Schreiber, W.F.,
The Measurement of Third Order Probability Distributions
of Television Signals,
IT(2), No. 3, September 1956, pp. 94-106.
BibRef
5609
Stultz, K.F.,
Zweig, H.J.,
Roles of Sharpness and Graininess in
Photographic Quality and Definition,
JOSA(52), 1962, pp. 45-50.
BibRef
6200
Rosenfeld, A.,
On Models for the Perception of Visual Texture,
MPSVF(219-223). 1967.
BibRef
6700
Hawkins, J.K.,
Textural Properties for Pattern Recognition,
PPP70(347-370).
BibRef
7000
Read, J.S.,
Jayaramamurthy, S.N.,
Automatic Generation of Texture Feature Detectors,
TC(21), No. 7, July 1972, pp. 803-812.
BibRef
7207
McCormick, B.H.,
Jayaramamurthy, S.N.,
A Decision Theory Method for the Analysis of Texture,
CIS(4), 1975, pp. 1-38.
BibRef
7500
And:
CIS(3), 1974, pp. 329-343.
BibRef
Marr, D.[David],
Early Processing of Visual Information,
Royal(B-275), 1976, pp. 483-524.
BibRef
7600
And:
On the Purpose of Low-level Vision,
MIT AI Memo-324, December 1974.
WWW Link. (Another reference gave different page numbers: 97-137.)
The early paper that is always referenced, but is seldom seen.
See also Vision: A Computational Investigation into the Human Representation and Processing of Visual Information.
BibRef
Marr, D.,
Poggio, T.,
Ullman, S.,
Bandpass Channels, Zero-Crossings, and
Early Visual Information Processing,
JOSA(69), 1979, pp. 914-916.
BibRef
7900
And:
MIT AI Memo-491, September 1978.
BibRef
Marr, D.[David],
Analyzing Natural Images: A Computational Theory of Texture Vision,
MIT AI Memo-334, June 1975.
BibRef
7506
Habibi, A.,
Two Dimensional Bayesian Estimate of Images,
PIEEE(60), No. 7, July 1972, pp. 878-883.
BibRef
7207
Mitchell, O.R.,
Myers, C.R.,
Boyne, W.,
A Max-Min Measure for Image Texture Analysis,
TC(26), No. 4, April 1977, pp. 408-414.
BibRef
7704
Ehrich, R.W.,
Foith, J.P.,
A View of Texture Topology and Texture Description,
CGIP(8), No. 2, October 1978, pp. 174-202.
Elsevier DOI
BibRef
7810
Links, L.H.,
Biemond, J.,
On the Nonseparability of Image Models,
PAMI(1), No. 4, October 1979, pp. 409-411.
BibRef
7910
Schachter, B.[Bruce],
Model-Based Texture Measures,
PAMI(2), No. 2, March 1980, pp. 169-171.
BibRef
8003
Schachter, B.[Bruce],
Long crested wave models,
CGIP(12), No. 2, February 1980, pp. 187-201.
Elsevier DOI
0501
for textures
BibRef
Faugeras, O.D.,
Pratt, W.K.,
Decorrelation Methods of Texture Feature Extraction,
PAMI(2), No. 4, July 1980, pp. 323-332.
BibRef
8007
Earlier: A2, A1:
Development and Evaluation of Stochastic-Based
Visual Textures Features,
ICPR78(545-548).
BibRef
Faugeras, O.D.,
Autoregressive Modeling with Conditional Expectations for Texture
Synthesis,
ICPR80(792-794).
BibRef
8000
Earlier:
Texture Analysis and Classification Using a Human Visual Model,
ICPR78(549-552).
BibRef
Serra, J.,
The Boolean Model and Random Sets,
CGIP(12), No. 2, February 1980, pp. 99-126.
Elsevier DOI
BibRef
8002
Pratt, W.K.,
Faugeras, O.D.,
Gagalowicz, A.,
Applications of Stochastic Texture Field Models to Image Processing,
PIEEE(69), No. 5, May 1981, pp. 542-551.
BibRef
8105
Werman, M.,
Peleg, S.,
Min-Max Operators in Texture Analysis,
PAMI(7), No. 6, November 1985, pp. 730-733.
BibRef
8511
Earlier:
Multiresolution Texture Signatures Using Min-Max Operators,
ICPR84(97-99).
BibRef
Aach, T.,
Kaup, A.,
Mester, R.,
On Texture Analysis: Local Energy Transforms Versus Quadrature Filters,
SP(45), No. 2, August 1995, pp. 173-181.
BibRef
9508
Papathomas, T.V.,
Kashi, R.S.,
Gorea, A.,
A Human Vision-Based Computational Model for
Chromatic Texture Segregation,
SMC-B(27), No. 3, June 1997, pp. 428-440.
IEEE Top Reference.
9706
BibRef
Chellappa, R.,
Manjunath, B.S.,
Texture Classification and Segmentation,
FIU01(Chapter 8).
BibRef
0100
Chellappa, R.,
Kashyap, R.L.,
Manjunath, B.S.,
Model Based Texture Segmentation and Classification,
HPRCV97(Chapter II:2).
BibRef
9700
Myridis, N.E.,
Chamzas, C.,
Sampling On Concentric Circles,
MedImg(17), No. 2, April 1998, pp. 294-299.
IEEE Top Reference.
9808
BibRef
Thomson, M.G.A.[Mitchell G.A.],
Higher-order structure in natural scenes,
JOSA-A(16), No. 7, July 1999, pp. 1549-1553.
BibRef
9907
Gurnsey, R.,
Fleet, D.J.,
Texture space,
Vision Research(41), No. 3, 2001, pp. 745-757.
BibRef
0100
Zhang, J.[Jun],
Ma, D.H.[De-Hong],
Nonlinear prediction for Gaussian mixture image models,
IP(13), No. 6, June 2004, pp. 836-847.
IEEE DOI
0406
Modeling images.
The block-based multivariate Gaussian mixture model.
BibRef
Geusebroek, J.M.[Jan-Mark],
Smeulders, A.W.M.[Arnold W.M.],
A Six-Stimulus Theory for Stochastic Texture,
IJCV(62), No. 1-2, April-May 2005, pp. 7-16.
DOI Link
0411
BibRef
Earlier:
Fragmentation in the vision of scenes,
ICCV03(130-135).
IEEE DOI
0311
The spatial scene statistics to conform to a Weibull-distribution.
The parameters characterize the spatial structure of
uniform textures of many different origins completely.
The parameters are sensitive to
illumination conditions, camera magnification and resolving power, and
the texture orientation.
BibRef
Geusebroek, J.M.,
Smeulders, A.W.M.,
A Physical Explanation for Natural Image Statistics,
Texture02(47-52).
0207
BibRef
Geusebroek, J.M.[Jan-Mark],
The Stochastic Structure of Images,
ScaleSpace05(327-338).
Springer DOI
0505
BibRef
Ben-Yosef, G.[Guy],
Ben-Shahar, O.[Ohad],
Curvature-based perceptual singularities and texture saliency with
early vision mechanisms,
JOSA-A(25), No. 8, August 2008, pp. 1974-1993.
WWW Link.
0804
BibRef
Sang, D.[Dinh],
Algorithms for selecting parameters of combination of acyclic adjacency
graphs in the problem of texture image processing,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Rami, H.[Hassan],
Belmerhnia, L.[Leila],
El Maliani, A.D.[Ahmed Drissi],
El Hassouni, M.[Mohammed],
Texture retrieval using mixtures of generalized Gaussian distribution
and Cauchy-Schwarz divergence in wavelet domain,
SP:IC(42), No. 1, 2016, pp. 45-58.
Elsevier DOI
1603
Wavelet decomposition
BibRef
Rami, H.[Hassan],
El Maliani, A.D.[Ahmed Drissi],
El Hassouni, M.[Mohammed],
Aboutajdine, D.[Driss],
Texture Retrieval Using Cauchy-Schwarz Divergence and Generalized
Gaussian Mixtures,
ISVC14(II: 107-116).
Springer DOI
1501
BibRef
Terzic, K.[Kasim],
Krishna, S.[Sai],
du Buf, J.M.H.,
Texture features for object salience,
IVC(67), No. 1, 2017, pp. 43-51.
Elsevier DOI
1710
BibRef
Earlier:
A Parametric Spectral Model for Texture-Based Salience,
GCPR15(331-342).
Springer DOI
1511
Texture
BibRef
Chu, R.J.[Rui Jian],
Richard, N.[Noël],
Chatoux, H.[Hermine],
Fernandez-Maloigne, C.[Christine],
Hardeberg, J.Y.[Jon Yngve],
Hyperspectral Texture Metrology Based on Joint Probability of
Spectral and Spatial Distribution,
IP(30), 2021, pp. 4341-4356.
IEEE DOI
2104
BibRef
Earlier: A1, A2, A4, A5, Only:
A Metrological Measurement of Texture in Hyperspectral Images Using
Relocated Spectral Difference Occurrence Matrix,
ICIP19(3133-3137)
IEEE DOI
1910
Feature extraction, Metrology, Probability, Hyperspectral imaging,
Graphical models, Distribution functions, Quantization (signal),
metrology.
hyperspectral, texture, non-uniformity, Kullback-Leibler
BibRef
Milano, F.[Fiona],
Chevrier, A.[Anik],
de Crescenzo, G.[Gregory],
Lavertu, M.[Marc],
Robust Segmentation-Free Algorithm for Homogeneity Quantification in
Images,
IP(30), 2021, pp. 5533-5544.
IEEE DOI
2106
Image segmentation, Histograms, Nanocomposites, Gray-scale,
Image color analysis, Indexes, Flowcharts, Chitosan, dispersion,
statistical analysis
BibRef
Akoushideh, A.[Alireza],
Maybodi, B.M.N.[Babak Mazloom-Nezhad],
Shahbahrami, A.[Asadollah],
Features' value range approach to enhance the throughput of texture
classification,
IET-IPR(15), No. 1, 2021, pp. 28-46.
DOI Link
2106
Large dataset texture categories.
BibRef
Ataky, S.T.M.[Steve Tsham Mpinda],
Lameiras Koerich, A.[Alessandro],
A novel bio-inspired texture descriptor based on biodiversity and
taxonomic measures,
PR(123), 2022, pp. 108382.
Elsevier DOI
2112
Texture characterization and classification,
Species abundance
BibRef
de Matos, J.[Jonathan],
Soares-de Oliveira, L.E.[Luiz Eduardo],
de Souza-Britto-Junior, A.[Alceu],
Koerich, A.L.[Alessandro Lameiras],
Large-margin representation learning for texture classification,
PRL(170), 2023, pp. 39-47.
Elsevier DOI
2306
Fully convolutional networks, Large-margin classifier,
Feature extraction, Texture
BibRef
Wu, C.Y.[Chen-Yun],
Timm, M.[Mikayla],
Maji, S.[Subhransu],
Describing Textures Using Natural Language,
ECCV20(I:52-70).
Springer DOI
2011
BibRef
Ma, D.,
Chen, Z.,
Liao, Q.,
Tree-Shaped Sampling Based Hybrid Multi-Scale Feature Extraction for
Texture Classification,
ICIP18(2087-2091)
IEEE DOI
1809
Feature extraction, Histograms, Standards, Robustness, Encoding,
Training, Convolutional neural networks, Feature extraction,
tree-shaped sampling
BibRef
Ignat, A.[Anca],
Combining Features for Texture Analysis,
CAIP15(II:220-229).
Springer DOI
1511
BibRef
Martinez, J.[Jorge],
Pistonesi, S.[Silvina],
Flesia, A.G.[Ana Georgina],
Inference Strategies for Texture Parameters,
CIARP15(460-467).
Springer DOI
1511
BibRef
Ribeiro, T.P.[Thiago P.],
de Oliveira, A.L.N.,
Barcelos, C.A.Z.[Celia A. Zorzo],
Texture Characterization via Projections onto a Klein Bottle Topology,
ICIP18(2097-2101)
IEEE DOI
1809
Probability density function, Hip, Topology,
Feature extraction, Visualization, Cutoff frequency, Fibonacci
BibRef
Couto, L.N.[Leandro N.],
Ribeiro, T.P.[Thiago P.],
Backes, A.R.[André R.],
Barcelos, C.A.Z.[Celia A. Zorzo],
Texture characterization via improved deterministic walks on
image-generated complex network,
ICIP15(4416-4420)
IEEE DOI
1512
BibRef
Earlier: A2, A1, A3, A4:
Texture Characterization via Automatic Threshold Selection on
Image-Generated Complex Network,
CIARP15(468-476).
Springer DOI
1511
Texture characterization; complex networks; deterministic walks
BibRef
Couto, L.N.[Leandro N.],
Backes, A.R.[Andre R.],
Barcelos, C.A.Z.[Celia A.Z.],
Texture characterization via deterministic walks' direction histogram
applied to a complex network-based image transformation,
PRL(97), No. 1, 2017, pp. 77-83.
Elsevier DOI
1709
Texture characterization
BibRef
Xiao, S.S.[Song-Shan],
Tian, Y.[Yi],
An application of Visual Computational Theory in spatial frequency
domain: The simulation of dynamic radiated fringes,
IASP11(616-619).
IEEE DOI
1112
BibRef
Elkharraz, G.[Galal],
Thumfart, S.[Stefan],
Akay, D.[Diyar],
Eitzinger, C.[Christian],
Henson, B.[Brian],
Texture features corresponding to human touch feeling,
ICIP09(1341-1344).
IEEE DOI
0911
BibRef
Sun, S.[Shuli],
Liu, N.[Na],
New Approach to Optimal Filtering for ARMA Signals,
CISP09(1-4).
IEEE DOI
0910
auto-regressing moving average
BibRef
Unger, B.[Bertram],
Psychophysics of Virtual Texture Perception,
CMU-RI-TR-08-45, August, 2008.
BibRef
0808
Ph.D.Thesis, August, 2008.
WWW Link.
BibRef
Chen, J.[Jie],
Shan, S.G.[Shi-Guang],
Zhao, G.Y.[Guo-Ying],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Pietikainen, M.[Matti],
A robust descriptor based on Weber's Law,
CVPR08(1-7).
IEEE DOI
0806
Differential and direction.
BibRef
Dewangan, D.,
Samar, V.J.,
Rao, R.[Raghuveer],
Paul, P.,
Factors Influencing Psycophysically Valid Taxonomies of Image Texture,
ICIP05(III: 1196-1199).
IEEE DOI
0512
BibRef
Ojala, T.,
Maenpaa, T.,
Pietikainen, M.,
Viertola, J.,
Kyllonen, J.,
Huovinen, S.,
Outex: New framework for empirical evaluation of texture analysis
algorithms,
ICPR02(I: 701-706).
IEEE DOI
0211
BibRef
Ruiz-del-Solar, J.,
Jochmann, M.,
On Determining Human Description of Textures,
SCIA01(P-W4A).
0206
BibRef
Huang, Y.,
Chan, K.,
Huang, Z.,
An Adaptive Model for Texture Analysis,
ICIP00(Vol I: 276-279).
IEEE DOI
0008
BibRef
Petrou, M.,
Arrigo, M.,
Vons, H.,
On the Use the ID Boolean Model for the Description of Binary Textures,
BMVC96(Poster Session 1).
9608
University of Surrey
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Statistical Methods for Texture Description and Analysis .