Matsushita, Y.,
Nishino, K.[Ko],
Ikeuchi, K.,
Sakauchi, M.,
Illumination Normalization with Time-Dependent Intrinsic Images for
Video Surveillance,
PAMI(26), No. 10, October 2004, pp. 1336-1347.
IEEE Abstract.
0409
BibRef
Earlier:
CVPR03(I: 3-10).
IEEE DOI
0307
BibRef
Matsushita, Y.,
Nishino, K.[Ko],
Ikeuchi, K.,
Sakauchi, M.,
Shadow elimination for robust video surveillance,
Motion02(15-21).
IEEE DOI
0303
BibRef
Matsushita, Y.[Yasuyuki],
Lin, S.[Stephen],
Shum, H.Y.[Heung-Yeung],
Tong, X.[Xin],
Kang, S.B.[Sing Bing],
Lighting and Shadow Interpolation Using Intrinsic Lumigraphs,
IJIG(4), No. 4, October 2004, pp. 585-604.
0410
BibRef
Shen, L.[Li],
Tan, P.[Ping],
Lin, S.[Stephen],
Intrinsic image decomposition with non-local texture cues,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Fusiello, A.[Andrea],
Farenzena, M.[Michela],
Busti, A.,
Benedetti, A.,
Computing rigorous bounds to the accuracy of calibrated stereo
reconstruction,
VISP(152), No. 6, December 2005, pp. 695-701.
0512
BibRef
Earlier: A2, A3, A1, A4:
Rigorous accuracy bounds for calibrated stereo reconstruction,
ICPR04(IV: 288-292).
IEEE DOI
0409
BibRef
Farenzena, M.[Michela],
Dovier, A.[Agostino],
Reconstruction with Interval Constraints Propagation,
CVPR06(I: 1185-1190).
IEEE DOI
0606
BibRef
Farenzena, M.[Michela],
Fusiello, A.[Andrea],
Stabilizing 3D modeling with geometric constraints propagation,
CVIU(113), No. 11, November 2009, pp. 1147-1157.
Elsevier DOI
0910
BibRef
Earlier:
3D surface models by geometric constraints propagation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Earlier:
Recovering Intrinsic Images using an Illumination Invariant Image,
ICIP07(III: 485-488).
IEEE DOI
0709
3D modeling; Geometric constraints
BibRef
Tappen, M.F.[Marshall F.],
Freeman, W.T.[William T.],
Adelson, E.H.[Edward H.],
Recovering Intrinsic Images from a Single Image,
PAMI(27), No. 9, September 2005, pp. 1459-1472.
IEEE DOI
0508
BibRef
Earlier:
MIT AIMAIM-2002-015, September 2002.
WWW Link.
0306
Given color and lighting direction, recover shading and reflection.
BibRef
Tappen, M.F.[Marshall F.],
Adelson, E.H.[Edward H.],
Freeman, W.T.[William T.],
Estimating Intrinsic Component Images using Non-Linear Regression,
CVPR06(II: 1992-1999).
IEEE DOI
0606
BibRef
Tappen, M.F.[Marshall F.],
Recovering shape from a single image of a mirrored surface from
curvature constraints,
CVPR11(2545-2552).
IEEE DOI
1106
BibRef
Khan, N.[Nazar],
Tran, L.[Lam],
Tappen, M.F.[Marshall F.],
Training many-parameter shape-from-shading models using a surface
database,
3DIM09(1433-1440).
IEEE DOI
0910
BibRef
Johnson, M.K.[Micah K.],
Adelson, E.H.[Edward H.],
Shape estimation in natural illumination,
CVPR11(2553-2560).
IEEE DOI
1106
BibRef
Johnson, M.K.[Micah K.],
Adelson, E.H.[Edward H.],
Retrographic sensing for the measurement of surface texture and shape,
CVPR09(1070-1077).
IEEE DOI
0906
Device for 2.5D scanner. Haptic, photometric stereo.
flecks of paint in clear flexible surface, image from the other side. Very
detailed 3D no matter the surface.
BibRef
Zoran, D.,
Isola, P.[Phillip],
Krishnan, D.,
Freeman, W.T.[William T.],
Learning Ordinal Relationships for Mid-Level Vision,
ICCV15(388-396)
IEEE DOI
1602
Context. Pairwise relationships. Not metric properties.
BibRef
Cole, F.[Forrester],
Isola, P.[Phillip],
Freeman, W.T.[William T.],
Durand, F.[Frédo],
Adelson, E.H.[Edward H.],
Shapecollage: Occlusion-Aware, Example-Based Shape Interpretation,
ECCV12(III: 665-678).
Springer DOI
1210
and line drawings
BibRef
Johnson, M.K.[Micah K.],
Cole, F.[Forrester],
Raj, A.[Alvin],
Adelson, E.H.[Edward H.],
Microgeometry Capture using an Elastomeric Sensor,
SIGGraph11(xx-yy).
PDF File.
1109
System, GelSight. More details based on earlier retrographic sensing.
The GelSight System.
BibRef
Shen, L.[Li],
Yeo, C.H.[Chuo-Hao],
Hua, B.S.[Binh-Son],
Intrinsic Image Decomposition Using a Sparse Representation of
Reflectance,
PAMI(35), No. 12, 2013, pp. 2904-2915.
IEEE DOI
1311
BibRef
Earlier: A1, A2, Only:
Intrinsic images decomposition using a local and global sparse
representation of reflectance,
CVPR11(697-704).
IEEE DOI
1106
Image color analysis
BibRef
Shen, J.,
Yang, X.,
Li, X.,
Jia, Y.,
Intrinsic Image Decomposition Using Optimization and User Scribbles,
Cyber(43), No. 2, April 2013, pp. 425-436.
IEEE DOI
1303
BibRef
Barron, J.T.[Jonathan T.],
Malik, J.[Jitendra],
Shape, Illumination, and Reflectance from Shading,
PAMI(37), No. 8, August 2015, pp. 1670-1687.
IEEE DOI
1507
BibRef
Earlier:
Shape, albedo, and illumination from a single image of an unknown
object,
CVPR12(334-341).
IEEE DOI
1208
BibRef
Earlier:
High-frequency shape and albedo from shading using natural image
statistics,
CVPR11(2521-2528).
IEEE DOI
1106
Computer vision
BibRef
Barron, J.T.[Jonathan T.],
Malik, J.[Jitendra],
Intrinsic Scene Properties from a Single RGB-D Image,
PAMI(38), No. 4, April 2016, pp. 690-703.
IEEE DOI
1603
BibRef
Earlier:
CVPR13(17-24)
IEEE DOI
1309
BibRef
And:
Color Constancy, Intrinsic Images, and Shape Estimation,
ECCV12(IV: 57-70).
Springer DOI
1210
Computational modeling
BibRef
Barron, J.T.,
Convolutional Color Constancy,
ICCV15(379-387)
IEEE DOI
1602
Cognition
BibRef
Kang, X.D.[Xu-Dong],
Li, S.T.[Shu-Tao],
Fang, L.Y.[Le-Yuan],
Benediktsson, J.A.[Jón Atli],
Intrinsic Image Decomposition for Feature Extraction of Hyperspectral
Images,
GeoRS(53), No. 4, April 2015, pp. 2241-2253.
IEEE DOI
1502
feature extraction
BibRef
Hauagge, D.C.[Daniel C.],
Wehrwein, S.[Scott],
Bala, K.[Kavita],
Snavely, N.[Noah],
Photometric Ambient Occlusion for Intrinsic Image Decomposition,
PAMI(38), No. 4, April 2016, pp. 639-651.
IEEE DOI
1603
BibRef
Earlier:
Photometric Ambient Occlusion,
CVPR13(2515-2522)
IEEE DOI
1309
Cameras.
albedo; image stacks; intrinsic images.
Stack of images from one viewpoint.
ambient occlusion: how much light can reach a point in the scene.
BibRef
Kovacs, B.[Balazs],
Bell, S.[Sean],
Snavely, N.[Noah],
Bala, K.[Kavita],
Shading Annotations in the Wild,
CVPR17(850-859)
IEEE DOI
1711
Image color analysis, Image decomposition, Lighting, Shape,
Surface acoustic waves, Surface, treatment
BibRef
Xing, G.Y.[Guan-Yu],
Liu, Y.L.[Yan-Li],
Zhang, W.[Wanfa],
Ling, H.B.[Hai-Bin],
Light mixture intrinsic image decomposition based on a single RGB-D
image,
VC(32), No. 6-8, June 2016, pp. 1013-1023.
Springer DOI
1608
BibRef
Jin, X.,
Gu, Y.,
Superpixel-Based Intrinsic Image Decomposition of Hyperspectral
Images,
GeoRS(55), No. 8, August 2017, pp. 4285-4295.
IEEE DOI
1708
Feature extraction, Hyperspectral imaging, Image segmentation,
Lighting, Mathematical model, Matrix decomposition,
Hyperspectral image, intrinsic image decomposition (IID),
optimization, superpixel
BibRef
Yue, H.,
Yang, J.,
Sun, X.,
Wu, F.,
Hou, C.,
Contrast Enhancement Based on Intrinsic Image Decomposition,
IP(26), No. 8, August 2017, pp. 3981-3994.
IEEE DOI
1707
image colour analysis, image enhancement, HSV space,
Split Bregman algorithm, color similarity,
computing complexity reduction, contrast enhancement,
illumination information, illumination layer,
intrinsic image decomposition,
piece- wise smoothness constraint, piecewise constant,
BibRef
Han, G.,
Xie, X.,
Lai, J.,
Zheng, W.S.,
Learning an Intrinsic Image Decomposer Using Synthesized RGB-D
Dataset,
SPLetters(25), No. 6, June 2018, pp. 753-757.
IEEE DOI
1806
feature extraction, image colour analysis, image texture,
learning (artificial intelligence), neural nets,
intrinsic image
BibRef
Jin, X.,
Gu, Y.,
Liu, T.,
Intrinsic Image Recovery From Remote Sensing Hyperspectral Images,
GeoRS(57), No. 1, January 2019, pp. 224-238.
IEEE DOI
1901
Hyperspectral imaging, Pigments, Feature extraction, Lighting,
Mathematical model, Classification, feature extraction,
reflectance
BibRef
Tong, G.F.[Guo-Feng],
Li, Y.[Yong],
Sun, A.[Anan],
Wang, Y.B.[Yue-Bin],
Shadow effect weakening based on intrinsic image extraction with
effective projection of logarithmic domain for road scene,
SIViP(14), No. 4, June 2020, pp. 683-691.
WWW Link.
2005
BibRef
Krebs, A.[Alexandre],
Benezeth, Y.[Yannick],
Marzani, F.[Franck],
Intrinsic image decomposition as two independent deconvolution
problems,
SP:IC(86), 2020, pp. 115872.
Elsevier DOI
2006
Dichromatic reflection model, Inverse problem, Color constancy
BibRef
Baslamisli, A.S.[Anil S.],
Liu, Y.[Yang],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Physics-based shading reconstruction for intrinsic image
decomposition,
CVIU(205), 2021, pp. 103183.
Elsevier DOI
2103
Intrinsic image decomposition, Shading, Albedo, Invariant image descriptors
BibRef
Das, P.[Partha],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Intrinsic image decomposition using physics-based cues and CNNs,
CVIU(223), 2022, pp. 103538.
Elsevier DOI
2210
Physics based vision, Intrinsics image decomposition, Deep learning
BibRef
Baslamisli, A.S.[Anil S.],
Le, H.,
Gevers, T.[Theo],
CNN Based Learning Using Reflection and Retinex Models for Intrinsic
Image Decomposition,
CVPR18(6674-6683)
IEEE DOI
1812
Lighting, Light sources, Standards, Computational modeling,
Convolutional neural networks, Mathematical model
BibRef
Li, K.[Kun],
Wang, Y.J.[Yu-Jie],
Ye, X.C.[Xin-Chen],
Yan, C.G.[Cheng-Gang],
Yang, J.Y.[Jing-Yu],
Sparse intrinsic decomposition and applications,
SP:IC(95), 2021, pp. 116281.
Elsevier DOI
2106
Intrinsic decomposition, RGB-D, Sparse, Non-local, Depth refinement
BibRef
Ma, Y.P.[Yu-Peng],
Jiang, X.Y.[Xiao-Yue],
Xia, Z.Q.[Zhao-Qiang],
Gabbouj, M.[Moncef],
Feng, X.Y.[Xiao-Yi],
CasQNet: Intrinsic Image Decomposition Based on Cascaded Quotient
Network,
CirSysVideo(31), No. 7, July 2021, pp. 2661-2674.
IEEE DOI
2107
Feature extraction, Image decomposition, Image reconstruction,
Task analysis, Lighting, Shape, Image analysis, Intrinsic image,
U-net
BibRef
Li, W.[Wen],
Resmerita, E.[Elena],
Vese, L.A.[Luminita A.],
Multiscale Hierarchical Image Decomposition and Refinements:
Qualitative and Quantitative Results,
SIIMS(14), No. 2, 2021, pp. 844-877.
DOI Link
2107
BibRef
Baslamisli, A.S.[Anil S.],
Das, P.[Partha],
Le, H.A.[Hoang-An],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
ShadingNet: Image Intrinsics by Fine-Grained Shading Decomposition,
IJCV(129), No. 8, August 2021, pp. 2445-2473.
Springer DOI
2108
BibRef
Baslamisli, A.S.[Anil S.],
Groenestege, T.T.[Thomas T.],
Das, P.[Partha],
Le, H.A.[Hoang-An],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Joint Learning of Intrinsic Images and Semantic Segmentation,
ECCV18(VI: 289-305).
Springer DOI
1810
BibRef
Garces, E.[Elena],
Rodriguez-Pardo, C.[Carlos],
Casas, D.[Dan],
Lopez-Moreno, J.[Jorge],
A Survey on Intrinsic Images: Delving Deep into Lambert and Beyond,
IJCV(130), No. 3, March 2022, pp. 836-868.
Springer DOI
2203
Survey, Intrinsic Images.
BibRef
Liu, X.Y.[Xiang-Yuan],
Wu, Z.K.[Zhong-Ke],
Wang, X.C.[Xing-Ce],
A robust intrinsic feature of images derived from the tensor manifold,
PRL(160), 2022, pp. 73-81.
Elsevier DOI
2208
Riemannian manifold, Positive definite symmetric matrices,
Tensor, Structure tensor, Geodesic distance
BibRef
Forsyth, D.A.[David A.],
Rock, J.J.[Jason J.],
Intrinsic Image Decomposition Using Paradigms,
PAMI(44), No. 11, November 2022, pp. 7624-7637.
IEEE DOI
2210
Standards, Computational modeling, Training, Image decomposition,
Data models, Training data, Licenses, reflectance, image models,
unsupervised learning
BibRef
Zhang, Q.[Qing],
Zhou, J.[Jin],
Zhu, L.[Lei],
Sun, W.[Wei],
Xiao, C.X.[Chun-Xia],
Zheng, W.S.[Wei-Shi],
Unsupervised Intrinsic Image Decomposition Using Internal
Self-Similarity Cues,
PAMI(44), No. 12, December 2022, pp. 9669-9686.
IEEE DOI
2212
Training, Lighting, Image reconstruction, Image decomposition,
Surface acoustic waves, Image sequences, Annotations,
shading
BibRef
Zhang, F.[Feng],
Jiang, X.Y.[Xiao-Yue],
Xia, Z.Q.[Zhao-Qiang],
Gabbouj, M.[Moncef],
Peng, J.Y.[Jin-Ye],
Feng, X.Y.[Xiao-Yi],
Non-Local Color Compensation Network for Intrinsic Image
Decomposition,
CirSysVideo(33), No. 1, January 2023, pp. 132-145.
IEEE DOI
2301
Image color analysis, Feature extraction, Image decomposition,
Image reconstruction, Lighting, Task analysis, Decoding, mutual constraint
BibRef
Li, Y.D.[Yuan-Dong],
Hu, Q.L.[Qing-Lei],
Ouyang, Z.C.[Zhen-Chao],
Shen, S.H.[Shu-Han],
Neural Reflectance Decomposition Under Dynamic Point Light,
CirSysVideo(34), No. 4, April 2024, pp. 2195-2208.
IEEE DOI
2404
Geometry, Surface texture,
Rendering (computer graphics), Light sources, Reflectivity,
self-supervised
BibRef
Yoshida, Y.[Yusaku],
Kawahara, R.[Ryo],
Okabe, T.[Takahiro],
Light Source Separation and Intrinsic Image Decomposition under AC
Illumination,
CVPR23(5735-5743)
IEEE DOI
2309
BibRef
Maralan, S.S.[Sepideh Sarajian],
Careaga, C.[Chris],
Aksoy, Y.[Yagiz],
Computational Flash Photography through Intrinsics,
CVPR23(16654-16662)
IEEE DOI
2309
BibRef
Das, P.[Partha],
Karaoglu, S.[Sezer],
Gijsenij, A.[Arjan],
Gevers, T.[Theo],
Signet: Intrinsic Image Decomposition by a Semantic and Invariant
Gradient Driven Network for Indoor Scenes,
CVMeta22(605-620).
Springer DOI
2304
BibRef
Sun, H.[Haomiao],
Shan, S.G.[Shi-Guang],
Han, H.[Hu],
Intrinsic Imaging Model Enhanced Contrastive Face Representation
Learning,
FG23(1-8)
IEEE DOI
2303
Representation learning, Training, Solid modeling,
Analytical models, Imaging, Data models
BibRef
Ulucan, D.[Diclehan],
Ulucan, O.[Oguzhan],
Ebner, M.[Marc],
IID-NORD: A Comprehensive Intrinsic Image Decomposition Dataset,
ICIP22(2831-2835)
IEEE DOI
2211
Reflectivity, Image segmentation, Shape, Lighting, Benchmark testing,
Image decomposition, Intrinsic image decomposition, dataset, computer graphics
BibRef
Zhang, F.[Fan],
You, S.[Shaodi],
Li, Y.[Yu],
Fu, Y.[Ying],
HSI-Guided Intrinsic Image Decomposition for Outdoor Scenes,
PBVS22(312-321)
IEEE DOI
2210
Reflectivity, Roads, Surface acoustic waves, Manuals,
Rendering (computer graphics), Image decomposition
BibRef
Munkberg, J.[Jacob],
Chen, W.Z.[Wen-Zheng],
Hasselgren, J.[Jon],
Evans, A.[Alex],
Shen, T.C.[Tian-Chang],
Müller, T.[Thomas],
Gao, J.[Jun],
Fidler, S.[Sanja],
Extracting Triangular 3D Models, Materials, and Lighting From Images,
CVPR22(8270-8280)
IEEE DOI
2210
Graphics, Solid modeling, Computational modeling, Lighting,
Rendering (computer graphics), Topology, Vision + graphics
BibRef
Das, P.[Partha],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic
Image Decomposition,
CVPR22(19758-19767)
IEEE DOI
2210
Reflectivity, Photography, Deep learning, Codes,
Image edge detection, Lighting, Computational photography,
Physics-based vision and shape-from-X
BibRef
Weligampola, H.[Harshana],
Jayatilaka, G.[Gihan],
Sritharan, S.[Suren],
Ekanayake, P.[Parakrama],
Ragel, R.[Roshan],
Herath, V.[Vijitha],
Godaliyadda, R.[Roshan],
An Optical Physics Inspired CNN Approach for Intrinsic Image
Decomposition,
ICIP21(1864-1868)
IEEE DOI
2201
Reflectivity, Neural networks, Optical fiber networks,
Optical imaging, Image decomposition, Numerical models, Phong model
BibRef
Alhaija, H.A.,
Mustikovela, S.K.,
Thies, J.,
Jampani, V.,
Nießner, M.,
Geiger, A.,
Rother, C.[Carsten],
Intrinsic Autoencoders for Joint Deferred Neural Rendering and
Intrinsic Image Decomposition,
3DV20(1176-1185)
IEEE DOI
2102
Rendering (computer graphics), Solid modeling, Image synthesis,
Training, Task analysis, Geometry, GAN
BibRef
Liu, A.[Andrew],
Ginosar, S.[Shiry],
Zhou, T.H.[Ting-Hui],
Efros, A.A.[Alexei A.],
Snavely, N.[Noah],
Learning to Factorize and Relight a City,
ECCV20(IV:544-561).
Springer DOI
2011
BibRef
Zhou, H.,
Yu, X.,
Jacobs, D.,
GLoSH: Global-Local Spherical Harmonics for Intrinsic Image
Decomposition,
ICCV19(7819-7828)
IEEE DOI
2004
image colour analysis, learning (artificial intelligence),
lighting, coarse-to-fine network structure, coarse network,
Surface acoustic waves
BibRef
Alayrac, J.B.[Jean-Baptiste],
Carreira, J.[Joao],
Zisserman, A.[Andrew],
The Visual Centrifuge: Model-Free Layered Video Representations,
CVPR19(2452-2461).
IEEE DOI
2002
BibRef
Alayrac, J.B.[Jean-Baptiste],
Carreira, J.[Joao],
Arandjelovic, R.[Relja],
Zisserman, A.[Andrew],
Controllable Attention for Structured Layered Video Decomposition,
ICCV19(5733-5742)
IEEE DOI
2004
Separate reflections, transparency or object motion.
feature extraction, image motion analysis,
learning (artificial intelligence), neural nets, Controllability
BibRef
Cheng, Z.[Ziang],
Zheng, Y.Q.[Yin-Qiang],
You, S.D.[Shao-Di],
Sato, I.[Imari],
Non-Local Intrinsic Decomposition With Near-Infrared Priors,
ICCV19(2521-2530)
IEEE DOI
2004
computational complexity, convolution,
image colour analysis, minimisation, Training
BibRef
Cheng, L.,
Zhang, C.,
Liao, Z.,
Intrinsic Image Transformation via Scale Space Decomposition,
CVPR18(656-665)
IEEE DOI
1812
Laplace equations, Task analysis, Training, Space exploration,
Network architecture, Computer architecture, Transforms
BibRef
Huang, Q.,
Zhu, W.,
Zhao, Y.,
Chen, L.,
Wang, Y.,
Yue, T.,
Cao, X.,
Multispectral Image Intrinsic Decomposition via Subspace Constraint,
CVPR18(6430-6439)
IEEE DOI
1812
Lighting, Image color analysis, Image segmentation, Geometry,
Image decomposition, Subspace constraints, Color
BibRef
Fan, Q.,
Yang, J.,
Hua, G.,
Chen, B.,
Wipf, D.,
Revisiting Deep Intrinsic Image Decompositions,
CVPR18(8944-8952)
IEEE DOI
1812
Training, Image edge detection, Image decomposition,
Benchmark testing, Optimization, Training data, Lighting
BibRef
Li, Z.,
Snavely, N.,
Learning Intrinsic Image Decomposition from Watching the World,
CVPR18(9039-9048)
IEEE DOI
1812
Training, Lighting, Videos, Image sequences, Image reconstruction,
Sparse matrices
BibRef
Han, G.,
Xie, X.,
Zheng, W.,
Lai, J.,
Learning Intrinsic Image Decomposition by Deep Neural Network with
Perceptual Loss,
ICPR18(91-96)
IEEE DOI
1812
feature extraction, learning (artificial intelligence), neural nets,
Image decomposition
BibRef
Li, Z.Q.[Zheng-Qi],
Snavely, N.[Noah],
CGIntrinsics: Better Intrinsic Image Decomposition Through
Physically-Based Rendering,
ECCV18(III: 381-399).
Springer DOI
1810
BibRef
Garces, E.,
Reinhard, E.,
Light-Field Surface Color Segmentation with an Application to
Intrinsic Decomposition,
WACV18(1480-1488)
IEEE DOI
1806
image colour analysis, image segmentation, dense light fields,
fully automatic segmentation pipeline, intrinsic decomposition,
Surface treatment
BibRef
Muhammad, S.[Siraj],
Dailey, M.N.[Matthew N.],
Sato, I.[Imari],
Majeed, M.F.[Muhammad F.],
Handling Specularity in Intrinsic Image Decomposition,
ICIAR18(107-115).
Springer DOI
1807
BibRef
Nestmeyer, T.,
Gehler, P.V.,
Reflectance Adaptive Filtering Improves Intrinsic Image Estimation,
CVPR17(1771-1780)
IEEE DOI
1711
Benchmark testing, Estimation,
Image color analysis, Image decomposition, Standards
BibRef
Kim, S.R.[Seung-Ryong],
Park, K.[Kihong],
Sohn, K.H.[Kwang-Hoon],
Lin, S.[Stephen],
Unified Depth Prediction and Intrinsic Image Decomposition from a
Single Image via Joint Convolutional Neural Fields,
ECCV16(VIII: 143-159).
Springer DOI
1611
BibRef
Xie, D.H.[De-Hua],
Liu, S.C.[Shuai-Cheng],
Lin, K.[Kaimo],
Zhu, S.Y.[Shu-Yuan],
Zeng, B.[Bing],
Intrinsic decomposition for stereoscopic images,
ICIP16(1744-1748)
IEEE DOI
1610
Avalanche photodiodes. Reflectance and shading.
BibRef
Laffont, P.Y.,
Bazin, J.C.,
Intrinsic Decomposition of Image Sequences from Local Temporal
Variations,
ICCV15(433-441)
IEEE DOI
1602
Reflectance and shading.
Geometry
BibRef
Zhou, T.,
Krähenbühl, P.[Philipp],
Efros, A.A.,
Learning Data-Driven Reflectance Priors for Intrinsic Image
Decomposition,
ICCV15(3469-3477)
IEEE DOI
1602
Computer vision
BibRef
Narihira, T.,
Maire, M.,
Yu, S.X.,
Direct Intrinsics: Learning Albedo-Shading Decomposition by
Convolutional Regression,
ICCV15(2992-2992)
IEEE DOI
1602
Color
BibRef
Jeon, J.[Junho],
Cho, S.H.[Sung-Hyun],
Tong, X.[Xin],
Lee, S.Y.[Seung-Yong],
Intrinsic Image Decomposition Using Structure-Texture Separation and
Surface Normals,
ECCV14(VII: 218-233).
Springer DOI
1408
using RGB-D image.
also use texture.
BibRef
Shelhamer, E.[Evan],
Barron, J.T.,
Darrell, T.J.[Trevor J.],
Scene Intrinsics and Depth from a Single Image,
IR15(235-242)
IEEE DOI
1602
Cognition; Lighting; Optimization; Pipelines; Sensors; Shape; Training
BibRef
Kong, N.[Naejin],
Black, M.J.[Michael J.],
Intrinsic Depth: Improving Depth Transfer with Intrinsic Images,
ICCV15(3514-3522)
IEEE DOI
1602
Cameras
BibRef
Chang, J.[Jason],
Cabezas, R.[Randi],
Fisher, III, J.W.[John W.],
Bayesian Nonparametric Intrinsic Image Decomposition,
ECCV14(IV: 704-719).
Springer DOI
1408
BibRef
Kong, N.[Naejin],
Gehler, P.V.[Peter V.],
Black, M.J.[Michael J.],
Intrinsic Video,
ECCV14(II: 360-375).
Springer DOI
1408
extracting temporally coherent albedo and shading from video alone.
BibRef
Chen, Q.F.[Qi-Feng],
Koltun, V.[Vladlen],
Photographic Image Synthesis with Cascaded Refinement Networks,
ICCV17(1520-1529)
IEEE DOI
1802
BibRef
Earlier:
Fast MRF Optimization with Application to Depth Reconstruction,
CVPR14(3914-3921)
IEEE DOI
1409
BibRef
Earlier:
A Simple Model for Intrinsic Image Decomposition with Depth Cues,
ICCV13(241-248)
IEEE DOI
1403
feedforward neural nets, image resolution, regression analysis,
2-megapixel resolution, cascaded refinement networks.
Depth Reconstruction; MRF Optimization.
RGB-D images. estimate albedo and shading fields.
BibRef
Yu, J.Z.[Jin-Ze],
Rank-constrained PCA for intrinsic images decomposition,
ICIP16(3578-3582)
IEEE DOI
1610
Computer vision
BibRef
Yu, J.Z.[Jin-Ze],
Sato, Y.[Yoichi],
Fast sparse edge-based intrinsic image decomposition guided by
chromaticity gradients,
ICIP15(3753-3757)
IEEE DOI
1512
L0-norm
BibRef
Liu, Y.L.[Yuan-Liu],
Yuan, Z.J.[Ze-Jian],
Zheng, N.N.[Nan-Ning],
Intrinsic Image Decomposition from Pair-Wise Shading Ordering,
ACCV14(V: 83-98).
Springer DOI
1504
intrinsic images.
BibRef
Liao, Z.C.[Zi-Cheng],
Rock, J.J.[Jason J.],
Wang, Y.[Yang],
Forsyth, D.A.[David A.],
Non-parametric Filtering for Geometric Detail Extraction and Material
Representation,
CVPR13(963-970)
IEEE DOI
1309
Geometric detail; intrinsic image decomposition; material representation.
Separate description of detail from intrinsic image. Coarse shading plus
details. Enables editing.
BibRef
Kumar, P.,
Intrinsic Image Based Moving Object Cast Shadow Removal in Image
Sequences,
DICTA11(410-415).
IEEE DOI
1205
BibRef
Shen, J.B.[Jian-Bing],
Yang, X.S.[Xiao-Shan],
Jia, Y.D.[Yun-De],
Li, X.L.[Xue-Long],
Intrinsic images using optimization,
CVPR11(3481-3487).
IEEE DOI
1106
Similar neighboring colors are similar reflectance properties.
BibRef
Grosse, R.[Roger],
Johnson, M.K.[Micah K.],
Adelson, E.H.[Edward H.],
Freeman, W.T.[William T.],
Ground truth dataset and baseline evaluations for intrinsic image
algorithms,
ICCV09(2335-2342).
IEEE DOI
0909
Dataset, Shading. For shading and reflectance computations.
BibRef
Jiang, X.Y.[Xiao-Yue],
Schofield, A.J.[Andrew J.],
Wyatt, J.L.[Jeremy L.],
Correlation-Based Intrinsic Image Extraction from a Single Image,
ECCV10(IV: 58-71).
Springer DOI
1009
Luminance.
BibRef
El-Melegy, M.T.,
Image Intrinsic Values from Shading Information,
ICIP05(II: 1166-1169).
IEEE DOI
0512
BibRef
Kell, M.S.,
Cristobal, G.,
Neumann, H.,
Neural mechanisms for segregation and recovering of intrinsic images
features,
ICIP03(I: 693-696).
IEEE DOI
0312
BibRef
Weiss, Y.[Yair],
Deriving Intrinsic Images from Image Sequences,
ICCV01(II: 68-75).
IEEE DOI
0106
Stationary camera, changing sun.
Multiple images give the reflectance image separate from the illumination.
BibRef
Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Dual/Gradient Space Concepts .