22.1.5.32 Soil Organic Carbon

Chapter Contents (Back)
Organic Carbon. Soil Properties.

Peng, X.T.[Xiao-Ting], Shi, T.Z.[Tie-Zhu], Song, A.H.[Ai-Hong], Chen, Y.Y.[Yi-Yun], Gao, W.X.[Wen-Xiu],
Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods,
RS(6), No. 4, 2014, pp. 2699-2717.
DOI Link 1405
BibRef

Jiang, Q.H.[Qing-Hu], Chen, Y.Y.[Yi-Yun], Guo, L.[Long], Fei, T.[Teng], Qi, K.[Kun],
Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy,
RS(8), No. 9, 2016, pp. 755.
DOI Link 1610
BibRef

Kanning, M.[Martin], Siegmann, B.[Bastian], Jarmer, T.[Thomas],
Regionalization of Uncovered Agricultural Soils Based on Organic Carbon and Soil Texture Estimations,
RS(8), No. 11, 2016, pp. 927.
DOI Link 1612
BibRef

Ceddia, M.B.[Marcos B.], Gomes, A.S.[Andréa S.], Vasques, G.M.[Gustavo M.], Pinheiro, É.F.M.[Érika F. M.],
Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Guo, L.[Long], Chen, Y.Y.[Yi-Yun], Shi, T.Z.[Tie-Zhu], Zhao, C.[Chang], Liu, Y.L.[Yao-Lin], Wang, S.Q.[Shan-Qin], Zhang, H.T.[Hai-Tao],
Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link 1710
BibRef

Liu, H.Z.[Hui-Zeng], Shi, T.Z.[Tie-Zhu], Chen, Y.Y.[Yi-Yun], Wang, J.J.[Jun-Jie], Fei, T.[Teng], Wu, G.F.[Guo-Feng],
Improving Spectral Estimation of Soil Organic Carbon Content through Semi-Supervised Regression,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Peón, J.[Juanjo], Recondo, C.[Carmen], Fernández, S.[Susana], Calleja, J.F.[Javier F.], de Miguel, E.[Eduardo], Carretero, L.[Laura],
Prediction of Topsoil Organic Carbon Using Airborne and Satellite Hyperspectral Imagery,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Castaldi, F.[Fabio], Chabrillat, S.[Sabine], Jones, A.[Arwyn], Vreys, K.[Kristin], Bomans, B.[Bart], van Wesemael, B.[Bas],
Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil Database,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Guo, L.[Long], Linderman, M.[Marc], Shi, T.[Tiezhu], Chen, Y.[Yiyun], Duan, L.J.[Li-Jun], Zhang, H.T.[Hai-Tao],
Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Gholizadeh, A.[Asa], Saberioon, M.[Mohammadmehdi], Carmon, N.[Nimrod], Boruvka, L.[Lubos], Ben-Dor, E.[Eyal],
Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Liu, Y.[Yi], Shi, Z.[Zhou], Zhang, G.L.[Gan-Lin], Chen, Y.Y.[Yi-Yun], Li, S.[Shuo], Hong, Y.S.[Yong-Shen], Shi, T.Z.[Tie-Zhu], Wang, J.J.[Jun-Jie], Liu, Y.[Yaolin],
Application of Spectrally Derived Soil Type as Ancillary Data to Improve the Estimation of Soil Organic Carbon by Using the Chinese Soil Vis-NIR Spectral Library,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Castaldi, F.[Fabio], Hueni, A.[Andreas], Chabrillat, S.[Sabine], Ward, K.[Kathrin], Buttafuoco, G.[Gabriele], Bomans, B.[Bart], Vreys, K.[Kristin], Brell, M.[Maximilian], van Wesemael, B.[Bas],
Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands,
PandRS(147), 2019, pp. 267-282.
Elsevier DOI 1901
Sentinel-2, Soil organic carbon mapping, Hyperspectral data, Multispectral data, SNR BibRef

Angelopoulou, T.[Theodora], Tziolas, N.[Nikolaos], Balafoutis, A.[Athanasios], Zalidis, G.[George], Bochtis, D.[Dionysis],
Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Chen, L.[Lin], Ren, C.Y.[Chun-Ying], Li, L.[Lin], Wang, Y.Q.[Ye-Qiao], Zhang, B.[Bai], Wang, Z.M.[Zong-Ming], Li, L.F.[Lin-Feng],
A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Guo, L.[Long], Shi, T.[Tiezhu], Linderman, M.[Marc], Chen, Y.[Yiyun], Zhang, H.T.[Hai-Tao], Fu, P.[Peng],
Exploring the Influence of Spatial Resolution on the Digital Mapping of Soil Organic Carbon by Airborne Hyperspectral VNIR Imaging,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Laamrani, A.[Ahmed], Berg, A.A.[Aaron A.], Voroney, P.[Paul], Feilhauer, H.[Hannes], Blackburn, L.[Line], March, M.[Michael], Dao, P.D.[Phuong D.], He, Y.H.[Yu-Hong], Martin, R.C.[Ralph C.],
Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Huang, J.Y.[Jing-Yi], Hartemink, A.E.[Alfred E.], Zhang, Y.[Yakun],
Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Zhang, Y.C.[Yang-Chengsi], Guo, L.[Long], Chen, Y.Y.[Yi-Yun], Shi, T.Z.[Tie-Zhu], Luo, M.[Mei], Ju, Q.L.[Qing-Lan], Zhang, H.T.[Hai-Tao], Wang, S.[Shanqin],
Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Ahmed, A.M.[Asmau M.], Duran, O.[Olga], Zweiri, Y.[Yahya], Smith, M.[Mike],
Quantification of Hydrocarbon Abundance in Soils Using Deep Learning with Dropout and Hyperspectral Data,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Vaudour, E.[Emmanuelle], Gomez, C.[Cécile], Loiseau, T.[Thomas], Baghdadi, N.[Nicolas], Loubet, B.[Benjamin], Arrouays, D.[Dominique], Ali, L.[Leïla], Lagacherie, P.[Philippe],
The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Castaldi, F.[Fabio], Chabrillat, S.[Sabine], Don, A.[Axel], van Wesemael, B.[Bas],
Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Chen, S.Y.[Si-Yuan], Liu, L.Y.[Liang-Yun], Zhang, X.[Xiao], Liu, X.J.[Xin-Jie], Chen, X.[Xidong], Qian, X.J.[Xiao-Jin], Xu, Y.[Yue], Xie, D.H.[Dong-Hui],
Retrieval of the Fraction of Radiation Absorbed by Photosynthetic Components (FAPARgreen) for Forest Using a Triple-Source Leaf-Wood-Soil Layer Approach,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef


Tan, S.Y., Li, J.,
An exploratory spatial analysis of soil organic carbon distribution in Canadian eco-regions,
Geospatial14(205-212).
DOI Link 1411
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Other Soil Properties, Remote Sensing .


Last update:Nov 7, 2019 at 15:08:56