Gupta, O.[Otkrist],
Raviv, D.[Dan],
Raskar, R.[Ramesh],
Illumination invariants in deep video expression recognition,
PR(76), No. 1, 2018, pp. 25-35.
Elsevier DOI
1801
Deep learning
BibRef
Salmam, F.Z.[Fatima Zahra],
Madani, A.[Abdellah],
Kissi, M.[Mohamed],
Fusing multi-stream deep neural networks for facial expression
recognition,
SIViP(13), No. 3, April 2019, pp. 609-616.
WWW Link.
1904
BibRef
Xie, S.Y.[Si-Yue],
Hu, H.F.[Hai-Feng],
Wu, Y.B.[Yong-Bo],
Deep multi-path convolutional neural network joint with salient
region attention for facial expression recognition,
PR(92), 2019, pp. 177-191.
Elsevier DOI
1905
Attention, Convolutional neural network,
Facial expression recognition,
Salient expressional region descriptor
BibRef
Xie, S.Y.[Si-Yue],
Hu, H.F.[Hai-Feng],
Chen, Y.Z.[Yi-Zhen],
Facial Expression Recognition With Two-Branch Disentangled Generative
Adversarial Network,
CirSysVideo(31), No. 6, June 2021, pp. 2359-2371.
IEEE DOI
2106
Face recognition, Feature extraction,
Generative adversarial networks, Task analysis, Generators,
Two-branch Disentangled Generative Adversarial Network
BibRef
Gupta, O.[Otkrist],
Raviv, D.[Dan],
Raskar, R.[Ramesh],
Multi-Velocity Neural Networks for Facial Expression Recognition in
Videos,
AffCom(10), No. 2, April 2019, pp. 290-296.
IEEE DOI
1906
Videos, Training, Splines (mathematics), Face recognition,
Convolutional codes, Biological neural networks, Deep learning,
machine learning
BibRef
Majumder, A.[Anima],
Behera, L.[Laxmidhar],
Subramanian, V.K.,
Automatic Facial Expression Recognition System Using Deep
Network-Based Data Fusion,
Cyber(48), No. 1, January 2018, pp. 103-114.
IEEE DOI
1801
BibRef
Earlier: A1, A2, Only:
Facial Expression Recognition with Regional Features Using Local Binary
Patterns,
CAIP13(556-563).
Springer DOI
1308
Active appearance model, Computer architecture, Data integration,
Face, Face recognition, Feature extraction,
support vector machine (SVM)
BibRef
Chen, D.L.[Dong-Liang],
Song, P.[Peng],
Zhang, W.J.[Wen-Jing],
Zhang, W.J.[Wei-Jian],
Xu, B.G.[Bin-Gui],
Zhou, X.[Xuan],
Robust Transferable Subspace Learning for Cross-Corpus Facial
Expression Recognition,
IEICE(E103-D), No. 10, October 2020, pp. 2241-2245.
WWW Link.
2010
BibRef
Zhang, W.J.[Wen-Jing],
Song, P.[Peng],
Zheng, W.M.[Wen-Ming],
Joint Local-Global Discriminative Subspace Transfer Learning for
Facial Expression Recognition,
AffCom(14), No. 3, July 2023, pp. 2484-2495.
IEEE DOI
2310
BibRef
Zheng, W.M.[Wen-Ming],
Zhou, X.Y.[Xiao-Yan],
Cross-pose color facial expression recognition using transductive
transfer linear discriminat analysis,
ICIP15(1935-1939)
IEEE DOI
1512
Color facial expression recognition
BibRef
Zheng, W.M.[Wen-Ming],
Zong, Y.,
Zhou, X.Y.[Xiao-Yan],
Xin, M.,
Cross-Domain Color Facial Expression Recognition Using Transductive
Transfer Subspace Learning,
AffCom(9), No. 1, January 2018, pp. 21-37.
IEEE DOI
1804
face recognition, feature extraction, image classification,
image colour analysis, learning (artificial intelligence),
transductive transfer learning
BibRef
Zhang, W.J.[Wen-Jing],
Song, P.[Peng],
Zheng, W.M.[Wen-Ming],
A Novel Transferable Sparse Regression Method for Cross-Database Facial
Expression Recognition,
IEICE(E105-D), No. 1, January 2022, pp. 184-188.
WWW Link.
2201
BibRef
Chen, D.L.[Dong-Liang],
Song, P.[Peng],
Zheng, W.M.[Wen-Ming],
Learning Transferable Sparse Representations for Cross-Corpus Facial
Expression Recognition,
AffCom(14), No. 2, April 2023, pp. 1322-1333.
IEEE DOI
2306
Face recognition, Dictionaries, Transfer learning, Training,
Databases, Testing, Encoding, Sparse subspace clustering,
facial expression recognition
BibRef
Chen, D.L.[Dong-Liang],
Wen, G.H.[Gui-Hua],
Wen, P.C.[Peng-Cheng],
Yang, P.[Pei],
Chen, R.[Rui],
Li, C.[Cheng],
Cross-Domain Sample Relationship Learning for Facial Expression
Recognition,
MultMed(26), 2024, pp. 3788-3798.
IEEE DOI
2402
Databases, Transformers, Face recognition, Training, Task analysis,
Target recognition, Knowledge transfer, Deep neural network,
transformer
BibRef
Huang, Y.[Ying],
Yan, Y.[Yan],
Chen, S.[Si],
Wang, H.Z.[Han-Zi],
Expression-targeted feature learning for effective facial expression
recognition,
JVCIR(55), 2018, pp. 677-687.
Elsevier DOI
1809
Facial expression recognition, Multi-task learning,
Feature learning, Convolutional neural network
BibRef
Yan, Y.[Yan],
Huang, Y.[Ying],
Chen, S.[Si],
Shen, C.H.[Chun-Hua],
Wang, H.Z.[Han-Zi],
Joint Deep Learning of Facial Expression Synthesis and Recognition,
MultMed(22), No. 11, November 2020, pp. 2792-2807.
IEEE DOI
2010
Face recognition, Databases,
Generative adversarial networks, Deep learning, Training data,
generative adversarial net (GAN)
BibRef
Ruan, D.[Delian],
Mo, R.Y.[Rong-Yun],
Yan, Y.[Yan],
Chen, S.[Si],
Xue, J.H.[Jing-Hao],
Wang, H.Z.[Han-Zi],
Adaptive Deep Disturbance-Disentangled Learning for Facial Expression
Recognition,
IJCV(130), No. 2, February 2022, pp. 455-477.
Springer DOI
2202
BibRef
Ruan, D.[Delian],
Yan, Y.[Yan],
Lai, S.Q.[Shen-Qi],
Chai, Z.H.[Zhen-Hua],
Shen, C.H.[Chun-Hua],
Wang, H.Z.[Han-Zi],
Feature Decomposition and Reconstruction Learning for Effective
Facial Expression Recognition,
CVPR21(7656-7665)
IEEE DOI
2111
Databases, Face recognition, Feature extraction
BibRef
Zhang, Z.Z.[Zi-Zhao],
Yan, Y.[Yan],
Wang, H.Z.[Han-Zi],
Discriminative filter based regression learning for facial expression
recognition,
ICIP13(1192-1196)
IEEE DOI
1402
Cost function
BibRef
Lv, Y.L.[Yuan-Ling],
Yan, Y.[Yan],
Xue, J.H.[Jing-Hao],
Chen, S.[Si],
Wang, H.Z.[Han-Zi],
Relationship-Guided Knowledge Transfer for Class-Incremental Facial
Expression Recognition,
IP(33), 2024, pp. 2293-2304.
IEEE DOI
2404
Compounds, Task analysis, Knowledge transfer,
Representation learning, Feature extraction, Training, knowledge transfer
BibRef
Lv, Y.L.[Yuan-Ling],
Huang, G.Y.[Guang-Yu],
Yan, Y.[Yan],
Xue, J.H.[Jing-Hao],
Chen, S.[Si],
Wang, H.Z.[Han-Zi],
Visual-Textual Attribute Learning for Class-Incremental Facial
Expression Recognition,
MultMed(26), 2024, pp. 8038-8051.
IEEE DOI
2408
Visualization, Compounds, Feature extraction, Task analysis,
Face recognition, Image recognition, Training, Attribute learning
BibRef
Li, S.,
Deng, W.,
Reliable Crowdsourcing and Deep Locality-Preserving Learning for
Unconstrained Facial Expression Recognition,
IP(28), No. 1, January 2019, pp. 356-370.
IEEE DOI
1810
convolution, emotion recognition,
expectation-maximisation algorithm, face recognition,
deep learning
BibRef
Li, S.,
Deng, W.,
Du, J.,
Reliable Crowdsourcing and Deep Locality-Preserving Learning for
Expression Recognition in the Wild,
CVPR17(2584-2593)
IEEE DOI
1711
Compounds, Crowdsourcing, Databases, Face recognition, Gold,
Machine learning, Reliability
BibRef
Ye, Y.S.[Ying-Sheng],
Zhang, X.M.[Xing-Ming],
Lin, Y.B.[Yu-Bei],
Wang, H.X.[Hao-Xiang],
Facial expression recognition via region-based convolutional fusion
network,
JVCIR(62), 2019, pp. 1-11.
Elsevier DOI
1908
Facial expression recognition, Emotion recognition, Convolution neural network
BibRef
Tang, Y.[Yan],
Zhang, X.M.[Xing-Ming],
Hu, X.P.[Xi-Ping],
Wang, S.Q.[Si-Qi],
Wang, H.X.[Hao-Xiang],
Facial Expression Recognition Using Frequency Neural Network,
IP(30), 2021, pp. 444-457.
IEEE DOI
2012
Frequency-domain analysis, Feature extraction,
Discrete cosine transforms, Face recognition, Deep learning,
deep learning
BibRef
Huang, M.Y.[Meng-Yu],
Zhang, X.M.[Xing-Ming],
Lan, X.Y.[Xiang-Yuan],
Wang, H.X.[Hao-Xiang],
Tang, Y.[Yan],
Convolution by Multiplication: Accelerated Two- Stream Fourier Domain
Convolutional Neural Network for Facial Expression Recognition,
CirSysVideo(32), No. 3, March 2022, pp. 1431-1442.
IEEE DOI
2203
Feature extraction, Face recognition, Frequency-domain analysis,
Convolutional neural networks, Deep learning, Convolution,
frequency domain
BibRef
Zhou, J.Z.[Jin-Zhao],
Zhang, X.M.[Xing-Ming],
Lin, Y.B.[Yu-Bei],
Liu, Y.[Yang],
Facial expression recognition using frequency multiplication network
with uniform rectangular features,
JVCIR(75), 2021, pp. 103018.
Elsevier DOI
2103
Facial expression recognition, Uniform rectangular features,
Frequency multiplication network
BibRef
Zhou, J.Z.[Jin-Zhao],
Zhang, X.M.[Xing-Ming],
Liu, Y.[Yang],
Lan, X.Y.[Xiang-Yuan],
Facial Expression Recognition Using Spatial-Temporal Semantic Graph
Network,
ICIP20(1961-1965)
IEEE DOI
2011
Semantics, Face recognition, Feature extraction, Convolution,
Heuristic algorithms, Geometry, Neural networks,
Spatial Temporal Graph Convolutional Network
BibRef
Fan, X.J.[Xi-Jian],
Tjahjadi, T.[Tardi],
Fusing dynamic deep learned features and handcrafted features for
facial expression recognition,
JVCIR(65), 2019, pp. 102659.
Elsevier DOI
1912
Convolutional neural network, Facial expression recognition, Feature extraction
BibRef
Liang, D.D.[Dan-Dan],
Liang, H.G.[Hua-Gang],
Yu, Z.B.[Zhen-Bo],
Zhang, Y.P.[Yi-Pu],
Deep convolutional BiLSTM fusion network for facial expression
recognition,
VC(36), No. 3, March 2020, pp. 499-508.
WWW Link.
2002
BibRef
Wang, K.[Kai],
Peng, X.J.[Xiao-Jiang],
Yang, J.F.[Jian-Fei],
Meng, D.B.[De-Bin],
Qiao, Y.[Yu],
Region Attention Networks for Pose and Occlusion Robust Facial
Expression Recognition,
IP(29), 2020, pp. 4057-4069.
IEEE DOI
2002
Facial expression recognition, occlusion-robust and pose-invariant,
region attention network, deep convolutional neural networks
BibRef
Wang, K.[Kai],
Peng, X.J.[Xiao-Jiang],
Yang, J.F.[Jian-Fei],
Lu, S.J.[Shi-Jian],
Qiao, Y.[Yu],
Suppressing Uncertainties for Large-Scale Facial Expression
Recognition,
CVPR20(6896-6905)
IEEE DOI
2008
Uncertainty, Face recognition, Feature extraction,
Noise measurement, Training, Face
BibRef
Zhang, H.P.[He-Peng],
Huang, B.[Bin],
Tian, G.H.[Guo-Hui],
Facial expression recognition based on deep convolution long
short-term memory networks of double-channel weighted mixture,
PRL(131), 2020, pp. 128-134.
Elsevier DOI
2004
Facial expression recognition, Computer applications, CNN, LSTM
BibRef
Sun, Z.[Zhe],
Chiong, R.[Raymond],
Hu, Z.P.[Zheng-Ping],
Li, S.F.[Shu-Fang],
Deep subspace learning for expression recognition driven by a two-phase
representation classifier,
SIViP(14), No. 3, April 2020, pp. 437-444.
WWW Link.
2004
BibRef
Rajan, S.[Saranya],
Chenniappan, P.[Poongodi],
Devaraj, S.[Somasundaram],
Madian, N.[Nirmala],
Novel deep learning model for facial expression recognition based on
maximum boosted CNN and LSTM,
IET-IPR(14), No. 7, 29 May 2020, pp. 1373-1381.
DOI Link
2005
BibRef
Lee, J.R.H.[J. R. Hou],
Wong, A.,
TimeConvNets: A Deep Time Windowed Convolution Neural Network Design
for Real-time Video Facial Expression Recognition,
CRV20(9-16)
IEEE DOI
2006
convolution, temporal, emotion, expression, dataset
BibRef
Mahmoudi, M.A.[M. Amine],
Chetouani, A.[Aladine],
Boufera, F.[Fatma],
Tabia, H.[Hedi],
Learnable pooling weights for facial expression recognition,
PRL(138), 2020, pp. 644-650.
Elsevier DOI
1806
Facial expression recognition, Deep learning, Kernel methods
BibRef
Mahmoudi, M.A.[M. Amine],
Chetouani, A.[Aladine],
Boufera, F.[Fatma],
Tabia, H.[Hedi],
Kernel-based convolution expansion for facial expression recognition,
PRL(160), 2022, pp. 128-134.
Elsevier DOI
2208
Emotion recognition, Facial expression recognition,
Deep learning, Kernel methods
BibRef
Jain, D.K.[Deepak Kumar],
Zhang, Z.[Zhang],
Huang, K.Q.[Kai-Qi],
Multi angle optimal pattern-based deep learning for automatic facial
expression recognition,
PRL(139), 2020, pp. 157-165.
Elsevier DOI
2011
STM, SURF, CNN, LSTM
BibRef
Jiang, P.,
Wan, B.,
Wang, Q.,
Wu, J.,
Fast and Efficient Facial Expression Recognition Using a Gabor
Convolutional Network,
SPLetters(27), 2020, pp. 1954-1958.
IEEE DOI
2011
Convolution, Feature extraction, Databases, Convolutional codes,
Computational modeling, Training, Computer architecture, deep learning
BibRef
Jiang, P.[Ping],
Liu, G.[Gang],
Wang, Q.[Quan],
Wu, J.[Jiang],
Accurate and Reliable Facial Expression Recognition Using Advanced
Softmax Loss With Fixed Weights,
SPLetters(27), 2020, pp. 725-729.
IEEE DOI
2005
Deep learning, convolutional neural networks, softmax loss,
multiclass imbalance, facial expression recognition
BibRef
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Duan, J.M.[Jin-Ming],
Adaptive Weighting of Handcrafted Feature Losses for Facial
Expression Recognition,
Cyber(51), No. 5, May 2021, pp. 2787-2800.
IEEE DOI
2104
Training, Databases, Face, Feature extraction, Loss measurement,
Adaptive systems, Deep feature loss, expression recognition,
loss adaptive weighting
BibRef
Zeng, G.,
Zhou, J.,
Jia, X.[Xi],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Hand-Crafted Feature Guided Deep Learning for Facial Expression
Recognition,
FG18(423-430)
IEEE DOI
1806
Convolution, Face, Feature extraction, Loss measurement,
Optimization, Training, deep metric learning,
hand crafted feature
BibRef
Xie, W.C.[Wei-Cheng],
Wu, H.Q.[Hao-Qian],
Tian, Y.[Yi],
Bai, M.C.[Meng-Chao],
Shen, L.L.[Lin-Lin],
Triplet Loss With Multistage Outlier Suppression and Class-Pair
Margins for Facial Expression Recognition,
CirSysVideo(32), No. 2, February 2022, pp. 690-703.
IEEE DOI
2202
Training, Measurement, Faces, Loss measurement, Task analysis,
Face recognition, Databases, Facial expression recognition,
adaptive class-pair margin
BibRef
Tian, Y.[Yi],
Wen, Z.W.[Zhi-Wei],
Xie, W.C.[Wei-Cheng],
Zhang, X.[Xi],
Shen, L.L.[Lin-Lin],
Duan, J.M.[Jin-Ming],
Outlier-Suppressed Triplet Loss with Adaptive Class-Aware Margins for
Facial Expression Recognition,
ICIP19(46-50)
IEEE DOI
1910
triplet loss, class-aware margin, outlier suppression,
facial expression recognition
BibRef
Xie, W.C.[Wei-Cheng],
Chen, W.T.[Wen-Ting],
Shen, L.L.[Lin-Lin],
Duan, J.M.[Jin-Ming],
Yang, M.[Meng],
Surrogate network-based sparseness hyper-parameter optimization for
deep expression recognition,
PR(111), 2021, pp. 107701.
Elsevier DOI
2012
Expression recognition, Deep sparseness strategies,
Hyper-parameter optimization, Surrogate network, Heuristic optimizer
BibRef
Xie, W.C.[Wei-Cheng],
Jia, X.[Xi],
Shen, L.L.[Lin-Lin],
Yang, M.[Meng],
Sparse deep feature learning for facial expression recognition,
PR(96), 2019, pp. 106966.
Elsevier DOI
1909
Expression recognition, Feature sparseness,
Deep metric learning, Fine tuning, Generalization capability
BibRef
Zhong, T.[Tao],
Xian, X.L.[Xiao-Le],
Wang, Z.[Zihan],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Expression-Aware Masking and Progressive Decoupling for
Cross-Database Facial Expression Recognition,
FG24(1-10)
IEEE DOI
2408
Training, Representation learning, Couplings, Face recognition,
Gesture recognition, Task analysis
BibRef
Handa, A.[Anand],
Agarwal, R.[Rashi],
Kohli, N.[Narendra],
Incremental approach for multi-modal face expression recognition system
using deep neural networks,
IJCVR(11), No. 1, 2021, pp. 1-20.
DOI Link
2012
BibRef
Nanda, A.[Abhilasha],
Im, W.B.[Woo-Bin],
Choi, K.S.[Key-Sun],
Yang, H.S.[Hyun Seung],
Combined center dispersion loss function for deep facial expression
recognition,
PRL(141), 2021, pp. 8-15.
Elsevier DOI
2101
Facial expression recognition, Deep learning,
Combined center dispersion loss function, Ensemble model
BibRef
Barros, P.,
Churamani, N.,
Sciutti, A.,
The FaceChannel: A Light-weight Deep Neural Network for Facial
Expression Recognition.,
FG20(652-656)
IEEE DOI
2102
Face recognition, Adaptation models, Training,
Computational modeling, Faces, Annotations, Data models, Deep Learning
BibRef
Zhao, Z.Q.[Zeng-Qun],
Liu, Q.S.[Qing-Shan],
Wang, S.M.[Shan-Min],
Learning Deep Global Multi-Scale and Local Attention Features for
Facial Expression Recognition in the Wild,
IP(30), 2021, pp. 6544-6556.
IEEE DOI
2108
Feature extraction, Face recognition, Image recognition, Faces,
Convolution, Image reconstruction, Geometry, local attention
BibRef
Tong, X.Y.[Xiao-Yun],
Sun, S.L.[Song-Lin],
Fu, M.X.[Mei-Xia],
Adaptive weight based on overlapping blocks network for facial
expression recognition,
IVC(120), 2022, pp. 104399.
Elsevier DOI
2204
Facial expression recognition, Feature map block,
Adaptive weight, Deep learning
BibRef
Wang, C.[Cong],
Xue, J.[Jian],
Lu, K.[Ke],
Yan, Y.F.[Yan-Fu],
Light Attention Embedding for Facial Expression Recognition,
CirSysVideo(32), No. 4, April 2022, pp. 1834-1847.
IEEE DOI
2204
Face recognition, Feature extraction, Task analysis, Training, Faces,
Computer architecture, Videos, Facial expression recognition,
deep neural network
BibRef
Zhang, J.[Jing],
Yu, H.M.[Hui-Min],
Improving the Facial Expression Recognition and Its Interpretability
via Generating Expression Pattern-map,
PR(129), 2022, pp. 108737.
Elsevier DOI
2206
Facial expression recognition,
Facial expression visualization, Deep neural networks
BibRef
Huang, W.[Wei],
Zhang, S.Y.[Si-Yuan],
Zhang, P.[Peng],
Zha, Y.F.[Yu-Fei],
Fang, Y.M.[Yu-Ming],
Zhang, Y.N.[Yan-Ning],
Identity-Aware Facial Expression Recognition Via Deep Metric Learning
Based on Synthesized Images,
MultMed(24), 2022, pp. 3327-3339.
IEEE DOI
2207
Task analysis, Measurement, Generative adversarial networks,
Face recognition, Feature extraction, Image synthesis, metric learning
BibRef
Mishra, R.K.[Ram Krishn],
Urolagin, S.[Siddhaling],
Arul-Jothi, J.A.[J. Angel],
Gaur, P.[Pramod],
Deep hybrid learning for facial expression binary classifications and
predictions,
IVC(128), 2022, pp. 104573.
Elsevier DOI
2212
Convolutional neural network, Deep neural network,
Deep neural hybrid learning, Transfer learning
BibRef
Albraikan, A.A.[Amani Abdulrahman],
Alzahrani, J.S.[Jaber S.],
Alshahrani, R.[Reem],
Yafoz, A.[Ayman],
Alsini, R.[Raed],
Hilal, A.M.[Anwer Mustafa],
Alkhayyat, A.[Ahmed],
Gupta, D.[Deepak],
Intelligent facial expression recognition and classification using
optimal deep transfer learning model,
IVC(128), 2022, pp. 104583.
Elsevier DOI
2212
Facial expression recognition, Deep learning, Mask RCNN,
Face detection, Machine learning, Adam optimizer
BibRef
Sun, Z.[Zhe],
Zhang, H.[Hehao],
Bai, J.[Jiatong],
Liu, M.Y.[Ming-Yang],
Hu, Z.P.[Zheng-Ping],
A discriminatively deep fusion approach with improved conditional GAN
(im-cGAN) for facial expression recognition,
PR(135), 2023, pp. 109157.
Elsevier DOI
2212
Facial expression recognition, Discriminatively deep fusion approach,
Discriminative loss function
BibRef
Choi, J.Y.[Jae Young],
Lee, B.[Bumshik],
Combining Deep Convolutional Neural Networks with Stochastic Ensemble
Weight Optimization for Facial Expression Recognition in the Wild,
MultMed(25), 2023, pp. 100-111.
IEEE DOI
2301
Optimization, Face recognition, Deep learning, Faces,
Convolutional neural networks, Bagging, Training,
deep ensemble generalization error
BibRef
Filntisis, P.P.[Panagiotis P.],
Retsinas, G.[George],
Paraperas-Papantoniou, F.[Foivos],
Katsamanis, A.[Athanasios],
Roussos, A.[Anastasios],
Maragos, P.[Petros],
SPECTRE: Visual Speech-Informed Perceptual 3D Facial Expression
Reconstruction from Videos,
ABAW23(5745-5755)
IEEE DOI
2309
BibRef
Antoniadis, P.[Panagiotis],
Filntisis, P.P.[Panagiotis Paraskevas],
Maragos, P.[Petros],
Exploiting Emotional Dependencies with Graph Convolutional Networks
for Facial Expression Recognition,
FG21(1-8)
IEEE DOI
2303
Deep learning, Emotion recognition, Image recognition, Databases,
Face recognition, Psychology
BibRef
Li, Y.J.[Ying-Jian],
Zhang, Z.[Zheng],
Chen, B.Z.[Bing-Zhi],
Lu, G.M.[Guang-Ming],
Zhang, D.[David],
Deep Margin-Sensitive Representation Learning for Cross-Domain Facial
Expression Recognition,
MultMed(25), 2023, pp. 1359-1373.
IEEE DOI
2305
Feature extraction, Databases, Face recognition, Semantics,
Data mining, Representation learning, Measurement,
semantic representations
BibRef
Jabbooree, A.I.[Abbas Issa],
Khanli, L.M.[Leyli Mohammad],
Salehpour, P.[Pedram],
Pourbahrami, S.[Shahin],
A novel facial expression recognition algorithm using geometry
beta-Skeleton in fusion based on deep CNN,
IVC(134), 2023, pp. 104677.
Elsevier DOI
2305
Data fusion, ß-Skeleton, Geometry features, Deep learning, CNN
BibRef
Banerjee, R.[Rudranath],
De, S.[Sourav],
Dey, S.[Shouvik],
A Survey on Various Deep Learning Algorithms for an Efficient Facial
Expression Recognition System,
IJIG(23), No. 3 2023, pp. 2240005.
DOI Link
2306
BibRef
Gavade, P.A.[Priyanka A.],
Bhat, V.S.[Vandana S.],
Pujari, J.[Jagadeesh],
Hybrid Features and Deep Learning Model for Facial Expression
Recognition From Videos,
IJIG(23), No. 5 2023, pp. 2350045.
DOI Link
2310
BibRef
Liu, T.[Tong],
Li, J.[Jing],
Wu, J.[Jia],
Du, B.[Bo],
Chang, J.[Jun],
Liu, Y.[Yi],
Facial Expression Recognition on the High Aggregation Subgraphs,
IP(32), 2023, pp. 3732-3745.
IEEE DOI
2307
Feature extraction, Convolutional neural networks,
Face recognition, Task analysis, Deep learning, Visualization,
relationship between expressions
BibRef
Oucherif, S.D.[Sabrine Djedjiga],
Nawaf, M.M.[Mohamad Motasem],
Boď, J.M.[Jean-Marc],
Nicod, L.[Lionel],
Merad, D.[Djamal],
Dubuisson, S.[Séverine],
Facial Expression Recognition Using Light Field Cameras:
A Comparative Study of Deep Learning Architectures,
ICIP23(3324-3328)
IEEE DOI
2312
BibRef
Liang, G.[Guang],
Wang, S.F.[Shang-Fei],
Wang, C.[Can],
Pose-Invariant Facial Expression Recognition,
FG21(01-08)
IEEE DOI
2303
Learning systems, Deep learning, Training, Databases,
Face recognition, Pose estimation, Neural networks
BibRef
Mathur, L.[Leena],
Mataric, M.J.[Maja J],
Affect-Aware Deep Belief Network Representations for Multimodal
Unsupervised Deception Detection,
FG21(1-8)
IEEE DOI
2303
Training, Visualization, Law, Psychology, Machine learning,
Gesture recognition, Feature extraction
BibRef
Huang, X.H.[Xiao-Hua],
Anchor-free face detection in the wild with an application to facial
expression recognition,
ICIVC22(256-262)
IEEE DOI
2301
Location awareness, Emotion recognition, Image recognition,
Databases, Face recognition, Semantics, Object detection, Deep Learning
BibRef
Psaroudakis, A.[Andreas],
Kollias, D.[Dimitrios],
MixAugment & Mixup: Augmentation Methods for Facial Expression
Recognition,
ABAW22(2366-2374)
IEEE DOI
2210
Deep learning, Databases, Face recognition,
Neural networks, Training data
BibRef
Li, S.Y.[Si-Yang],
Xu, Y.F.[Yi-Fan],
Wu, H.Y.[Huan-Yu],
Wu, D.R.[Dong-Rui],
Yin, Y.J.[Ying-Jie],
Cao, J.J.[Jia-Jiong],
Ding, J.T.[Jing-Ting],
Facial Expression Recognition In-the-wild with Deep Pre-trained Models,
ABAWE22(181-190).
Springer DOI
2304
BibRef
Le, N.[Nhat],
Nguyen, K.[Khanh],
Tran, Q.[Quang],
Tjiputra, E.[Erman],
Le, B.[Bac],
Nguyen, A.[Anh],
Uncertainty-aware Label Distribution Learning for Facial Expression
Recognition,
WACV23(6077-6086)
IEEE DOI
2302
Training, Learning systems, Deep learning, Adaptation models,
Emotion recognition, Uncertainty, Face recognition, body pose
BibRef
Bonnard, J.[Jules],
Dapogny, A.[Arnaud],
Dhombres, F.[Ferdinand],
Bailly, K.[Kevin],
Privileged Attribution Constrained Deep Networks for Facial
Expression Recognition,
ICPR22(1055-1061)
IEEE DOI
2212
Heating systems, Location awareness, Adaptation models,
Ultrasonic imaging, Limiting, Face recognition, Computational modeling
BibRef
Phan, K.N.[Kim Ngan],
Nguyen, H.H.[Hong-Hai],
Huynh, V.T.[Van-Thong],
Kim, S.H.[Soo-Hyung],
Facial Expression Classification using Fusion of Deep Neural Network
in Video,
ABAW22(2506-2510)
IEEE DOI
2210
Human computer interaction, Emotion recognition,
Computational modeling, Neural networks, Transformers,
Pattern recognition
BibRef
Li, H.[Hangyu],
Wang, N.N.[Nan-Nan],
Yang, X.[Xi],
Wang, X.Y.[Xiao-Yu],
Gao, X.B.[Xin-Bo],
Towards Semi-Supervised Deep Facial Expression Recognition with An
Adaptive Confidence Margin,
CVPR22(4156-4165)
IEEE DOI
2210
Training, Adaptation models, Codes, Face recognition,
Semisupervised learning, Data models, Face and gestures,
Self- semi- meta- unsupervised learning
BibRef
Schoneveld, L.[Liam],
Othmani, A.[Alice],
Towards a General Deep Feature Extractor for Facial Expression
Recognition,
ICIP21(2339-2342)
IEEE DOI
2201
Training, Deep learning, Emotion recognition, Visualization,
Image recognition, Face recognition,
Knowledge distillation
BibRef
Zheng, Z.Z.[Zhen-Zhu],
Rasmussen, C.[Christopher],
Peng, X.[Xi],
Student-Teacher Oneness: A Storage-efficient approach that improves
facial expression recognition,
HTCV21(4060-4069)
IEEE DOI
2112
Training, Lead acid batteries, Deep learning,
Face recognition, Memory management
BibRef
Farzaneh, A.H.[Amir Hossein],
Qi, X.J.[Xiao-Jun],
Facial Expression Recognition in the Wild via Deep Attentive Center
Loss,
WACV21(2401-2410)
IEEE DOI
2106
Measurement, Learning systems, Face recognition,
Neural networks, Linear programming
BibRef
Méndez-Llanes, N.[Nelson],
Castillo-Rosado, K.[Katy],
Méndez-Vázquez, H.[Heydi],
Tistarelli, M.[Massimo],
Quality-based Representation for Unconstrained Face Recognition,
ICPR21(6494-6500)
IEEE DOI
2105
Deep learning, Analytical models, Databases, Face recognition,
Computational modeling, Feature extraction, Proposals
BibRef
Kondo, K.[Kazuaki],
Nakamura, T.[Taichi],
Nakamura, Y.[Yuichi],
Satoh, S.[Shinichi],
Siamese-structure Deep Neural Network Recognizing Changes in Facial
Expression According to the Degree of Smiling,
ICPR21(4605-4612)
IEEE DOI
2105
Measurement, Visualization, Image recognition, Face recognition,
Perturbation methods, Neural networks, Mouth, Quality-of-life,
Siamese network
BibRef
Valev, H.[Hristo],
Gallucci, A.[Alessio],
Leufkens, T.[Tim],
Westerink, J.[Joyce],
Sas, C.[Corina],
Applying Delaunay Triangulation Augmentation for Deep Learning Facial
Expression Generation and Recognition,
FBE20(730-740).
Springer DOI
2103
BibRef
Ekundayo, O.[Olufisayo],
Viriri, S.[Serestina],
Facial Expression Recognition and Ordinal Intensity Estimation:
A Multilabel Learning Approach,
ISVC20(II:581-592).
Springer DOI
2103
BibRef
Earlier:
Deep Forest Approach for Facial Expression Recognition,
PSIVT19(149-161).
Springer DOI
2003
BibRef
Do, N.T.,
Nguyen-Quynh, T.T.,
Kim, S.H.,
Affective Expression Analysis in-the-wild using Multi-Task Temporal
Statistical Deep Learning Model,
FG20(624-628)
IEEE DOI
2102
Face recognition, Emotion recognition, Training, Testing,
Feature extraction, Faces, Annotations,
ABAW Challenge
BibRef
Rasipuram, S.,
Bhat, J.H.,
Maitra, A.,
Multi-modal Sequence-to-sequence Model for Continuous Affect
Prediction in the Wild Using Deep 3D Features,
FG20(611-614)
IEEE DOI
2102
Feature extraction, Videos, Face recognition, Visualization,
Databases, Emotion recognition, Training, affect recognition,
multi modal anaysis
BibRef
Bernheim, S.,
Arnaud, E.,
Dapogny, A.[Arnaud],
Bailly, K.[Kevin],
MoDuL: Deep Modal and Dual Landmark-wise Gated Network for Facial
Expression Recognition,
FG20(153-159)
IEEE DOI
2102
Logic gates, Feature extraction, Face recognition, Agriculture,
Faces, Task analysis, Iron, Facial expression recognition,
ensemble methods
BibRef
Kuo, C.,
Lai, S.,
Sarkis, M.,
A Compact Deep Learning Model for Robust Facial Expression
Recognition,
AMFG18(2202-22028)
IEEE DOI
1812
Databases, Training, Face recognition, Hidden Markov models, Face,
Image recognition, Image sequences
BibRef
Mavani, V.,
Raman, S.,
Miyapuram, K.P.,
Facial Expression Recognition Using Visual Saliency and Deep Learning,
CogCV17(2783-2788)
IEEE DOI
1802
Face recognition, Feature extraction, Machine learning, Testing,
Training, Visualization
BibRef
Liu, X.F.[Xiao-Feng],
Kumar, B.V.K.V.[B.V.K. Vijaya],
You, J.[Jane],
Jia, P.[Ping],
Adaptive Deep Metric Learning for Identity-Aware Facial Expression
Recognition,
Biometrics17(522-531)
IEEE DOI
1709
Face recognition, Feature extraction, Measurement,
Optimization, Training
BibRef
Ding, H.,
Zhou, S.K.,
Chellappa, R.,
FaceNet2ExpNet:
Regularizing a Deep Face Recognition Net for Expression Recognition,
FG17(118-126)
IEEE DOI
1707
Convolution, Distribution functions, Face, Face recognition,
Image recognition, Neurons, Training
BibRef
Ghasemi, A.,
Baktashmotlagh, M.,
Denman, S.,
Sridharan, S.,
Tien, D.N.,
Fookes, C.,
Deep discovery of facial motions using a shallow embedding layer,
ICIP17(1567-1571)
IEEE DOI
1803
Feature extraction, Hidden Markov models, Kernel, Machine learning,
Pain, Training
BibRef
Ghasemi, A.,
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Discovery of facial motions using deep machine perception,
WACV16(1-7)
IEEE DOI
1606
Convolution
BibRef
Karali, A.[Abubakrelsedik],
Bassiouny, A.[Ahmad],
El-Saban, M.[Motaz],
Facial expression recognition in the wild using rich deep features,
ICIP15(3442-3446)
IEEE DOI
1512
Facial expression recognition; deep neural networks features
BibRef
Liu, P.[Ping],
Han, S.Z.[Shi-Zhong],
Meng, Z.[Zibo],
Tong, Y.[Yan],
Facial Expression Recognition via a Boosted Deep Belief Network,
CVPR14(1805-1812)
IEEE DOI
1409
BibRef
Liu, P.[Ping],
Zhou, J.T.Y.[Joey Tian-Yi],
Tsang, I.W.H.[Ivor Wai-Hung],
Meng, Z.[Zibo],
Han, S.Z.[Shi-Zhong],
Tong, Y.[Yan],
Feature Disentangling Machine: A Novel Approach of Feature Selection
and Disentangling in Facial Expression Analysis,
ECCV14(IV: 151-166).
Springer DOI
1408
BibRef
Li, W.[Wei],
Li, M.[Min],
Su, Z.[Zhong],
Zhu, Z.G.[Zhi-Gang],
A Deep-Learning Approach to Facial Expression Recognition with Candid
Images,
MVA15(279-282)
IEEE DOI
1507
Computational modeling
BibRef
Jung, H.[Heechul],
Lee, S.[Sihaeng],
Yim, J.,
Park, S.[Sunjeong],
Kim, J.[Junmo],
Joint Fine-Tuning in Deep Neural Networks for Facial Expression
Recognition,
ICCV15(2983-2991)
IEEE DOI
1602
Databases
BibRef
Jung, H.[Heechul],
Lee, S.[Sihaeng],
Park, S.[Sunjeong],
Kim, B.J.[Byung-Ju],
Kim, J.[Junmo],
Lee, I.[Injae],
Ahn, C.H.[Chung-Hyun],
Development of deep learning-based facial expression recognition
system,
FCV15(1-4)
IEEE DOI
1506
Haar transforms
BibRef
Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Sptatio-Temporal Analysis for Face Expression Recognition .