Morris, R.J.T.,
Rubin, L.D.,
Tirri, H.,
Neural network techniques for object orientation detection. Solution by
optimal feedforward network and learning vector quantization approaches,
PAMI(12), No. 11, November 1990, pp. 1107-1115.
IEEE DOI
0401
BibRef
Anand, R.[Rangachari],
Mehrotra, K.[Kishan],
Mohan, C.K.[Chilukuri K.],
Ranka, S.[Sanjay],
Analyzing images containing multiple sparse patterns with neural
networks,
PR(26), No. 11, November 1993, pp. 1717-1724.
Elsevier DOI
0401
BibRef
Mitzias, D.A.,
Mertzios, B.G.,
Shape recognition with a neural classifier based on a fast polygon
approximation technique,
PR(27), No. 5, May 1994, pp. 627-636.
Elsevier DOI
0401
BibRef
Gupta, L.[Lalit],
Wang, J.S.[Jie-Sheng],
Charles, A.[Alain],
Kisatsky, P.[Paul],
Three-Layer Perceptron Based Classifiers for the
Partial Shape Classification Problem,
PR(27), No. 1, January 1994, pp. 91-97.
Elsevier DOI
BibRef
9401
Hirakura, Y.,
Yamaguchi, Y.,
Shimizu, H.,
Nagai, S.,
Dynamic Linking Among Neural Oscillators Leads to
Flexible Pattern-Recognition with Figure-Ground Separation,
NeurNet(9), No. 2, March 1996, pp. 189-209.
BibRef
9603
And:
Addition:
NeurNet(9), No. 7, October 1996, pp. 1255.
BibRef
Tang, H.W.,
Srinivasan, V.,
Ong, S.H.,
Invariant Object Recognition Using a Neural Template Classifier,
IVC(14), No. 7, July 1996, pp. 473-483.
Elsevier DOI
9607
Invariants.
BibRef
Ulgen, P.,
Flavell, A.,
Akamatsu, N.,
Online Shape-Recognition with Incremental Training Using
Binary Synaptic Weights Algorithm,
AppIntel(6), No. 3, July 1996, pp. 225-240.
Feature Extraction.
Neural Networks.
BibRef
9607
Jang, J.S.,
Shin, D.H.,
Parallel Optical-Feature Extraction by Use of
Rotationally Multiplexed Holograms,
Optics Letters(21), No. 19, October 1 1996, pp. 1612-1614.
Recognition.
BibRef
9610
Gupta, L.[Lalit],
Upadhye, A.M.[Anand M.],
Non-Linear Alignment of Neural Net Outputs for
Partial Shape Classification,
PR(24), No. 10, 1991, pp. 943-948.
Elsevier DOI
BibRef
9100
Nezis, K.,
Vosniakos, G.,
Recognizing 2-1/2D Shape-Features Using a
Neural-Network and Heuristics,
CAD(29), No. 7, July 1997, pp. 523-539.
9705
BibRef
Zha, H.B.[Hong-Bin],
Nanamegi, H.[Hideki],
Nagata, T.[Tadashi],
Recognizing 3-D Objects by Using a Hopfield-Style Optimization Algorithm
for Matching Patch Based Descriptions,
PR(31), No. 6, June 1998, pp. 727-741.
Elsevier DOI
9806
BibRef
Earlier:
3-D Object Recognition from Range Images by Using a
Model-Based Hopfield-Style Matching Algorithm,
ICPR96(IV: 111-116).
IEEE DOI
9608
(Kyushu Univ., J)
BibRef
Hara, K.[Kenji],
Zha, H.B.[Hong-Bin],
Hasegawa, T.[Tsutomu],
Regularization-Based 3-D Object Modeling from Multiple Range Images,
ICPR98(Vol II: 964-968).
IEEE DOI
9808
BibRef
Tadeusz, D.,
Ewa, D.D.,
Application of Neural Networks in 3D Object Recognition System,
PRAI(12), No. 4, June 1998, pp. 491-504.
9808
BibRef
Sanchiz, J.M.,
Pla, F.,
Inesta, J.M.,
Using Neural Networks To Detect Dominant Points In Chain-Coded Contours,
PRAI(12), No. 5, August 1998, pp. 661-675.
9809
BibRef
Earlier: A1, A3, A2:
A Neural Network-Based Algorithm to Detect Dominant Points from the
Chain-Code of a Contour,
ICPR96(IV: 325-329).
IEEE DOI
9608
(Univ. Jaume I, E)
BibRef
Foresti, G.L.[Gian Luca],
Outdoor Scene Classification by a Neural Tree-Based Approach,
PAA(2), No. 2, 1999, pp. 129-142.
BibRef
9900
Earlier:
A Probabilistic Approach to Object Classification by Neural Trees,
ICIP99(I:510-514).
IEEE DOI
BibRef
Foresti, G.L.,
Vanzella, W.,
Generalized Neural Trees for Outdoor Scene Understanding,
ICIP00(Vol III: 336-339).
IEEE DOI
0008
BibRef
Foresti, G.L., and
Pieroni, G.,
3D Object Recognition by Neural Trees,
ICIP97(III: 408-411).
IEEE DOI
BibRef
9700
Sim, H.C.,
Damper, R.I.,
A Neural Network Approach to Planar-Object Recognition in 3D Space,
PAA(2), No. 2, 1999, pp. 143-163.
BibRef
9900
Bors, A.G.,
Pitas, I.,
Object Classification in 3-D Images Using Alpha-Trimmed Mean Radial
Basis Function Network,
IP(8), No. 12, December 1999, pp. 1744-1756.
IEEE DOI
9912
BibRef
Spence, C.D.[Clay Douglas],
Pearson, J.C.[John Carr],
Sajda, P.[Paul],
Method and apparatus for training a neural network to learn hierarchical
representations of objects and to detect and classify objects
with uncertain training data,
US_Patent6,018,728, Jan 25, 2000
WWW Link.
BibRef
0001
Spence, C.D.[Clay Douglas],
Sajda, P.[Paul],
Method and apparatus for training a neural network to
detect objects in an image,
US_Patent6,324,532, Nov 27, 2001
WWW Link.
BibRef
0111
López Rubio, E.[Ezequiel],
Muńoz Pérez, J.[José],
Gómez Ruiz, J.A.[José Antonio],
Invariant pattern identification by self-organising networks,
PRL(22), No. 9, July 2001, pp. 983-990.
Elsevier DOI
0106
BibRef
Yuan, C.,
Niemann, H.,
Neural networks for the recognition and pose estimation of 3D objects
from a single 2D perspective view,
IVC(19), No. 9-10, August 2001, pp. 585-592.
Elsevier DOI
0108
BibRef
Lee, Y.L.[Yang-Lyul],
Park, R.H.[Rae-Hong],
A surface-based approach to 3-D object recognition using a mean field
annealing neural network,
PR(35), No. 2, February 2002, pp. 299-316.
Elsevier DOI
0201
BibRef
Lee, R.S.T.[Raymond S.T.],
Liu, J.N.K.[James N.K.],
Scene analysis using an integrated composite neural oscillatory elastic
graph matching model,
PR(35), No. 9, September 2002, pp. 1835-1846.
Elsevier DOI
0206
BibRef
Bayro-Corrochano, E.[Eduardo],
Vallejo, R.[Refugio],
Geometric preprocessing and neurocomputing for pattern recognition and
pose estimation,
PR(36), No. 12, December 2003, pp. 2909-2926.
Elsevier DOI
0310
BibRef
Earlier:
Geometric neurocomputing for pattern recognition and pose estimation,
ICPR02(I: 41-44).
IEEE DOI
0211
Pose Estimation.
BibRef
Chen, Y.H.[Yuan-Hao],
Zhu, L.L.[Long Leo],
Yuille, A.L.[Alan L.],
Zhang, H.J.[Hong-Jiang],
Unsupervised Learning of Probabilistic Object Models (POMs) for Object
Classification, Segmentation, and Recognition Using Knowledge
Propagation,
PAMI(31), No. 10, October 2009, pp. 1747-1761.
IEEE DOI
0909
BibRef
Earlier:
Unsupervised learning of probabilistic object models (POMs) for object
classification, segmentation and recognition,
CVPR08(1-8).
IEEE DOI
0806
See also Learning a Hierarchical Deformable Template for Rapid Deformable Object Parsing.
BibRef
Zhu, L.L.[Long Leo],
Chen, Y.H.[Yuan-Hao],
Yuille, A.L.[Alan L.],
Freeman, W.[William],
Latent hierarchical structural learning for object detection,
CVPR10(1062-1069).
IEEE DOI
1006
BibRef
Zhu, L.L.[Long Leo],
Chen, Y.H.[Yuan-Hao],
Ye, X.Y.[Xing-Yao],
Yuille, A.L.[Alan L.],
Structure-perceptron learning of a hierarchical log-linear model,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Tang, X.[Xikai],
Habashy, K.[Karim],
Huang, F.Z.[Fang-Zheng],
Li, C.[Chao],
Ban, D.[Dayan],
SCA-Net:
Spatial and channel attention-based network for 3D point clouds,
CVIU(232), 2023, pp. 103690.
Elsevier DOI
2305
Point clouds, 3D point processing, Attention network, Computer vision
BibRef
Rivas-Manzaneque, F.[Fernando],
Ribeiro, A.[Angela],
Avila-García, O.[Orlando],
ICE: Implicit Coordinate Encoder for Multiple Image Neural
Representation,
IP(32), 2023, pp. 5209-5219.
IEEE DOI
2310
learning a common feature space between images.
BibRef
Saltori, C.[Cristiano],
Roy, S.[Subhankar],
Sebe, N.[Nicu],
Iacca, G.[Giovanni],
Regularized Evolutionary Algorithm for Dynamic Neural Topology Search,
CIAP19(I:219-230).
Springer DOI
1909
BibRef
Chang, Y.,
Wu, X.,
Zhang, S.,
Piecewise Linear Units for Fast Self-Normalizing Neural Networks,
ICPR18(429-434)
IEEE DOI
1812
Biological neural networks, Random variables, Jacobian matrices,
Force, Neurons, Pattern recognition, Piecewise linear units,
self-normalizing property
BibRef
Fan, L.,
Deep Epitome for Unravelling Generalized Hamming Network,
ICPR18(409-416)
IEEE DOI
1812
approximation theory, convolution, data visualisation, neural nets,
optimisation, deep epitomes, Feature extraction
BibRef
Wang, X.L.[Xiao-Long],
Girshick, R.[Ross],
Gupta, A.[Abhinav],
He, K.M.[Kai-Ming],
Non-local Neural Networks,
CVPR18(7794-7803)
IEEE DOI
1812
Computational modeling, Neural networks,
Convolution, Feedforward systems, Convolutional codes
BibRef
Meng, Z.H.[Zi-Hang],
Adluru, N.[Nagesh],
Kim, H.W.J.[Hyun-Woo J.],
Fung, G.[Glenn],
Singh, V.[Vikas],
Efficient Relative Attribute Learning Using Graph Neural Networks,
ECCV18(XIV: 575-590).
Springer DOI
1810
BibRef
Haeusser, P.,
Mordvintsev, A.,
Cremers, D.,
Learning by Association:
A Versatile Semi-Supervised Training Method for Neural Networks,
CVPR17(626-635)
IEEE DOI
1711
Data models, Dogs, Neural networks, Training,
Training, data
BibRef
Knöbelreiter, P.,
Reinbacher, C.,
Shekhovtsov, A.,
Pock, T.,
End-to-End Training of Hybrid CNN-CRF Models for Stereo,
CVPR17(1456-1465)
IEEE DOI
1711
Computational modeling, Correlation, Feature extraction,
Neural networks, Robustness, Support vector machines, Training
BibRef
Jiang, Z.,
Wang, Y.,
Davis, L.,
Andrews, W.,
Rozgic, V.,
Learning Discriminative Features via Label Consistent Neural Network,
WACV17(207-216)
IEEE DOI
1609
Biological neural networks, Convergence, Feature extraction,
Linear programming, Neurons, Training, Videos
BibRef
Hafiz, A.R.,
Al-Marzouqi, H.,
Efficient neural network training using curvelet features,
IVMSP16(1-5)
IEEE DOI
1608
Biological neural networks
BibRef
Movshovitz-Attias, Y.[Yair],
Yu, Q.[Qian],
Stumpe, M.C.[Martin C.],
Shet, V.[Vinay],
Arnoud, S.[Sacha],
Yatziv, L.[Liron],
Ontological supervision for fine grained classification of Street
View storefronts,
CVPR15(1693-1702)
IEEE DOI
1510
BibRef
Kim, E.[Edward],
Hannan, D.[Darryl],
Kenyon, G.T.[Garrett T.],
Deep Sparse Coding for Invariant Multimodal Halle Berry Neurons,
CVPR18(1111-1120)
IEEE DOI
1812
Neurons, Encoding, Brain modeling, Biological system modeling,
Biological neural networks, Visualization, Standards
BibRef
Schultz, P.F.[Peter F.],
Bettencourt, L.M.[Luis M.],
Kenyon, G.T.[Garrett T.],
A symmetry-breaking generative model of a simple-cell/complex-cell
hierarchy,
Southwest12(89-92).
IEEE DOI
1205
3 layer neural net
BibRef
Hörnlein, T.[Thomas],
Jähne, B.[Bernd],
Boosting Shift-Invariant Features,
DAGM09(121-130).
Springer DOI
0909
local convolutions followed by subsampling, then learning.
BibRef
Szilágyi, S.M.[Sándor M.],
Szilágyi, L.[László],
Frigy, A.[Attila],
Görög, L.K.[Levente K.],
Benyó, Z.[Zoltán],
Unified Neural Network Based Pathologic Event Reconstruction Using
Spatial Heart Model,
CIARP07(851-860).
Springer DOI
0711
BibRef
Wersing, H.[Heiko],
Kirstein, S.[Stephan],
Schneiders, B.[Bernd],
Bauer-Wersing, U.[Ute],
Körner, E.[Edgar],
Online Learning for Bootstrapping of Object Recognition and
Localization in a Biologically Motivated Architecture,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Kirstein, S.[Stephan],
Wersing, H.[Heiko],
Körner, E.[Edgar],
Rapid Online Learning of Objects in a Biologically Motivated
Recognition Architecture,
DAGM05(301).
Springer DOI
0509
BibRef
Doulamis, N.D.,
Doulamis, A.D.,
Non-linear 3D rendering workload prediction based on a combined
fuzzy-neural network architecture for grid computing applications,
ICIP03(III: 1069-1072).
IEEE DOI
0312
BibRef
Loh, A.W.K.,
Robey, M.C.,
West, G.A.W.,
IFOSART: a noise resistant neural network capable of incremental
learning,
ICPR00(Vol II: 985-988).
IEEE DOI
0403
BibRef
Loh, A.W.K.,
Robey, M.C.,
West, G.A.W.,
Refining 3d models using a two-stage neural network-based iterative
process,
ICPR02(I: 172-175).
IEEE DOI
0211
BibRef
Villela, P.R.[Patricia Rayon],
Sossa Azuela, J.H.[J. Humberto],
Object Recognition by Indexing Using Neural Networks,
ICPR00(Vol II: 1001-1004).
IEEE DOI
0009
BibRef
Papamarkos, N.[Nikos],
Using Local Features in a Neural Network Based Gray-level Reduction
Technique,
ICPR00(Vol III: 1025-1028).
IEEE DOI
BibRef
0001
ICPR00(Vol III: 1037-1040).
IEEE DOI
0009
BibRef
Webb, A.R.,
Shannon, S.,
Adaptive Radial Basis Functions,
ICPR96(IV: 630-634).
IEEE DOI
9608
(Defence Res. Agency, UK)
BibRef
Webb, A.R.,
Nonlinear Feature Extraction with Radial Basis Functions Using a
Weighted Multidimensional Scaling Stress Measure,
ICPR96(IV: 635-639).
IEEE DOI
9608
(Defence Res. Agency, UK)
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Vision Transformers, ViT .