Boat Detection,
Online2019
HTML Version.
Dataset, Ships.
1911
WWW Link.
Public video dataset for boat detection/tracking from UAV video footage
See also MULTIDRONE.
See also Racing Bicycle Detection/Tracking from UAV Footage, UAV Detection.
BibRef
Lee, H.J.[Hsi-Jian],
Huang, L.F.[Lung-Fa],
Chen, Z.[Zen],
Multi-frame ship detection and tracking in an infrared image sequence,
PR(23), No. 7, 1990, pp. 785-798.
Elsevier DOI
0401
BibRef
Zhu, C.,
Zhou, H.,
Wang, R.,
Guo, J.,
A Novel Hierarchical Method of Ship Detection from Spaceborne Optical
Image Based on Shape and Texture Features,
GeoRS(48), No. 9, September 2010, pp. 3446-3456.
IEEE DOI
1008
BibRef
Liu, Z.Y.[Zhao-Ying],
Zhou, F.[Fugen],
Chen, X.W.[Xiao-Wu],
Bai, X.Z.[Xiang-Zhi],
Sun, C.M.[Chang-Ming],
Iterative infrared ship target segmentation based on multiple
features,
PR(47), No. 9, 2014, pp. 2839-2852.
Elsevier DOI
1406
Infrared ship target
BibRef
Liu, Z.Y.[Zhao-Ying],
Bai, X.Z.[Xiang-Zhi],
Sun, C.M.[Chang-Ming],
Zhou, F.[Fugen],
Li, Y.J.[Yu-Jian],
Infrared ship target segmentation through integration of multiple
feature maps,
IVC(48-49), No. 1, 2016, pp. 14-25.
Elsevier DOI
1604
Infrared images
BibRef
Bai, X.Z.[Xiang-Zhi],
Chen, Z.G.[Zhi-Guo],
Zhang, Y.[Yu],
Liu, Z.Y.[Zhao-Ying],
Lu, Y.[Yi],
Infrared Ship Target Segmentation Based on Spatial Information
Improved FCM,
Cyber(46), No. 12, December 2016, pp. 3259-3271.
IEEE DOI
1612
BibRef
Earlier:
Spatial information based FCM for infrared ship target segmentation,
ICIP14(5127-5131)
IEEE DOI
1502
Euclidean distance
Active contours
BibRef
Shi, Z.,
Yu, X.,
Jiang, Z.,
Li, B.,
Ship Detection in High-Resolution Optical Imagery Based on Anomaly
Detector and Local Shape Feature,
GeoRS(52), No. 8, August 2014, pp. 4511-4523.
IEEE DOI
1403
Detectors
BibRef
Teng, F.[Fei],
Liu, Q.[Qing],
Multi-scale ship tracking via random projections,
SIViP(8), No. 6, September 2014, pp. 1069-1076.
WWW Link.
1408
BibRef
Teng, F.[Fei],
Liu, Q.[Qing],
Robust multi-scale ship tracking via multiple compressed features
fusion,
SP:IC(31), No. 1, 2015, pp. 76-85.
Elsevier DOI
1502
Compressive sensing theory
BibRef
Tang, J.X.[Jie-Xiong],
Deng, C.W.[Chen-Wei],
Huang, G.B.[Guang-Bin],
Zhao, B.J.[Bao-Jun],
Compressed-Domain Ship Detection on Spaceborne Optical Image Using
Deep Neural Network and Extreme Learning Machine,
GeoRS(53), No. 3, March 2015, pp. 1174-1185.
IEEE DOI
1412
compressed sensing
BibRef
Elvidge, C.D.[Christopher D.],
Zhizhin, M.[Mikhail],
Baugh, K.[Kimberly],
Hsu, F.C.[Feng-Chi],
Automatic Boat Identification System for VIIRS Low Light Imaging Data,
RS(7), No. 3, 2015, pp. 3020-3036.
DOI Link
1504
BibRef
Wu, F.[Fan],
Wang, C.[Chao],
Jiang, S.F.[Shao-Feng],
Zhang, H.[Hong],
Zhang, B.[Bo],
Classification of Vessels in Single-Pol COSMO-SkyMed Images Based on
Statistical and Structural Features,
RS(7), No. 5, 2015, pp. 5511-5533.
DOI Link
1506
BibRef
Holtzhausen, P.J.,
Crnojevic, V.,
Herbst, B.M.,
An illumination invariant framework for real-time foreground detection,
RealTimeIP(10), No. 2, June 2015, pp. 423-433.
WWW Link.
1506
BibRef
Earlier:
The detection of naval vessels by fusion of edge and color background
models,
IPTA12(147-152)
IEEE DOI
1503
Gaussian processes
BibRef
Gómez-Enri, J.[Jesús],
Scozzari, A.[Andrea],
Soldovieri, F.[Francesco],
Coca, J.[Josep],
Vignudelli, S.[Stefano],
Detection and Characterization of Ship Targets Using CryoSat-2
Altimeter Waveforms,
RS(8), No. 3, 2016, pp. 193.
DOI Link
1604
BibRef
Gómez-Enri, J.[Jesús],
Cipollini, P.,
Passaro, M.,
Vignudelli, S.[Stefano],
Tejedor, B.,
Coca, J.[Josep],
Coastal Altimetry Products in the Strait of Gibraltar,
GeoRS(54), No. 9, September 2016, pp. 5455-5466.
IEEE DOI
1609
height measurement
BibRef
Zou, Z.,
Shi, Z.,
Ship Detection in Spaceborne Optical Image With SVD Networks,
GeoRS(54), No. 10, October 2016, pp. 5832-5845.
IEEE DOI
1610
neural nets
BibRef
Heiselberg, H.[Henning],
A Direct and Fast Methodology for Ship Recognition in Sentinel-2
Multispectral Imagery,
RS(8), No. 12, 2016, pp. 1033.
DOI Link
1612
BibRef
Dijk, J.[Judith],
Schutte, K.[Klamer],
Nieuwenhuizen, R.[Robert],
Gagnon, M.A.[Marc-André],
Gagnon, J.P.[Jean-Philippe],
Tremblay, P.[Pierre],
Savary, S.[Simon],
Farley, V.[Vincent],
Lagueux, P.[Philippe],
Chamberland, M.[Martin],
Infrared hyperspectral imaging of ship plumes,
SPIE(Newsroom), November 22, 2016.
DOI Link
1612
Characterizing the spectral features of exhaust gases via IR
hyperspectral detection enables the standoff detection of distant
ships.
BibRef
Gan, S.,
Liang, S.,
Li, K.,
Deng, J.,
Cheng, T.,
Long-Term Ship Speed Prediction for Intelligent Traffic Signaling,
ITS(18), No. 1, January 2017, pp. 82-91.
IEEE DOI
1701
Communication system signaling
BibRef
Gan, S.,
Liang, S.,
Li, K.,
Deng, J.,
Cheng, T.,
Trajectory Length Prediction for Intelligent Traffic Signaling: A
Data-Driven Approach,
ITS(19), No. 2, February 2018, pp. 426-435.
IEEE DOI
1802
Intelligent transportation systems,
Marine vehicles, Prediction algorithms, Predictive models, Rivers,
intelligent traffic signalling system (ITSS)
BibRef
Patroumpas, K.[Kostas],
Alevizos, E.[Elias],
Artikis, A.[Alexander],
Vodas, M.[Marios],
Pelekis, N.[Nikos],
Theodoridis, Y.[Yannis],
Online event recognition from moving vessel trajectories,
GeoInfo(21), No. 2, April 2017, pp. 389-427.
Springer DOI
1702
BibRef
Bloisi, D.D.,
Previtali, F.,
Pennisi, A.,
Nardi, D.,
Fiorini, M.,
Enhancing Automatic Maritime Surveillance Systems With Visual
Information,
ITS(18), No. 4, April 2017, pp. 824-833.
IEEE DOI
1704
Artificial intelligence
BibRef
Xu, F.[Fang],
Liu, J.H.[Jing-Hong],
Sun, M.C.[Ming-Chao],
Zeng, D.D.[Dong-Dong],
Wang, X.[Xuan],
A Hierarchical Maritime Target Detection Method for Optical Remote
Sensing Imagery,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Xu, F.[Fang],
Liu, J.H.[Jing-Hong],
Dong, C.[Chao],
Wang, X.[Xuan],
Ship Detection in Optical Remote Sensing Images Based on Wavelet
Transform and Multi-Level False Alarm Identification,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Dong, C.[Chao],
Liu, J.H.[Jing-Hong],
Xu, F.[Fang],
Ship Detection in Optical Remote Sensing Images Based on Saliency and
a Rotation-Invariant Descriptor,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Dong, L.,
Wang, B.,
Zhao, M.,
Xu, W.,
Robust Infrared Maritime Target Detection Based on Visual Attention
and Spatiotemporal Filtering,
GeoRS(55), No. 5, May 2017, pp. 3037-3050.
IEEE DOI
1705
fog, geophysical image processing, image filtering,
object detection, ocean waves, remote sensing,
antivibration pipeline-filtering algorithm,
image background smoothness, image border, infrared imager,
infrared maritime target detection method,
multiframe-based clutter removal method, ocean wave,
pipeline-filtering model, saliency map,
saliency singularity evaluation, sea fog, sea glint,
BibRef
He, H.,
Lin, Y.,
Chen, F.,
Tai, H.M.,
Yin, Z.,
Inshore Ship Detection in Remote Sensing Images via Weighted Pose
Voting,
GeoRS(55), No. 6, June 2017, pp. 3091-3107.
IEEE DOI
1706
Marine vehicles, Remote sensing, Robustness, Satellites, Shape,
Surveillance, Inshore ship detection, pose weighted voting,
radial gradient angle (RGA), satellite image, shape-similar, distractor
BibRef
Lin, H.N.[Hao-Ning],
Shi, Z.W.[Zhen-Wei],
Zou, Z.X.[Zheng-Xia],
Maritime Semantic Labeling of Optical Remote Sensing Images with
Multi-Scale Fully Convolutional Network,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
sea-land segmentation and ship detection.
BibRef
Nie, T.[Ting],
He, B.[Bin],
Bi, G.[Guoling],
Zhang, Y.[Yu],
Wang, W.[Wensheng],
A Method of Ship Detection under Complex Background,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Prasad, D.K.,
Rajan, D.,
Rachmawati, L.,
Rajabally, E.,
Quek, C.,
Video Processing From Electro-Optical Sensors for Object Detection
and Tracking in a Maritime Environment: A Survey,
ITS(18), No. 8, August 2017, pp. 1993-2016.
IEEE DOI
1708
Cameras, Image edge detection, Intelligent sensors,
Marine vehicles, Object detection, Radar tracking,
Maritime vehicles, autonomous automobiles,
maritime navigation, video, signal, processing
BibRef
Yao, S.[Shun],
Chang, X.L.[Xue-Li],
Cheng, Y.F.[Yu-Feng],
Jin, S.Y.[Shu-Ying],
Zuo, D.S.[De-Shan],
Detection of Moving Ships in Sequences of Remote Sensing Images,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Yang, X.[Xue],
Sun, H.[Hao],
Fu, K.[Kun],
Yang, J.R.[Ji-Rui],
Sun, X.[Xian],
Yan, M.L.[Meng-Long],
Guo, Z.[Zhi],
Automatic Ship Detection in Remote Sensing Images from Google Earth
of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid
Networks,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Fu, K.[Kun],
Chang, Z.H.[Zhong-Han],
Zhang, Y.[Yue],
Xu, G.L.[Guang-Luan],
Zhang, K.[Keshu],
Sun, X.[Xian],
Rotation-Aware and Multi-Scale Convolutional Neural Network for
Object Detection in Remote Sensing Images,
PandRS(161), 2020, pp. 294-308.
Elsevier DOI
2002
Convolutional neural networks, Objection detection,
Remote sensing images, Rotation aware, Multi-scale
BibRef
Fu, K.[Kun],
Chen, Z.[Zhuo],
Zhang, Y.[Yue],
Sun, X.[Xian],
Enhanced Feature Representation in Detection for Optical Remote
Sensing Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Gallego, A.J.[Antonio-Javier],
Pertusa, A.[Antonio],
Gil, P.[Pablo],
Automatic Ship Classification from Optical Aerial Images with
Convolutional Neural Networks,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Shao, Z.,
Wu, W.,
Wang, Z.,
Du, W.,
Li, C.,
SeaShips: A Large-Scale Precisely Annotated Dataset for Ship
Detection,
MultMed(20), No. 10, October 2018, pp. 2593-2604.
IEEE DOI
1810
image segmentation, object detection, ships,
video signal processing, video surveillance, ship types, SeaShips,
ship detection
BibRef
Li, Q.,
Mou, L.,
Liu, Q.,
Wang, Y.,
Zhu, X.X.,
HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in
Optical Remote Sensing Imagery,
GeoRS(56), No. 12, December 2018, pp. 7147-7161.
IEEE DOI
1812
Marine vehicles, Feature extraction, Remote sensing,
Object detection, Proposals, Optical sensors, Optical imaging,
remote sensing
BibRef
Zhu, C.Y.[Chen-Yang],
Garcia, H.[Heriberto],
Kaplan, A.[Anna],
Schinault, M.[Matthew],
Handegard, N.O.[Nils Olav],
Godř, O.R.[Olav Rune],
Huang, W.[Wei],
Ratilal, P.[Purnima],
Detection, Localization and Classification of Multiple Mechanized
Ocean Vessels over Continental-Shelf Scale Regions with Passive Ocean
Acoustic Waveguide Remote Sensing,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Zhao, M.,
Yao, X.,
Sun, J.,
Zhang, S.,
Bai, J.,
GIS-Based Simulation Methodology for Evaluating Ship Encounters
Probability to Improve Maritime Traffic Safety,
ITS(20), No. 1, January 2019, pp. 323-337.
IEEE DOI
1901
Marine vehicles, Transportation, Analytical models, Accidents,
Object oriented modeling, Geographic information systems, Safety,
maritime traffic safety
BibRef
Alessandrini, A.,
Mazzarella, F.,
Vespe, M.,
Estimated Time of Arrival Using Historical Vessel Tracking Data,
ITS(20), No. 1, January 2019, pp. 7-15.
IEEE DOI
1901
Artificial intelligence, Marine vehicles, Estimation, Safety,
Security, Data mining, Radar tracking, Estimated time of arrival,
port operations
BibRef
Fu, K.[Kun],
Li, Y.[Yang],
Sun, H.[Hao],
Yang, X.[Xue],
Xu, G.L.[Guang-Luan],
Li, Y.T.[Yu-Ting],
Sun, X.[Xian],
A Ship Rotation Detection Model in Remote Sensing Images Based on
Feature Fusion Pyramid Network and Deep Reinforcement Learning,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, N.[Nan],
Li, B.[Bo],
Xu, Q.Z.[Qi-Zhi],
Wang, Y.H.[Yong-Hua],
Automatic Ship Detection in Optical Remote Sensing Images Based on
Anomaly Detection and SPP-PCANet,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, Y.Y.[Yuan-Yuan],
Wang, C.[Chao],
Zhang, H.[Hong],
Dong, Y.[Yingbo],
Wei, S.[Sisi],
Automatic Ship Detection Based on RetinaNet Using Multi-Resolution
Gaofen-3 Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhang, S.M.[Shao-Ming],
Wu, R.Z.[Rui-Ze],
Xu, K.Y.[Kun-Yuan],
Wang, J.M.[Jian-Mei],
Sun, W.W.[Wei-Wei],
R-CNN-Based Ship Detection from High Resolution Remote Sensing
Imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wen, Y.Q.[Yuan-Qiao],
Zhang, Y.M.[Yi-Meng],
Huang, L.[Liang],
Zhou, C.H.[Chun-Hui],
Xiao, C.S.[Chang-Shi],
Zhang, F.[Fan],
Peng, X.[Xin],
Zhan, W.Q.[Wen-Qiang],
Sui, Z.Y.[Zhong-Yi],
Semantic Modelling of Ship Behavior in Harbor Based on Ontology and
Dynamic Bayesian Network,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Yao, Y.[Yuan],
Jiang, Z.G.[Zhi-Guo],
Zhang, H.[Haopeng],
Zhou, Y.[Yu],
On-Board Ship Detection in Micro-Nano Satellite Based on Deep
Learning and COTS Component,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Le Caillec, J.M.[Jean-Marc],
Habonneau, J.[Jérôme],
Khenchaf, A.[Ali],
Ship Profile Imaging Using Multipath Backscattering,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Prasad, D.K.,
Prasath, C.K.,
Rajan, D.,
Rachmawati, L.,
Rajabally, E.,
Quek, C.,
Object Detection in a Maritime Environment:
Performance Evaluation of Background Subtraction Methods,
ITS(20), No. 5, May 2019, pp. 1787-1802.
IEEE DOI
1905
Adaptation models, Videos, Gaussian distribution, Object detection,
Benchmark testing, Cameras, Vehicle dynamics, Maritime vehicles
BibRef
Wang, L.,
Zhang, M.,
Chen, J.,
Investigation on the Electromagnetic Scattering From the Accurate 3-D
Breaking Ship Waves Generated by CFD Simulation,
GeoRS(57), No. 5, May 2019, pp. 2689-2699.
IEEE DOI
1905
computational fluid dynamics, electromagnetic wave scattering,
flow simulation, geometry, iterative methods, physical optics, ships,
composite scattering
BibRef
Hsu, F.C.[Feng-Chi],
Elvidge, C.D.[Christopher D.],
Baugh, K.[Kimberly],
Zhizhin, M.[Mikhail],
Ghosh, T.[Tilottama],
Kroodsma, D.[David],
Susanto, A.[Adi],
Budy, W.[Wiryawan],
Riyanto, M.[Mochammad],
Nurzeha, R.[Ridwan],
Sudarja, Y.[Yeppi],
Cross-Matching VIIRS Boat Detections with Vessel Monitoring System
Tracks in Indonesia,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Wang, W.X.[Wen-Xiu],
Fu, Y.T.[Yu-Tian],
Dong, F.[Feng],
Li, F.[Feng],
Semantic segmentation of remote sensing ship image via a convolutional
neural networks model,
IET-IPR(13), No. 6, 10 May 2019, pp. 1016-1022.
DOI Link
1906
BibRef
Zhou, H.,
Jiang, T.,
Decision Tree Based Sea-Surface Weak Target Detection With False
Alarm Rate Controllable,
SPLetters(26), No. 6, June 2019, pp. 793-797.
IEEE DOI
1906
decision trees, feature extraction, fractals,
learning (artificial intelligence), object detection,
decision tree
BibRef
Liu, Z.Q.[Zhi-Quan],
Practical backstepping control for underactuated ship path following
associated with disturbances,
IET-ITS(13), No. 5, May 2019, pp. 834-840.
DOI Link
1906
BibRef
Wen, G.,
Ge, S.S.,
Chen, C.L.P.,
Tu, F.,
Wang, S.,
Adaptive Tracking Control of Surface Vessel Using Optimized
Backstepping Technique,
Cyber(49), No. 9, Sep. 2019, pp. 3420-3431.
IEEE DOI
1907
adaptive control, control nonlinearities,
control system synthesis, feedback,
surface vessel
BibRef
Dong, C.[Chao],
Liu, J.H.[Jing-Hong],
Xu, F.[Fang],
Liu, C.L.[Cheng-Long],
Ship Detection from Optical Remote Sensing Images Using Multi-Scale
Analysis and Fourier HOG Descriptor,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Wang, B.,
Motai, Y.,
Dong, L.,
Xu, W.,
Detecting Infrared Maritime Targets Overwhelmed in Sun Glitters by
Antijitter Spatiotemporal Saliency,
GeoRS(57), No. 7, July 2019, pp. 5159-5173.
IEEE DOI
1907
Sun, Spatiotemporal phenomena, Visualization, Jitter,
Object detection, Imaging, Generators, Image segmentation,
target detection
BibRef
Yan, Y.M.[Yi-Ming],
Tan, Z.C.[Zhi-Chao],
Su, N.[Nan],
A Data Augmentation Strategy Based on Simulated Samples for Ship
Detection in RGB Remote Sensing Images,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Feng, Y.C.[Ying-Chao],
Diao, W.H.[Wen-Hui],
Sun, X.[Xian],
Yan, M.L.[Meng-Long],
Gao, X.[Xin],
Towards Automated Ship Detection and Category Recognition from
High-Resolution Aerial Images,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Cruz, G.,
Bernardino, A.,
Learning Temporal Features for Detection on Maritime Airborne Video
Sequences Using Convolutional LSTM,
GeoRS(57), No. 9, September 2019, pp. 6565-6576.
IEEE DOI
1909
Feature extraction, Aircraft, Boats, Visualization, Video sequences,
Detectors, Monitoring, Object detection, recurrent neural networks,
remote monitoring
BibRef
Zhou, X.Y.[Xing-Yue],
Yang, K.[Kunde],
Duan, R.[Rui],
Deep Learning Based on Striation Images for Underwater and Surface
Target Classification,
SPLetters(26), No. 9, September 2019, pp. 1378-1382.
IEEE DOI
1909
belief networks, convolutional neural nets, image classification,
interference (signal), learning (artificial intelligence),
sonar images
BibRef
You, Y.[Yanan],
Li, Z.[Zezhong],
Ran, B.[Bohao],
Cao, J.Y.[Jing-Yi],
Lv, S.[Sudi],
Liu, F.[Fang],
Broad Area Target Search System for Ship Detection via Deep
Convolutional Neural Network,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Ma, J.L.[Jin-Lei],
Zhou, Z.Q.[Zhi-Qiang],
Wang, B.[Bo],
Zong, H.[Hua],
Wu, F.[Fei],
Ship Detection in Optical Satellite Images via Directional Bounding
Boxes Based on Ship Center and Orientation Prediction,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Ribeiro, R.,
Cruz, G.,
Matos, J.,
Bernardino, A.,
A Data Set for Airborne Maritime Surveillance Environments,
CirSysVideo(29), No. 9, September 2019, pp. 2720-2732.
IEEE DOI
1909
Cameras, Surveillance, Aircraft, Boats, Hyperspectral imaging,
Labeling, Image databases, hyperspectral imaging, video surveillance
BibRef
Xiao, X.W.[Xiao-Wu],
Zhou, Z.Q.[Zhi-Qiang],
Wang, B.[Bo],
Li, L.H.[Lin-Hao],
Miao, L.J.[Ling-Juan],
Ship Detection under Complex Backgrounds Based on Accurate Rotated
Anchor Boxes from Paired Semantic Segmentation,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Chen, H.,
Gao, T.,
Chen, W.,
Zhang, Y.,
Zhao, J.,
Contour Refinement and EG-GHT-Based Inshore Ship Detection in Optical
Remote Sensing Image,
GeoRS(57), No. 11, November 2019, pp. 8458-8478.
IEEE DOI
1911
Marine vehicles, Feature extraction, Head, Shape, Indexes, Training,
Strain, Border scoring, curvature filtering,
structured binarization feature (SBF)
BibRef
Du, J.,
Hu, X.,
Sun, Y.,
Adaptive Robust Nonlinear Control Design for Course Tracking of Ships
Subject to External Disturbances and Input Saturation,
SMCS(50), No. 1, January 2020, pp. 193-202.
IEEE DOI
2001
Marine vehicles, Adaptive systems, Control design,
Nonlinear dynamical systems, Adaptation models, Navigation,
ship steering system
BibRef
Tian, T.[Tian],
Pan, Z.H.[Zhi-Hong],
Tan, X.Y.[Xiang-Yu],
Chu, Z.Q.[Zheng-Quan],
Arbitrary-Oriented Inshore Ship Detection based on Multi-Scale
Feature Fusion and Contextual Pooling on Rotation Region Proposals,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Wu, Y.[Yue],
Ma, W.P.[Wen-Ping],
Gong, M.[Maoguo],
Bai, Z.F.[Zhuang-Fei],
Zhao, W.[Wei],
Guo, Q.Q.[Qiong-Qiong],
Chen, X.B.[Xiao-Bo],
Miao, Q.G.[Qi-Guang],
A Coarse-to-Fine Network for Ship Detection in Optical Remote Sensing
Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Nie, T.[Ting],
Han, X.[Xiyu],
He, B.[Bin],
Li, X.S.[Xian-Sheng],
Liu, H.X.[Hong-Xing],
Bi, G.L.[Guo-Ling],
Ship Detection in Panchromatic Optical Remote Sensing Images Based on
Visual Saliency and Multi-Dimensional Feature Description,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Ruiz, J.[Javier],
Caballero, I.[Isabel],
Navarro, G.[Gabriel],
Sensing the Same Fishing Fleet with AIS and VIIRS: A Seven-Year
Assessment of Squid Jiggers in FAO Major Fishing Area 41,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Zhang, W.[Wen],
He, X.J.[Xu-Jie],
Li, W.Y.[Wan-Yi],
Zhang, Z.[Zhi],
Luo, Y.K.[Yong-Kang],
Su, L.[Li],
Wang, P.[Peng],
An integrated ship segmentation method based on discriminator and
extractor,
IVC(93), 2020, pp. 103824.
Elsevier DOI
2001
Ship segmentation, Sea fog, Classification,
Interference Factor Discriminator, Ship extractor
BibRef
Wang, Z.W.[Zi-Wei],
Yang, T.[Ting],
Zhang, H.[Hong],
Land contained sea area ship detection using spaceborne image,
PRL(130), 2020, pp. 125-131.
Elsevier DOI
2002
Synthetic aperture radar, Image understanding, Ship detection,
Land contained sea area
BibRef
Chen, Y.T.[Yan-Tong],
Li, Y.Y.[Yu-Yang],
Wang, J.S.[Jun-Sheng],
Chen, W.N.[Wei-Nan],
Zhang, X.Z.[Xian-Zhong],
Remote Sensing Image Ship Detection under Complex Sea Conditions
Based on Deep Semantic Segmentation,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zhang, T.[Tao],
Zhao, S.[Shuai],
Cheng, B.[Bo],
Chen, J.L.[Jun-Liang],
Detection of AIS Closing Behavior and MMSI Spoofing Behavior of Ships
Based on Spatiotemporal Data,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Shao, Z.,
Wang, L.,
Wang, Z.,
Du, W.,
Wu, W.,
Saliency-Aware Convolution Neural Network for Ship Detection in
Surveillance Video,
CirSysVideo(30), No. 3, March 2020, pp. 781-794.
IEEE DOI
2003
Marine vehicles, Feature extraction, Real-time systems,
Surveillance, Visualization, Object detection, Remote sensing,
CNN
BibRef
Xie, X.Y.[Xiao-Yang],
Li, B.[Bo],
Wei, X.X.[Xing-Xing],
Ship Detection in Multispectral Satellite Images Under Complex
Environment,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Xiao, Z.,
Fu, X.,
Zhang, L.,
Goh, R.S.M.,
Traffic Pattern Mining and Forecasting Technologies in Maritime
Traffic Service Networks: A Comprehensive Survey,
ITS(21), No. 5, May 2020, pp. 1796-1825.
IEEE DOI
2005
Maritime traffic service networks,
intelligent maritime transportation, knowledge based systems,
sensor systems
BibRef
Xiao, Y.J.[Yi-Jia],
Chen, Y.M.[Yan-Ming],
Liu, X.Q.[Xiao-Qiang],
Yan, Z.J.[Zhao-Jin],
Cheng, L.[Liang],
Li, M.C.[Man-Chun],
Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Song, J.[Juyoung],
Kim, D.J.[Duk-Jin],
Kang, K.M.[Ki-Mook],
Automated Procurement of Training Data for Machine Learning Algorithm
on Ship Detection Using AIS Information,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Chénier, R.[René],
Sagram, M.[Mesha],
Omari, K.[Khalid],
Jirovec, A.[Adam],
Earth Observation and Artificial Intelligence for Improving Safety to
Navigation in Canada Low-Impact Shipping Corridors,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Guo, H.,
Yang, X.,
Wang, N.,
Song, B.,
Gao, X.,
A Rotational Libra R-CNN Method for Ship Detection,
GeoRS(58), No. 8, August 2020, pp. 5772-5781.
IEEE DOI
2007
Marine vehicles, Feature extraction, Proposals, Object detection,
Reliability, Semantics, Machine learning, Deep learning,
ship detection
BibRef
Zhou, A.,
Xie, W.,
Pei, J.,
Background Modeling in the Fourier Domain for Maritime Infrared
Target Detection,
CirSysVideo(30), No. 8, August 2020, pp. 2634-2649.
IEEE DOI
2008
Biological system modeling, Adaptation models,
Heuristic algorithms, Gaussian distribution, Entropy, Correlation,
entropy filter
BibRef
Farahnakian, F.[Fahimeh],
Heikkonen, J.[Jukka],
Deep Learning Based Multi-Modal Fusion Architectures for Maritime
Vessel Detection,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Park, J.J.[Jae-Jin],
Kim, T.S.[Tae-Sung],
Park, K.A.[Kyung-Ae],
Oh, S.[Sangwoo],
Lee, M.[Moonjin],
Foucher, P.Y.[Pierre-Yves],
Application of Spectral Mixture Analysis to Vessel Monitoring Using
Airborne Hyperspectral Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Chen, L.Q.[Li-Qiong],
Shi, W.X.[Wen-Xuan],
Fan, C.[Cien],
Zou, L.[Lian],
Deng, D.X.[De-Xiang],
A Novel Coarse-to-Fine Method of Ship Detection in Optical Remote
Sensing Images Based on a Deep Residual Dense Network,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Zhang, Y.L.[Yu-Lian],
Guo, L.H.[Li-Hong],
Wang, Z.F.[Zeng-Fa],
Yu, Y.[Yang],
Liu, X.W.[Xin-Wei],
Xu, F.[Fang],
Intelligent Ship Detection in Remote Sensing Images Based on
Multi-Layer Convolutional Feature Fusion,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Hu, J.M.[Jian-Ming],
Zhi, X.Y.[Xi-Yang],
Zhang, W.[Wei],
Ren, L.F.[Long-Fei],
Bruzzone, L.[Lorenzo],
Salient Ship Detection via Background Prior and Foreground Constraint
in Remote Sensing Images,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Tang, G.[Gang],
Liu, S.[Shibo],
Fujino, I.[Iwao],
Claramunt, C.[Christophe],
Wang, Y.[Yide],
Men, S.[Shaoyang],
H-YOLO: A Single-Shot Ship Detection Approach Based on Region of
Interest Preselected Network,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Villa, J.[Jose],
Aaltonen, J.[Jussi],
Virta, S.[Sauli],
Koskinen, K.T.[Kari T.],
A Co-Operative Autonomous Offshore System for Target Detection Using
Multi-Sensor Technology,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Hass, F.S.[Frederik Seerup],
Arsanjani, J.J.[Jamal Jokar],
Deep Learning for Detecting and Classifying Ocean Objects:
Application of YoloV3 for Iceberg-Ship Discrimination,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Yu, H.,
Fang, Z.,
Murray, A.T.,
Peng, G.,
A Direction-Constrained Space-Time Prism-Based Approach for
Quantifying Possible Multi-Ship Collision Risks,
ITS(22), No. 1, January 2021, pp. 131-141.
IEEE DOI
2012
Marine vehicles, Accidents, Predictive models, Collision avoidance,
Spatiotemporal phenomena, Geography, Navigation,
ship path optimization
BibRef
Cui, Z.,
Wang, X.,
Liu, N.,
Cao, Z.,
Yang, J.,
Ship Detection in Large-Scale SAR Images Via Spatial Shuffle-Group
Enhance Attention,
GeoRS(59), No. 1, January 2021, pp. 379-391.
IEEE DOI
2012
Marine vehicles, Radar polarimetry, Object detection,
Feature extraction, Synthetic aperture radar, Semantics,
synthetic aperture radar (SAR)
BibRef
Li, L.,
Zhou, Z.,
Wang, B.,
Miao, L.,
Zong, H.,
A Novel CNN-Based Method for Accurate Ship Detection in HR Optical
Remote Sensing Images via Rotated Bounding Box,
GeoRS(59), No. 1, January 2021, pp. 686-699.
IEEE DOI
2012
Marine vehicles, Feature extraction, Remote sensing, Proposals,
Object detection, Optical imaging, Optical sensors,
ship detection
BibRef
Shan, Y.,
Zhou, X.,
Liu, S.,
Zhang, Y.,
Huang, K.,
SiamFPN: A Deep Learning Method for Accurate and Real-Time Maritime
Ship Tracking,
CirSysVideo(31), No. 1, January 2021, pp. 315-325.
IEEE DOI
2101
Target tracking, Radar tracking, Marine vehicles, Proposals,
Correlation, Visualization, Cameras, Visual tracking,
region proposal network
BibRef
Liu, Q.,
Xiang, X.,
Yang, Z.,
Hu, Y.,
Hong, Y.,
Arbitrary Direction Ship Detection in Remote-Sensing Images Based on
Multitask Learning and Multiregion Feature Fusion,
GeoRS(59), No. 2, February 2021, pp. 1553-1564.
IEEE DOI
2101
Marine vehicles, Remote sensing, Proposals, Feature extraction,
Shape, Head, Object detection, Convolutional neural network (CNN),
ship detection
BibRef
Wang, Z.Q.[Zhen-Qing],
Zhou, Y.[Yi],
Wang, F.[Futao],
Wang, S.X.[Shi-Xin],
Xu, Z.Y.[Zhi-Yu],
SDGH-Net: Ship Detection in Optical Remote Sensing Images Based on
Gaussian Heatmap Regression,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Di, Y.H.[Yang-Hua],
Jiang, Z.G.[Zhi-Guo],
Zhang, H.[Haopeng],
A Public Dataset for Fine-Grained Ship Classification in Optical
Remote Sensing Images,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
Dataset, Ships.
BibRef
Chen, L.Q.[Li-Qiong],
Shi, W.X.[Wen-Xuan],
Deng, D.X.[De-Xiang],
Improved YOLOv3 Based on Attention Mechanism for Fast and Accurate
Ship Detection in Optical Remote Sensing Images,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Iancu, B.[Bogdan],
Soloviev, V.[Valentin],
Zelioli, L.[Luca],
Lilius, J.[Johan],
ABOships: An Inshore and Offshore Maritime Vessel Detection Dataset
with Precise Annotations,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Liu, Z.Y.[Zhao-Ying],
Waqas, M.[Muhammad],
Yang, J.[Jia],
Rashid, A.[Ahmar],
Han, Z.[Zhu],
A Multi-Task CNN for Maritime Target Detection,
SPLetters(28), 2021, pp. 434-438.
IEEE DOI
2103
Dataset, Ship Detection. MaRine ShiP (MRSP-13) Dataset.
Marine vehicles, Task analysis, Object detection,
Image segmentation, Boats, Feature extraction, Annotations,
cross-layer connections
BibRef
Zhang, X.,
Wang, G.,
Zhu, P.,
Zhang, T.,
Li, C.,
Jiao, L.,
GRS-Det: An Anchor-Free Rotation Ship Detector Based on Gaussian-Mask
in Remote Sensing Images,
GeoRS(59), No. 4, April 2021, pp. 3518-3531.
IEEE DOI
2104
Marine vehicles, Detectors, Feature extraction, Proposals,
Task analysis, Object detection, Remote sensing,
ship detection
BibRef
Geng, X.M.[Xiao-Meng],
Shi, L.[Lei],
Yang, J.[Jie],
Li, P.X.[Ping-Xiang],
Zhao, L.[Lingli],
Sun, W.D.[Wei-Dong],
Zhao, J.Q.[Jin-Qi],
Ship Detection and Feature Visualization Analysis Based on
Lightweight CNN in VH and VV Polarization Images,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Tian, L.[Ling],
Cao, Y.[Yu],
He, B.[Bokun],
Zhang, Y.F.[Yi-Fan],
He, C.[Chu],
Li, D.[Deshi],
Image Enhancement Driven by Object Characteristics and Dense Feature
Reuse Network for Ship Target Detection in Remote Sensing Imagery,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lee, M.J.[Myung-Jun],
Kim, J.E.[Ji-Eun],
Ryu, B.H.[Bo-Hyun],
Kim, K.T.[Kyung-Tae],
Robust Maritime Target Detector in Short Dwell Time,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Gao, G.S.[Guang-Shuai],
Liu, Q.J.[Qing-Jie],
Wang, Y.H.[Yun-Hong],
Counting From Sky: A Large-Scale Data Set for Remote Sensing Object
Counting and a Benchmark Method,
GeoRS(59), No. 5, May 2021, pp. 3642-3655.
IEEE DOI
2104
Remote sensing, Task analysis, Buildings, Marine vehicles,
Convolution, Neural networks, Object detection,
scale pyramid module (SPM)
BibRef
Wang, N.[Nan],
Li, B.[Bo],
Wei, X.X.[Xing-Xing],
Wang, Y.H.[Yong-Hua],
Yan, H.Q.[Huan-Qian],
Ship Detection in Spaceborne Infrared Image Based on Lightweight CNN
and Multisource Feature Cascade Decision,
GeoRS(59), No. 5, May 2021, pp. 4324-4339.
IEEE DOI
2104
Marine vehicles, Feature extraction, Remote sensing, Satellites,
Object detection, Neural networks, Gaussian distribution,
multivariate Gaussian distribution
BibRef
Jiang, J.H.[Jia-Huan],
Fu, X.J.[Xiong-Jun],
Qin, R.[Rui],
Wang, X.Y.[Xiao-Yan],
Ma, Z.F.[Zhi-Feng],
High-Speed Lightweight Ship Detection Algorithm Based on YOLO-V4 for
Three-Channels RGB SAR Image,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yang, Y.[Yi],
Pan, Z.X.[Zong-Xu],
Hu, Y.X.[Yu-Xin],
Ding, C.[Chibiao],
CPS-Det: An Anchor-Free Based Rotation Detector for Ship Detection,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Tan, Z.B.[Zhen-Biao],
Zhang, Z.K.[Ze-Kun],
Xing, T.Z.[Ting-Zhuang],
Huang, X.[Xiao],
Gong, J.B.[Jun-Bin],
Ma, J.[Jie],
Exploit Direction Information for Remote Ship Detection,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Abreu, F.H.O.[Fernando H. O.],
Soares, A.[Amilcar],
Paulovich, F.V.[Fernando V.],
Matwin, S.[Stan],
A Trajectory Scoring Tool for Local Anomaly Detection in Maritime
Traffic Using Visual Analytics,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link
2106
BibRef
You, Y.[Yanan],
Ran, B.H.[Bo-Hao],
Meng, G.[Gang],
Li, Z.Z.[Ze-Zhong],
Liu, F.[Fang],
Li, Z.X.[Zhi-Xin],
OPD-Net: Prow Detection Based on Feature Enhancement and Improved
Regression Model in Optical Remote Sensing Imagery,
GeoRS(59), No. 7, July 2021, pp. 6121-6137.
IEEE DOI
2106
Marine vehicles, Feature extraction, Remote sensing, Detectors,
Proposals, Optical imaging, Optical sensors, Deep learning,
remote sensing
BibRef
Li, Y.Y.[Yang-Yang],
Mao, H.[Heting],
Liu, R.J.[Rui-Jiao],
Pei, X.[Xuan],
Jiao, L.C.[Li-Cheng],
Shang, R.H.[Rong-Hua],
A Lightweight Keypoint-Based Oriented Object Detection of Remote
Sensing Images,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
Ships, etc.
BibRef
Zheng, Y.B.[Yong-Bin],
Sun, P.[Peng],
Zhou, Z.T.[Zong-Tan],
Xu, W.Y.[Wan-Ying],
Ren, Q.[Qiang],
ADT-Det: Adaptive Dynamic Refined Single-Stage Transformer Detector
for Arbitrary-Oriented Object Detection in Satellite Optical Imagery,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Liu, B.[Bo],
Xiao, Q.[Qi],
Zhang, Y.[Yuhao],
Ni, W.[Wei],
Yang, Z.[Zhen],
Li, L.G.[Li-Gang],
Intelligent Recognition Method of Low-Altitude Squint Optical Ship
Target Fused with Simulation Samples,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Hu, J.M.[Jian-Ming],
Zhi, X.Y.[Xi-Yang],
Shi, T.J.[Tian-Jun],
Zhang, W.[Wei],
Cui, Y.[Yang],
Zhao, S.G.[Sheng-Gang],
PAG-YOLO: A Portable Attention-Guided YOLO Network for Small Ship
Detection,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, L.H.[Lin-Hao],
Zhou, Z.Q.[Zhi-Qiang],
Wang, B.[Bo],
Miao, L.J.[Ling-Juan],
An, Z.[Zhe],
Xiao, X.W.[Xiao-Wu],
Domain Adaptive Ship Detection in Optical Remote Sensing Images,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Dong, Y.X.[Yu-Xin],
Chen, F.K.[Fu-Kun],
Han, S.[Shuang],
Liu, H.[Hao],
Ship Object Detection of Remote Sensing Image Based on Visual
Attention,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Cui, Z.Y.[Zhen-Yu],
Leng, J.X.[Jia-Xu],
Liu, Y.[Ying],
Zhang, T.L.[Tian-Lin],
Quan, P.[Pei],
Zhao, W.[Wei],
SKNet: Detecting Rotated Ships as Keypoints in Optical Remote Sensing
Images,
GeoRS(59), No. 10, October 2021, pp. 8826-8840.
IEEE DOI
2109
Marine vehicles, Detectors, Feature extraction, Remote sensing,
Optical imaging, Optical detectors, Object detection, Keypoints,
ship detection
BibRef
Wu, J.[Jin],
Cao, C.Q.[Chang-Qing],
Zhou, Y.D.[Yue-Dong],
Zeng, X.D.[Xiao-Dong],
Feng, Z.J.[Zhe-Jun],
Wu, Q.F.[Qi-Fan],
Huang, Z.Q.[Zi-Qiang],
Multiple Ship Tracking in Remote Sensing Images Using Deep Learning,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liang, M.[Maohan],
Zhan, Y.[Yang],
Liu, R.W.[Ryan Wen],
MVFFNet: Multi-view feature fusion network for imbalanced ship
classification,
PRL(151), 2021, pp. 26-32.
Elsevier DOI
2110
Ship classification, Multi-view feature fusion,
Imbalanced data, CAE, BiGRU
BibRef
Wu, J.X.[Ji-Xiang],
Pan, Z.X.[Zong-Xu],
Lei, B.[Bin],
Hu, Y.X.[Yu-Xin],
LR-TSDet: Towards Tiny Ship Detection in Low-Resolution Remote
Sensing Images,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Qu, Z.F.[Zhen-Fang],
Zhu, F.Z.[Fu-Zhen],
Qi, C.X.[Cheng-Xiao],
Remote Sensing Image Target Detection:
Improvement of the YOLOv3 Model with Auxiliary Networks,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Huang, C.[Chuan],
Li, Z.Y.[Zhong-Yu],
Lou, M.Y.[Ming-Yue],
Qiu, X.Y.[Xing-Ye],
An, H.Y.[Hong-Yang],
Wu, J.J.[Jun-Jie],
Yang, J.Y.[Jian-Yu],
Huang, W.[Wei],
BeiDou-Based Passive Radar Vessel Target Detection:
Method and Experiment via Long-Time Optimized Integration,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
Power limits in navigation signal.
BibRef
Yang, Z.Q.[Zhi-Qing],
Zhou, H.[Hao],
Tian, Y.[Yingwei],
Huang, W.M.[Wei-Min],
Shen, W.[Wei],
Improving Ship Detection in Clutter-Edge and Multi-Target Scenarios
for High-Frequency Radar,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ciocarlan, A.[Alina],
Stoian, A.[Andrei],
Ship Detection in Sentinel 2 Multi-Spectral Images with
Self-Supervised Learning,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Hu, J.M.[Jian-Ming],
Zhi, X.[Xiyang],
Shi, T.J.[Tian-Jun],
Yu, L.J.[Li-Jian],
Zhang, W.[Wei],
Ship Detection via Dilated Rate Search and Attention-Guided Feature
Representation,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Liu, J.M.[Jin-Ming],
Chen, H.[Hao],
Wang, Y.[Yu],
Multi-Source Remote Sensing Image Fusion for Ship Target Detection
and Recognition,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Liu, T.[Tao],
Jiang, Y.[Yanni],
Marino, A.[Armando],
Gao, G.[Gui],
Yang, J.[Jian],
The Polarimetric Detection Optimization Filter and its Statistical
Test for Ship Detection,
GeoRS(60), 2022, pp. 1-18.
IEEE DOI
2112
Marine vehicles, Detectors, Clutter, Synthetic aperture radar,
Covariance matrices, Speckle, Sea state,
constant false alarm rate (CFAR)
BibRef
Yu, Y.[Ying],
Yang, X.[Xi],
Li, J.[Jie],
Gao, X.B.[Xin-Bo],
A Cascade Rotated Anchor-Aided Detector for Ship Detection in Remote
Sensing Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Marine vehicles, Feature extraction, Detectors, Remote sensing,
Object detection, Customer relationship management, Training,
ship detection
BibRef
He, B.[Boyong],
Li, X.[Xianjiang],
Huang, B.[Bo],
Gu, E.[Enhui],
Guo, W.J.[Wei-Jie],
Wu, L.[Liaoni],
UnityShip: A Large-Scale Synthetic Dataset for Ship Recognition in
Aerial Images,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
Dataset, Ship Detection.
BibRef
Li, W.X.[Wei-Xin],
Li, M.[Ming],
Zuo, L.[Lei],
Sun, H.[Hao],
Chen, H.[Hongmeng],
Li, Y.[Yachao],
Forward-Looking Super-Resolution Imaging for Sea-Surface Target with
Multi-Prior Bayesian Method,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Feng, J.J.[Jun-Jian],
Li, B.[Bin],
Tian, L.F.[Lian-Fang],
Dong, C.[Chao],
Rapid Ship Detection Method on Movable Platform Based on
Discriminative Multi-Size Gradient Features and Multi-Branch Support
Vector Machine,
ITS(23), No. 2, February 2022, pp. 1357-1367.
IEEE DOI
2202
Marine vehicles, Feature extraction, Support vector machines,
Object detection, Visualization, Videos, Movable platform,
rapid ship detection
BibRef
Zheng, J.C.[Jia-Chun],
Sun, S.D.[Shi-Dan],
Zhao, S.J.[Shi-Jia],
Fast ship detection based on lightweight YOLOv5 network,
IET-IPR(16), No. 6, 2022, pp. 1585-1593.
DOI Link
2204
BibRef
Guo, H.W.[Hong-Wei],
Bai, H.Y.[Hong-Yang],
Yuan, Y.[Yuman],
Qin, W.W.[Wei-Wei],
Fully Deformable Convolutional Network for Ship Detection in Remote
Sensing Imagery,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, L.Y.[Li-Yuan],
Jiang, L.Y.[Lin-Yi],
Zhang, J.W.[Jing-Wen],
Wang, S.Q.[Si-Qi],
Chen, F.S.[Fan-Sheng],
A Complete YOLO-Based Ship Detection Method for Thermal Infrared
Remote Sensing Images under Complex Backgrounds,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, Y.[Ye],
Ren, H.X.[Hong-Xiang],
Visual Analysis of Vessel Behaviour Based on Trajectory Data:
A Case Study of the Yangtze River Estuary,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Xu, C.J.[Chu-Jie],
Zheng, X.T.[Xiang-Tao],
Lu, X.Q.[Xiao-Qiang],
Multi-Level Alignment Network for Cross-Domain Ship Detection,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zou, H.X.[Huan-Xin],
He, S.T.[Shi-Tian],
Cao, X.[Xu],
Sun, L.[Li],
Wei, J.[Juan],
Liu, S.[Shuo],
Liu, J.[Jian],
Rescaling-Assisted Super-Resolution for Medium-Low Resolution Remote
Sensing Ship Detection,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, H.P.[Hao-Peng],
Zhang, X.Y.[Xing-Yu],
Meng, G.[Gang],
Guo, C.[Chen],
Jiang, Z.G.[Zhi-Guo],
Few-Shot Multi-Class Ship Detection in Remote Sensing Images Using
Attention Feature Map and Multi-Relation Detector,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Huang, L.[Liang],
Wang, F.X.[Feng-Xiang],
Zhang, Y.[Yalun],
Xu, Q.X.[Qing-Xia],
Fine-Grained Ship Classification by Combining CNN and Swin
Transformer,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, Y.[Yang],
Liu, J.H.[Jing-Hong],
Zhu, S.J.[Sheng-Jie],
Xu, F.[Fang],
Bai, G.B.[Guan-Bing],
Liu, C.L.[Cheng-Long],
Ship Detection in Visible Remote Sensing Image Based on Saliency
Extraction and Modified Channel Features,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Xie, X.Z.[Xiao-Zhu],
Li, L.H.[Lin-Hao],
An, Z.[Zhe],
Lu, G.[Gang],
Zhou, Z.Q.[Zhi-Qiang],
Small Ship Detection Based on Hybrid Anchor Structure and Feature
Super-Resolution,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, W.S.[Wen-Sheng],
Zhang, X.B.[Xin-Bo],
Sun, W.[Wu],
Huang, M.[Min],
A Novel Method of Ship Detection under Cloud Interference for Optical
Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, S.J.[Sheng-Jia],
Zhu, H.C.[Hong-Chun],
Li, J.[Jie],
Yang, Y.[Yanrui],
Liu, H.Y.[Hai-Ying],
Data-Free Area Detection and Evaluation for Marine Satellite Data
Products,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
He, Y.[Yaomin],
Yang, H.[Huizhang],
He, H.F.[Hua-Feng],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
A Ship Discrimination Method Based on High-Frequency Electromagnetic
Theory,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Kizilkaya, S.[Serdar],
Alganci, U.[Ugur],
Sertel, E.[Elif],
VHRShips: An Extensive Benchmark Dataset for Scalable Deep
Learning-Based Ship Detection Applications,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xi, C.P.[Cai-Ping],
Liu, R.Q.[Ren-Qiao],
Detection of Small Floating Target on Sea Surface Based on Gramian
Angular Field and Improved EfficientNet,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Jian, L.[Ling],
Pu, Z.Q.[Zhi-Qi],
Zhu, L.[Lili],
Yao, T.C.[Tian-Can],
Liang, X.[Xijun],
SS R-CNN: Self-Supervised Learning Improving Mask R-CNN for Ship
Detection in Remote Sensing Images,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Sun, Y.X.[Yu-Xin],
Su, L.[Li],
Luo, Y.K.[Yong-Kang],
Meng, H.[Hao],
Zhang, Z.[Zhi],
Zhang, W.[Wen],
Yuan, S.Z.[Shou-Zheng],
IRDCLNet: Instance Segmentation of Ship Images Based on Interference
Reduction and Dynamic Contour Learning in Foggy Scenes,
CirSysVideo(32), No. 9, September 2022, pp. 6029-6043.
IEEE DOI
2209
Marine vehicles, Image segmentation, Meteorology,
Feature extraction, Interference, Object detection, Visualization,
dynamic contour learning
BibRef
Chen, Y.T.[Yan-Tong],
Zhang, Z.L.[Zhong-Ling],
Chen, Z.[Zekun],
Zhang, Y.Y.[Yan-Yan],
Wang, J.S.[Jun-Sheng],
Fine-Grained Classification of Optical Remote Sensing Ship Images
Based on Deep Convolution Neural Network,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, J.F.[Jian-Feng],
Li, Z.F.[Zong-Feng],
Chen, M.X.[Ming-Xu],
Wang, Y.L.[Yong-Ling],
Luo, Q.H.[Qing-Hua],
A New Ship Detection Algorithm in Optical Remote Sensing Images Based
on Improved R3Det,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Tang, G.[Gang],
Zhao, H.[Hongren],
Claramunt, C.[Christophe],
Men, S.[Shaoyang],
FLNet: A Near-shore Ship Detection Method Based on Image Enhancement
Technology,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zhang, J.[Jun],
Huang, R.[Ruofei],
Li, Y.[Yan],
Pan, B.[Bin],
Oriented Ship Detection Based on Intersecting Circle and Deformable
RoI in Remote Sensing Images,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Bakdi, A.[Azzeddine],
Vanem, E.[Erik],
Fullest COLREGs Evaluation Using Fuzzy Logic for Collaborative
Decision-Making Analysis of Autonomous Ships in Complex Situations,
ITS(23), No. 10, October 2022, pp. 18433-18445.
IEEE DOI
2210
Marine vehicles, Fuzzy logic, Navigation, Regulation, Grounding,
Safety, Artificial intelligence, AIS, algorithmic regulation,
water-depth to draught ratio
BibRef
Guo, Y.[Yue],
Chen, S.Q.[Shi-Qi],
Zhan, R.[Ronghui],
Wang, W.[Wei],
Zhang, J.[Jun],
LMSD-YOLO: A Lightweight YOLO Algorithm for Multi-Scale SAR Ship
Detection,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Ma, D.D.[Dong-Dong],
Dong, L.[Lili],
Xu, W.[Wenhai],
Detecting Maritime Infrared Targets in Harsh Environment by Improved
Visual Attention Model Preselector and Anti-Jitter Spatiotemporal
Filter Discriminator,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Chen, W.M.[Wei-Ming],
Han, B.[Bing],
Yang, Z.[Zheng],
Gao, X.B.[Xin-Bo],
MSSDet: Multi-Scale Ship-Detection Framework in Optical
Remote-Sensing Images and New Benchmark,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, L.Y.[Li-Yuan],
Yu, J.N.[Jia-Ning],
Chen, F.S.[Fan-Sheng],
TISD: A Three Bands Thermal Infrared Dataset for All Day Ship
Detection in Spaceborne Imagery,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zheng, X.[Xin],
Kang, D.[Di],
Si, P.[Pengbo],
Wu, Q.[Qiang],
Infrared and visible image fusion for ship targets based on
scale-aware feature decomposition,
IET-IPR(16), No. 14, 2022, pp. 3977-3987.
DOI Link
2212
BibRef
Zhang, X.C.[Xiao-Cai],
Fu, X.J.[Xiu-Ju],
Xiao, Z.[Zhe],
Xu, H.Y.[Hai-Yan],
Qin, Z.[Zheng],
Vessel Trajectory Prediction in Maritime Transportation:
Current Approaches and Beyond,
ITS(23), No. 11, November 2022, pp. 19980-19998.
IEEE DOI
2212
Trajectory, Transportation, Safety, Predictive models,
Hidden Markov models, Support vector machines, Soft sensors, deep learning
BibRef
Kong, Z.[Zhan],
Cui, Y.[Yaqi],
Xiong, W.[Wei],
Xiong, Z.Y.[Zhen-Yu],
Xu, P.L.[Ping-Liang],
Ship Target Recognition Based on Context-Enhanced Trajectory,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Hua, Z.[Zizheng],
Pan, G.F.[Gao-Feng],
Gao, K.[Kun],
Li, H.[Hengchao],
Chen, S.[Su],
AF-OSD: An Anchor-Free Oriented Ship Detector Based on Multi-Scale
Dense-Point Rotation Gaussian Heatmap,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Rucinski, M.[Marek],
Wozniak, E.[Edyta],
Kulczyk, S.[Sylwia],
Derek, M.[Marta],
Small Recreational Boat Detection Using Sentinel-1 Data for the
Monitoring of Recreational Ecosystem Services,
RS(15), No. 7, 2023, pp. 1807.
DOI Link
2304
BibRef
Meng, F.[Fan],
Zhao, G.[Guocan],
Zhang, G.J.[Guo-Jun],
Li, Z.[Zhi],
Ding, K.[Kaimeng],
Visual Detection and Association Tracking of Dim Small Ship Targets
from Optical Image Sequences of Geostationary Satellite Using
Multispectral Radiation Characteristics,
RS(15), No. 8, 2023, pp. 2069.
DOI Link
2305
Wide area.
BibRef
Liu, D.[Di],
Zhang, Y.[Yan],
Zhao, Y.[Yan],
Shi, Z.G.[Zhi-Guang],
Zhang, J.H.[Jing-Hua],
Zhang, Y.[Yu],
Ling, F.[Feng],
Zhang, Y.[Yi],
AARN: Anchor-guided attention refinement network for inshore ship
detection,
IET-IPR(17), No. 7, 2023, pp. 2225-2237.
DOI Link
2305
computer vision, convolutional neural nets, feature extraction,
object detection, ships
BibRef
Zhao, H.[Hangyue],
Zhang, H.[Hongpu],
Zhao, Y.[Yanyun],
YOLOv7-sea:
Object Detection of Maritime UAV Images based on Improved pYOLOv7,
Maritime23(233-238)
IEEE DOI
2302
Sea surface, Visualization, Head, Conferences, Detectors,
Object detection, Interference
BibRef
Ye, B.[Biaohua],
Qin, T.[Tong],
Zhou, H.J.[Hua-Jun],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
Cross-level Attention and Ratio Consistency Network for Ship
Detection,
ICPR22(4644-4650)
IEEE DOI
2212
Measurement uncertainty, Object detection, Performance gain,
Marine vehicles, Task analysis
BibRef
Kaur, P.[Parneet],
Aziz, A.[Arslan],
Jain, D.[Darshan],
Patel, H.[Harshil],
Hirokawa, J.[Jonathan],
Townsend, L.[Lachlan],
Reimers, C.[Christoph],
Hua, F.[Fiona],
Sea Situational Awareness (SeaSAw) Dataset,
Precognition22(2578-2586)
IEEE DOI
2210
Industries, Technological innovation, Image resolution, Lighting,
Object detection, Safety
BibRef
Paiano, L.[Luigi],
Calabrese, F.[Francesca],
Cataldo, M.[Marco],
Sebastiani, L.[Luca],
Leonardi, N.[Nicola],
Ship Detection and Tracking Based on a Custom Aerial Dataset,
CIAP22(III:425-436).
Springer DOI
2205
BibRef
Luo, Z.Y.[Zi-Yuan],
Nguyen, M.[Minh],
Yan, W.Q.[Wei Qi],
Sailboat Detection Based on Automated Search Attention Mechanism and
Deep Learning Models,
IVCNZ21(1-6)
IEEE DOI
2201
Deep learning, Visualization, Machine learning algorithms,
Computational modeling, Object detection,
visual object detection
BibRef
Marques, T.P.[Tunai Porto],
Albu, A.B.[Alexandra Branzan],
O'Hara, P.[Patrick],
Serra, N.[Norma],
Morrow, B.[Ben],
McWhinnie, L.[Lauren],
Canessa, R.[Rosaline],
Size-invariant Detection of Marine Vessels From Visual Time Series,
WACV21(443-453)
IEEE DOI
2106
Visualization, Time series analysis, Layout, Boats,
Detectors, Feature extraction
BibRef
Wang, C.,
Ren, H.,
Li, H.,
Vessel trajectory prediction based on AIS data and bidirectional GRU,
CVIDL20(260-264)
IEEE DOI
2102
learning (artificial intelligence), marine vehicles,
recurrent neural nets, LSTM, Tianjin port, biGRU,
Bi-GRU.
BibRef
Xie, B.R.[Bao-Rong],
Heng, Y.[Ye],
Feng, S.Y.[Shu-Yi],
Wang, Y.[Yang],
Zhu, X.Z.[Xin-Zhong],
Sea-land Segmentation of Infrared Remote Sensing Image Based on
Complex Background,
CVIDL20(165-168)
IEEE DOI
2102
geophysical image processing, image matching, image segmentation,
infrared imaging, object detection, remote sensing, ships,
infrared ship detection
BibRef
Nalamati, M.,
Sharma, N.,
Saqib, M.,
Blumenstein, M.,
Automated Monitoring in Maritime Video Surveillance System,
IVCNZ20(1-6)
IEEE DOI
2012
Computational modeling, Object detection, Benchmark testing,
Video surveillance, Task analysis, Videos, Meteorology,
Intruder detection
BibRef
o
Wang, Y.,
Cheng, H.,
Zhou, X.,
Luo, W.,
Zhang, H.,
Moving Ship Detection and Movement Prediction In Remote Sensing Videos,
ISPRS20(B2:1303-1308).
DOI Link
2012
BibRef
Santos, C.E.,
Bhanu, B.,
Dyfusion: Dynamic IR/RGB Fusion for Maritime Vessel Recognition,
ICIP18(1328-1332)
IEEE DOI
1809
Training, Probabilistic logic, Context modeling, Sensor fusion,
Pipelines, Robustness, Image recognition,
probabilistic models
BibRef
Aziz, K.[Kheireddine],
Bouchara, F.[Frédéric],
Multimodal Deep Learning for Robust Recognizing Maritime Imagery in the
Visible and Infrared Spectrums,
ICIAR18(235-244).
Springer DOI
1807
BibRef
Brauchle, J.[Jörg],
Bayer, S.[Steven],
Berger, R.[Ralf],
Automatic Ship Detection on Multispectral and Thermal Infrared Aerial
Images Using MACS-Mar Remote Sensing Platform,
PSIVTWS17(382-395).
Springer DOI
1806
BibRef
Liu, Z.,
Hu, J.,
Weng, L.,
Yang, Y.,
Rotated region based CNN for ship detection,
ICIP17(900-904)
IEEE DOI
1803
Convolution, Feature extraction, Marine vehicles, Object detection,
Proposals, Task analysis, Training, Rotated region,
ship detection
BibRef
van Persie, M.,
Noorbergen, H.H.S.,
Oostdijk, A.,
Harbour pattern of life analysis with time series of medium
resolution satellite images,
MultiTemp17(1-3)
IEEE DOI
1712
remote sensing, Erdas imagine environment, Harbour Pattern,
Landsat imagery, Sentinel imagery, UrtheCast,
ship detection
BibRef
Chen, Z.C.[Ze-Chuang],
Li, B.[Bin],
Tian, L.F.[Lian Fang],
Chao, D.[Dong],
Automatic detection and tracking of ship based on mean shift in
corrected video sequences,
ICIVC17(449-453)
IEEE DOI
1708
Complexity theory, Image segmentation, Imaging, Marine vehicles,
Mathematical model, Target tracking, Transforms, image correction,
image segmentation, mean shift algorithm, ship, tracking
BibRef
Gundogdu, E.[Erhan],
Solmaz, B.[Berkan],
Yücesoy, V.[Veysel],
Koç, A.[Aykut],
MARVEL: A Large-Scale Image Dataset for Maritime Vessels,
ACCV16(V: 165-180).
Springer DOI
1704
Dataset, Ships.
BibRef
Cane, T.,
Ferryman, J.M.,
Saliency-Based Detection for Maritime Object Tracking,
PETS16(1257-1264)
IEEE DOI
1612
BibRef
Cruz, G.[Gonçalo],
Bernardino, A.[Alexandre],
Aerial Detection in Maritime Scenarios Using Convolutional Neural
Networks,
ACIVS16(373-384).
Springer DOI
1611
BibRef
Bousetouane, F.,
Morris, B.,
Fast CNN surveillance pipeline for fine-grained vessel classification
and detection in maritime scenarios,
AVSS16(242-248)
IEEE DOI
1611
Detectors
BibRef
Sui, H.G.[Hai-Gang],
Song, Z.N.[Zhi-Na],
A Novel Ship Detection Method For Large-scale Optical Satellite Images
Based On Visual Lbp Feature And Visual Attention Model,
ISPRS16(B3: 917-921).
DOI Link
1610
BibRef
Zhang, R.Q.[Rui-Qian],
Yao, J.[Jian],
Zhang, K.[Kao],
Feng, C.[Chen],
Zhang, J.D.[Jia-Dong],
S-CNN-Based Ship Detection from High-Resolution Remote Sensing Images,
ISPRS16(B7: 423-430).
DOI Link
1610
BibRef
Schaum, A.,
Allman, E.,
Leathers, R.A.,
Spectral ship surveillance from space,
AIPR15(1-8)
IEEE DOI
1605
aerospace instrumentation
BibRef
Bousetouane, F.[Fouad],
Morris, B.[Brendan],
Off-the-Shelf CNN Features for Fine-Grained Classification of Vessels
in a Maritime Environment,
ISVC15(II: 379-388).
Springer DOI
1601
BibRef
Arguedas, V.F.[Virginia Fernandez],
Texture-based vessel classifier for electro-optical satellite imagery,
ICIP15(3866-3870)
IEEE DOI
1512
SAR
BibRef
Osborne, C.,
Cane, T.,
Nawaz, T.,
Ferryman, J.M.,
Temporally stable feature clusters for maritime object tracking in
visible and thermal imagery,
AVSS15(1-6)
IEEE DOI
1511
infrared imaging
BibRef
Zhang, M.M.[Mabel M.],
Choi, J.[Jean],
Daniilidis, K.[Kostas],
Wolf, M.T.[Michael T.],
Kanan, C.[Christopher],
VAIS: A dataset for recognizing maritime imagery in the visible and
infrared spectrums,
PBVS15(10-16)
IEEE DOI
1510
Cameras
BibRef
Grimaldi, M.,
Bechar, I.,
Lelore, T.,
Guis, V.,
Bouchara, F.,
An unsupervised approach to automatic object extraction from a
maritime video scene,
IPTA14(1-6)
IEEE DOI
1503
geometry
BibRef
Wang, T.[Tao],
Bai, X.Z.[Xiang-Zhi],
Zhang, Y.[Yu],
Multiple Features Based Low-Contrast Infrared Ship Image Segmentation
Using Fuzzy Inference System,
DICTA14(1-6)
IEEE DOI
1502
feature extraction
BibRef
Liu, Z.Y.[Zhao-Ying],
Sun, C.M.[Chang-Ming],
Bai, X.Z.[Xiang-Zhi],
Zhou, F.[Fugen],
Infrared Ship Target Image Smoothing Based on Adaptive Mean Shift,
DICTA14(1-8)
IEEE DOI
1502
image denoising
BibRef
Sun, Y.[Yuan],
Zhang, B.[Bo],
Wang, C.[Chao],
Wu, F.[Fan],
Ship detection based on eigenvalue-eigenvector decomposition and
OS-CFAR detector,
CVRS12(350-355).
IEEE DOI
1302
BibRef
Lu, C.Y.[Chun-Yan],
Zou, H.X.[Huan-Xin],
Zhou, S.L.[Shi-Lin],
Sun, H.[Hao],
An association algorithm of ship-group targets based on topological and
attributive characteristics,
CVRS12(34-38).
IEEE DOI
1302
BibRef
Jiang, S.F.[Shao-Feng],
Wu, F.[Fan],
Wang, C.[Chao],
Zhang, B.[Bo],
Civilian vessel classification with COSMO-SkyMed images based on
feature analysis,
CVRS12(279-284).
IEEE DOI
1302
BibRef
Huang, G.P.[Gao-Pan],
Wang, Y.Q.[Yan-Qing],
Zhang, Y.S.[Yu-Shuang],
Tian, Y.[Yuan],
Ship Detection Using Texture Statistics from Optical Satellite Images,
DICTA11(507-512).
IEEE DOI
1205
BibRef
Rainey, K.[Katie],
Stastny, J.[John],
Object recognition in ocean imagery using feature selection and
compressive sensing,
AIPR11(1-6).
IEEE DOI
1204
BibRef
Harguess, J.[Josh],
Rainey, K.[Katie],
Are face recognition methods useful for classifying ships?,
AIPR11(1-7).
IEEE DOI
1204
BibRef
Yang, G.[Guang],
Lu, Q.C.[Qi-Chao],
Gao, F.[Feng],
A Novel Ship Detection Method Based on Sea State Analysis from Optical
Imagery,
ICIG11(466-471).
IEEE DOI
1109
BibRef
You, X.[Xin],
Yu, N.H.[Neng-Hai],
An Automatic Matching Algorithm Based on SIFT Descriptors for Remote
Sensing Ship Image,
ICIG11(377-381).
IEEE DOI
1109
BibRef
Xia, Y.[Yu],
Wan, S.H.[Shou-Hong],
Yue, L.H.[Li-Hua],
A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of
Multi-feature and Support Vector Machine,
ICIG11(521-526).
IEEE DOI
1109
BibRef
Xie, H.[Hong],
Li, L.L.[Lin-Lin],
Bo, H.[Hua],
Zhang, Y.N.[Yun-Nong],
A Novel Method for Ship Detection Based on NSCT and ACO,
CISP09(1-4).
IEEE DOI
0910
BibRef
Osman, H.[Hossam],
Pan, L.,
Blostein, S.D.[Steven D.],
Gagnon, L.,
Classification of Ships in Airborne SAR Imagery
Using Backpropagation Neural Networks,
SPIE(3161), July 1997 pp. 126-136.
BibRef
9707
Gouaillier, V.,
Gagnon, L.,
Ship Silhouette Recognition Using Principal Components Analysis,
SPIE(3164), July 1997, pp. 59-69.
PDF File.
BibRef
9707
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Radar, SAR, Ship Detection .