Statistics and Global Semantics,
ICIP23(1405-1409)
IEEE DOI 2312
BibRef

Yuan, K.[Kun], Liu, H.B.[Hong-Bo], Li, M.[Mading], Sun, M.[Muyi], Sun, M.[Ming], Gong, J.C.[Jia-Chao], Hao, J.H.[Jin-Hua], Zhou, C.[Chao], Tang, Y.S.[Yan-Song],
PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild,
CVPR24(2835-2845)
IEEE DOI 2410
Learning systems, Computational modeling, Benchmark testing, Feature extraction, Distortion, Quality assessment, metric learning BibRef

Zhao, K.[Kai], Yuan, K.[Kun], Sun, M.[Ming], Li, M.[Mading], Wen, X.[Xing],
Quality-aware Pretrained Models for Blind Image Quality Assessment,
CVPR23(22302-22313)
IEEE DOI 2309
BibRef

Chen, Z.[Zewen], Wang, J.[Juan], Li, B.[Bing], Yuan, C.F.[Chun-Feng], Xiong, W.H.[Wei-Hua], Cheng, R.[Rui], Hu, W.M.[Wei-Ming],
Teacher-guided Learning for Blind Image Quality Assessment,
ACCV22(III:206-222).
Springer DOI 2307
BibRef

Sendjasni, A.[Abderrezzaq], Larabi, M.C.[Mohamed-Chaker], Cheikh, F.A.[Faouzi Alaya],
Perceptually-Weighted Cnn for 360-Degree Image Quality Assessment Using Visual Scan-Path and Jnd,
ICIP21(1439-1443)
IEEE DOI 2201
Image quality, Visualization, Adaptation models, Databases, Predictive models, Visual systems, Observers, 360-degree images, blind image quality assessment BibRef

Wang, Z.H.[Zhi-Hua], Wang, H.T.[Hao-Tao], Chen, T.L.[Tian-Long], Wang, Z.Y.[Zhang-Yang], Ma, K.[Kede],
Troubleshooting Blind Image Quality Models in the Wild,
CVPR21(16251-16260)
IEEE DOI 2111
Image quality, Measurement, Computational modeling, Mathematical models, Computational efficiency BibRef

Lu, T.[Tan], Dooms, A.[Ann],
A Novel Contractive GAN Model for a Unified Approach Towards Blind Quality Assessment of Images from Heterogeneous Sources,
ISVC20(I:27-38).
Springer DOI 2103
BibRef

Su, Y., Korhonen, J.,
Blind Natural Image Quality Prediction Using Convolutional Neural Networks And Weighted Spatial Pooling,
ICIP20(191-195)
IEEE DOI 2011
Image quality, Training, Image resolution, Databases, Feature extraction, Convolution, Graphics processing units, Visual perception BibRef

Zhang, W., Zhai, K., Zhai, G., Yang, X.,
Learning To Blindly Assess Image Quality In The Laboratory And Wild,
ICIP20(111-115)
IEEE DOI 2011
Databases, Training, Distortion, Computational modeling, Entropy, Image quality, Testing, Blind image quality assessment, fidelity loss. BibRef

Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Zhang, Y.,
Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network,
CVPR20(3664-3673)
IEEE DOI 2008
Distortion, Feature extraction, Image quality, Semantics, Databases, Task analysis, Predictive models BibRef

Yang, X., Li, F., Liu, H.,
A Comparative Study of DNN-Based Models for Blind Image Quality Prediction,
ICIP19(1019-1023)
IEEE DOI 1910
deep learning, blind image quality assessment (BIQA), deep neural networks (DNN) BibRef

Ou, F., Wang, Y., Zhu, G.,
A Novel Blind Image Quality Assessment Method Based on Refined Natural Scene Statistics,
ICIP19(1004-1008)
IEEE DOI 1910
Image quality assessment, natural scene statistics, image distortion BibRef

Kim, J., Ahn, S., Oh, H., Lee, S.,
CNN-Based Blind Quality Prediction On Stereoscopic Images Via Patch To Image Feature Pooling,
ICIP19(1745-1749)
IEEE DOI 1910
Stereoscopic 3D, no-reference quality assessment, convolutional neural network, feature pooling. BibRef

Kim, J., Nguyen, A., Ahn, S., Luo, C., Lee, S.,
Multiple Level Feature-Based Universal Blind Image Quality Assessment Model,
ICIP18(291-295)
IEEE DOI 1809
Distortion, Databases, Feature extraction, Transform coding, Image quality, Correlation, Task analysis, no-reference image quality assessment BibRef

Chetouani, A.,
Convolutional Neural Network and Saliency Selection for Blind Image Quality Assessment,
ICIP18(2835-2839)
IEEE DOI 1809
Degradation, Measurement, Image quality, Databases, Computational modeling, Convolutional neural networks, Saliency BibRef

Chetouani, A.,
Blind Utility and Quality Assessment Using a Convolutional Neural Network and a Patch Selection,
ICIP19(459-463)
IEEE DOI 1910
Image utility, Image quality, Convolutional Neural Network, Patch selection BibRef

Abouelaziz, I., Chetouani, A., Hassouni, M.E., Latecki, L.J., Cherifi, H.,
Convolutional Neural Network for Blind Mesh Visual Quality Assessment Using 3D Visual Saliency,
ICIP18(3533-3537)
IEEE DOI 1809
BibRef
Earlier: A1, A3, A5, Only:
A convolutional neural network framework for blind mesh visual quality assessment,
ICIP17(755-759)
IEEE DOI 1803
Visualization, Correlation, Databases, Distortion, Quality assessment, Convolutional neural networks, mesh visual saliency. Convolution, Feature extraction, mean curvature BibRef

Lv, Z.Y.[Zheng-Yi], Wang, X.C.[Xiao-Chuan], Wang, K.[Kai], Liang, X.H.[Xiao-Hui],
A Deep Blind Image Quality Assessment with Visual Importance Based Patch Score,
ACCV18(II:147-162).
Springer DOI 1906
BibRef

Rouis, K., Larabi, M.C., Belhadj Tahar, J.,
Blind image quality assessment in the complex frequency domain,
ICIP17(770-774)
IEEE DOI 1803
Distortion, Feature extraction, Frequency-domain analysis, Image quality, Transforms, Visualization, No-reference IQA, relative phase and magnitude BibRef

Yang, L.P.[Lu-Ping], Du, H.Q.[Hai-Qing], Xu, J.T.[Jing-Tao], Liu, Y.[Yong],
Blind Image Quality Assessment on Authentically Distorted Images with Perceptual Features,
ICIP16(2042-2046)
IEEE DOI 1610
Decision support systems BibRef

Yan, J.[Jia], Zhang, W.X.[Wei-Xia], Feng, T.P.[Tian-Peng],
Blind Image Quality Assessment Based on Natural Redundancy Statistics,
ACCV16(IV: 3-18).
Springer DOI 1704
BibRef

Wu, Q., Li, H., Meng, F., Ngan, K.N.,
Q-DNN: A quality-aware deep neural network for blind assessment of enhanced images,
VCIP16(1-4)
IEEE DOI 1701
Convolution BibRef

Wu, Q.B.[Qing-Bo], Wang, Z.[Zhou], Li, H.L.[Hong-Liang],
A highly efficient method for blind image quality assessment,
ICIP15(339-343)
IEEE DOI 1512
Image quality assessment BibRef

Jenadeleh, M.[Mohsen], Moghaddam, M.E.[Mohsen Ebrahimi],
Blind Image Quality Assessment Through Wakeby Statistics Model,
ICIAR15(14-21).
Springer DOI 1507
BibRef

Song, L.[Li], Chen, C.[Chen], Xu, Y.[Yi], Xue, G.J.[Gen-Jian], Zhou, Y.[Yi],
Blind Image Quality Assessment Based on a New Feature of Nature Scene Statistics,
VCIP14(37-40)
IEEE DOI 1504
Gaussian distribution BibRef

Tang, H.X.[Hui-Xuan], Joshi, N.[Neel], Kapoor, A.[Ashish],
Blind Image Quality Assessment Using Semi-supervised Rectifier Networks,
CVPR14(2877-2884)
IEEE DOI 1409
BibRef

Xue, W.F.[Wu-Feng], Zhang, L.[Lei], Mou, X.Q.[Xuan-Qin],
Learning without Human Scores for Blind Image Quality Assessment,
CVPR13(995-1002)
IEEE DOI 1309
bind image quality assessment; clustering; qualiyt aware BibRef

He, L.[Lihuo], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long], Gao, X.B.[Xin-Bo],
Sparse representation for blind image quality assessment,
CVPR12(1146-1153).
IEEE DOI 1208
BibRef

Ojansivu, V.[Ville], Lepistö, L.[Leena], Ilmoniemi, M.[Martti], Heikkilä, J.[Janne],
Degradation Based Blind Image Quality Evaluation,
SCIA11(306-316).
Springer DOI 1105
BibRef

Luxen, M.[Marc], Forstner, W.[Wolfgang],
Characterizing Image Quality: Blind Estimation of the Point Spread Function from a Single Image,
PCV02(A: 205).
HTML Version. 0305
BibRef

Li, X.[Xin],
Blind image quality assessment,
ICIP02(I: 449-452).
IEEE DOI 0210
BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Color Image Quality, Hyperspectral Image Quality .


Last update:Mar 29, 2025 at 10:46:14