Liang, H.[Hui],
Yuan, J.S.[Jun-Song],
Thalmann, D.,
Parsing the Hand in Depth Images,
MultMed(16), No. 5, August 2014, pp. 1241-1253.
IEEE DOI
1410
Markov processes
BibRef
Ge, L.H.[Liu-Hao],
Liang, H.[Hui],
Yuan, J.S.[Jun-Song],
Thalmann, D.[Daniel],
Robust 3D Hand Pose Estimation From Single Depth Images Using
Multi-View CNNs,
IP(27), No. 9, September 2018, pp. 4422-4436.
IEEE DOI
1807
BibRef
Earlier:
3D Convolutional Neural Networks for Efficient and Robust Hand Pose
Estimation from Single Depth Images,
CVPR17(5679-5688)
IEEE DOI
1711
BibRef
Earlier:
Robust 3D Hand Pose Estimation in Single Depth Images: From
Single-View CNN to Multi-View CNNs,
CVPR16(3593-3601)
IEEE DOI
1612
neural nets, pose estimation, probability, regression analysis,
articulated hand pose estimation, depth information,
multi-view CNNs.
Feature extraction, Real-time systems, Robustness,
Solid modeling,
BibRef
Ge, L.H.[Liu-Hao],
Liang, H.[Hui],
Yuan, J.S.[Jun-Song],
Thalmann, D.[Daniel],
Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural
Networks,
PAMI(41), No. 4, April 2019, pp. 956-970.
IEEE DOI
1903
Pose estimation,
Feature extraction, Solid modeling,
deep learning
BibRef
Xu, C.[Chi],
Nanjappa, A.[Ashwin],
Zhang, X.W.[Xiao-Wei],
Cheng, L.[Li],
Estimate Hand Poses Efficiently from Single Depth Images,
IJCV(116), No. 1, January 2016, pp. 21-45.
Springer DOI
1601
BibRef
Xu, C.[Chi],
Govindarajan, L.N.[Lakshmi Narasimhan],
Zhang, Y.[Yu],
Stewart, J.[James],
Bichler, Z.[Zoë],
Jesuthasan, S.[Suresh],
Claridge-Chang, A.[Adam],
Mathuru, A.S.[Ajay Sriram],
Tang, W.L.[Wen-Long],
Zhu, P.X.[Pei-Xin],
Cheng, L.[Li],
Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking,
and Action Recognition on Lie Groups,
IJCV(123), No. 3, July 2017, pp. 454-478.
Springer DOI
1706
BibRef
And:
Author List Corrected:
IJCV(126), No. 8, August 2018, pp. 897.
Springer DOI
1807
BibRef
Supancic, III, J.S.[James Steven],
Rogez, G.[Grégory],
Yang, Y.[Yi],
Shotton, J.[Jamie],
Ramanan, D.[Deva],
Depth-Based Hand Pose Estimation: Methods, Data, and Challenges,
IJCV(126), No. 11, November 2018, pp. 1180-1198.
Springer DOI
1809
BibRef
Earlier:
Depth-Based Hand Pose Estimation: Data, Methods, and Challenges,
ICCV15(1868-1876)
IEEE DOI
1602
BibRef
Earlier: A2, A1, A5, Only:
Understanding Everyday Hands in Action from RGB-D Images,
ICCV15(3889-3897)
IEEE DOI
1602
Benchmark testing; Clutter; Data models; Training data.
Cameras
BibRef
Basaru, R.R.[Rilwan Remilekun],
Child, C.[Chris],
Alonso, E.[Eduardo],
Slabaugh, G.[Gregory],
Data-driven recovery of hand depth using CRRF on stereo images,
IET-CV(12), No. 5, August 2018, pp. 666-678.
DOI Link
1807
BibRef
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Ogunbona, P.O.[Philip O.],
Gao, Z.M.[Zhi-Min],
Zhang, H.L.[Han-Ling],
Mining Mid-Level Features for Action Recognition Based on Effective
Skeleton Representation,
DICTA14(1-8)
IEEE DOI
1502
computer graphics
BibRef
Gomez-Donoso, F.[Francisco],
Orts-Escolano, S.[Sergio],
Cazorla, M.[Miguel],
Large-scale multiview 3D hand pose dataset,
IVC(81), 2019, pp. 25-33.
Elsevier DOI
1902
3D hand pose, Multiview, Dataset, Deep learning
BibRef
Wang, G.J.[Gui-Jin],
Chen, X.H.[Xing-Hao],
Guo, H.K.[Heng-Kai],
Zhang, C.R.[Cai-Rong],
Region ensemble network: Towards good practices for deep 3D hand pose
estimation,
JVCIR(55), 2018, pp. 404-414.
Elsevier DOI
1809
Convolutional network, Hand pose estimation,
Human pose estimation, Fingertip detection, Ensemble learning, Depth imaging
BibRef
Guo, H.,
Wang, G.,
Chen, X.,
Zhang, C.,
Qiao, F.,
Yang, H.,
Region ensemble network: Improving convolutional network for hand
pose estimation,
ICIP17(4512-4516)
IEEE DOI
1803
Bagging, Convolution, Pose estimation, Testing,
Training, Convolutional Network,
Hand Pose Estimation
BibRef
Wu, Y.,
Ji, W.,
Li, X.,
Wang, G.,
Yin, J.,
Wu, F.,
Context-Aware Deep Spatiotemporal Network for Hand Pose Estimation
From Depth Images,
Cyber(50), No. 2, February 2020, pp. 787-797.
IEEE DOI
1912
Feature extraction, Pose estimation, Spatiotemporal phenomena,
Image sequences, Context modeling, Adaptation models, Data mining,
hand pose estimation
BibRef
Oberweger, M.[Markus],
Wohlhart, P.[Paul],
Lepetit, V.[Vincent],
Generalized Feedback Loop for Joint Hand-Object Pose Estimation,
PAMI(42), No. 8, August 2020, pp. 1898-1912.
IEEE DOI
2007
BibRef
Earlier:
Training a Feedback Loop for Hand Pose Estimation,
ICCV15(3316-3324)
IEEE DOI
1602
Pose estimation, Solid modeling,
Optimization, Feedback loop, Training data, Data models,
hand-object manipulation
BibRef
Oberweger, M.,
Riegler, G.,
Wohlhart, P.,
Lepetit, V.,
Efficiently Creating 3D Training Data for Fine Hand Pose Estimation,
CVPR16(4957-4965)
IEEE DOI
1612
Data models
BibRef
Wang, L.,
Cao, Z.,
Cui, Z.,
Cao, C.,
Pi, Y.,
Negative Latency Recognition Method for Fine-Grained Gestures Based
on Terahertz Radar,
GeoRS(58), No. 11, November 2020, pp. 7955-7968.
IEEE DOI
2011
Gesture recognition, Doppler radar, Radar imaging, Indexes,
Human computer interaction, Acoustics, Gesture recognition,
terahertz radar
BibRef
Yang, J.[Jian],
Ma, X.H.[Xiao-Hong],
Sun, Y.[Yi],
Lin, X.B.[Xiang-Bo],
LPPM-Net: Local-aware point processing module based 3D hand pose
estimation for point cloud,
SP:IC(90), 2021, pp. 116036.
Elsevier DOI
2012
Hand pose estimation, Point cloud, Deep learning,
Local-aware point processing module
BibRef
Deng, X.,
Zhu, Y.,
Zhang, Y.,
Cui, Z.,
Tan, P.,
Qu, W.,
Ma, C.,
Wang, H.,
Weakly Supervised Learning for Single Depth-Based Hand Shape Recovery,
IP(30), 2021, pp. 532-545.
IEEE DOI
2012
Shape, Skeleton, Solid modeling,
Image reconstruction, Pose estimation, Data models,
gesture recognition
BibRef
Zhang, Y.[Yu],
Mi, S.[Siya],
Wu, J.X.[Jian-Xin],
Geng, X.[Xin],
Simultaneous 3D hand detection and pose estimation using single depth
images,
PRL(140), 2020, pp. 43-48.
Elsevier DOI
2012
3D hand pose estimation, Hand detection, 3D region proposal
BibRef
Sun, J.[Jin],
Zhang, Z.[Zhe],
Yang, L.[Liutao],
Zheng, J.P.[Ji-Ping],
Multi-view hand gesture recognition via pareto optimal front,
IET-IPR(14), No. 14, December 2020, pp. 3579-3587.
DOI Link
2012
BibRef
Xu, L.,
Hu, C.,
Tao, J.,
Xue, J.,
Mei, K.,
Improve Regression Network on Depth Hand Pose Estimation With
Auxiliary Variable,
CirSysVideo(31), No. 3, March 2021, pp. 890-904.
IEEE DOI
2103
Pose estimation, Feature extraction, Kinematics,
Task analysis, Training, variational autoencoder
BibRef
Kumar, A.K.[Amit Krishan],
Kumar, A.K.[Abhishek Kaushal],
Guo, S.[Shuli],
Two viewpoints based real-time recognition for hand gestures,
IET-IPR(14), No. 17, 24 December 2020, pp. 4606-4613.
DOI Link
2104
BibRef
Xia, Z.Y.[Zhao-Yang],
Luomei, Y.X.[Yi-Xiang],
Zhou, C.L.[Cheng-Long],
Xu, F.[Feng],
Multidimensional Feature Representation and Learning for Robust
Hand-Gesture Recognition on Commercial Millimeter-Wave Radar,
GeoRS(59), No. 6, June 2021, pp. 4749-4764.
IEEE DOI
2106
Gesture recognition, Feature extraction, Robustness, Radar imaging,
Signal resolution, Scattering, Detection and tracking,
multidimensional feature
BibRef
Madadi, M.[Meysam],
Escalera, S.[Sergio],
Baró, X.[Xavier],
Gonzŕlez, J.[Jordi],
End-to-end global to local convolutional neural network learning for
hand pose recovery in depth data,
IET-CV(16), No. 1, 2022, pp. 50-66.
DOI Link
2202
data acquisition, human computer interaction,
learning (artificial intelligence), pose estimation
BibRef
Wang, Y.[Yong],
Wang, D.[Di],
Fu, Y.H.[Yun-Hai],
Yao, D.[Dengke],
Xie, L.B.[Liang-Bo],
Zhou, M.[Mu],
Multi-Hand Gesture Recognition Using Automotive FMCW Radar Sensor,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ren, P.F.[Peng-Fei],
Sun, H.F.[Hai-Feng],
Hao, J.[Jiachang],
Qi, Q.[Qi],
Wang, J.Y.[Jing-Yu],
Liao, J.X.[Jian-Xin],
A Dual-Branch Self-Boosting Framework for Self-Supervised 3D Hand
Pose Estimation,
IP(31), 2022, pp. 5052-5066.
IEEE DOI
2208
Solid modeling, Pose estimation, Data models, Shape,
Gesture recognition, Training, 3D hand pose estimation, gesture recognition
BibRef
Zheng, X.Z.[Xiao-Zheng],
Wen, C.[Chao],
Xue, Z.[Zhou],
Ren, P.F.[Peng-Fei],
Wang, J.Y.[Jing-Yu],
HaMuCo: Hand Pose Estimation via Multiview Collaborative
Self-Supervised Learning,
ICCV23(20706-20716)
IEEE DOI
2401
BibRef
Deng, X.M.[Xiao-Ming],
Zuo, D.[Dexin],
Zhang, Y.[Yinda],
Cui, Z.P.[Zhao-Peng],
Cheng, J.[Jian],
Tan, P.[Ping],
Chang, L.[Liang],
Pollefeys, M.[Marc],
Fanello, S.[Sean],
Wang, H.A.[Hong-An],
Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D
Alignments,
PAMI(45), No. 1, January 2023, pp. 932-945.
IEEE DOI
2212
Pose estimation, Feature extraction, Point cloud compression,
Solid modeling, Data models, Data mining, Hand pose estimation, recurrent model
BibRef
Ren, P.F.[Peng-Fei],
Sun, H.F.[Hai-Feng],
Hao, J.C.[Jia-Chang],
Qi, Q.[Qi],
Wang, J.Y.[Jing-Yu],
Liao, J.X.[Jian-Xin],
Pose-Guided Hierarchical Graph Reasoning for 3-D Hand Pose Estimation
From a Single Depth Image,
Cyber(53), No. 1, January 2023, pp. 315-328.
IEEE DOI
2301
Convolution, Feature extraction, Pose estimation, Bones,
Visualization, Joints, Germanium, 3-D hand pose estimation,
graph convolutions
BibRef
Xing, H.Q.[Hui-Qin],
Yang, J.Y.[Jian-Yu],
Xiao, Y.[Yang],
Learning dynamic relationship between joints for 3D hand pose
estimation from single depth map,
JVCIR(92), 2023, pp. 103803.
Elsevier DOI
2303
Hand pose estimation, Dynamic anchor, Hand gesture, Depth map
BibRef
Sun, S.Q.[Shu-Qiao],
Liu, R.[Rongke],
Yang, X.X.[Xin-Xin],
Depth-Hand: 3D Hand Keypoint Detection With Dense Depth Estimation,
SPLetters(30), 2023, pp. 962-966.
IEEE DOI
2308
Estimation, Feature extraction, Crops, Costs, Task analysis,
Multitasking, Depth estimation, stereoscopic vision, multi-task
BibRef
Xiang, D.H.[Dong-Hai],
Xu, W.[Wei],
Zhang, Y.T.[Yu-Ting],
Peng, B.[Bei],
Wang, G.[Guotai],
Li, K.[Kang],
MTMVC: Semi-supervised 3D hand pose estimation using multi-task and
multi-view consistency,
JVCIR(95), 2023, pp. 103902.
Elsevier DOI
2309
Hand pose estimation, Semi-supervised learning, Deep learning,
Consistency constraint
BibRef
Sun, H.F.[Hai-Feng],
Zheng, X.Z.[Xiao-Zheng],
Ren, P.F.[Peng-Fei],
Wang, J.Y.[Jing-Yu],
Qi, Q.[Qi],
Liao, J.X.[Jian-Xin],
SMR: Spatial-Guided Model-Based Regression for 3D Hand Pose and Mesh
Reconstruction,
CirSysVideo(34), No. 1, January 2024, pp. 299-314.
IEEE DOI
2401
BibRef
Zhou, J.[Jun],
Xu, C.[Chi],
Ge, Y.T.[Yu-Ting],
Cheng, L.[Li],
Realistic Depth Image Synthesis for 3D Hand Pose Estimation,
MultMed(26), 2024, pp. 5246-5256.
IEEE DOI
2404
Pose estimation, Cameras, Training, Noise measurement,
Image synthesis, Engines, Depth noise modeling, realistic depth synthesis
BibRef
Xu, C.[Chi],
Cheng, L.[Li],
Efficient Hand Pose Estimation from a Single Depth Image,
ICCV13(3456-3462)
IEEE DOI
1403
hand pose estimation; random forest; realtime
BibRef
Jin, B.[Biao],
Ma, X.[Xiao],
Hu, B.[Bojun],
Zhang, Z.K.[Zhen-Kai],
Lian, Z.[Zhuxian],
Wang, B.[Biao],
Gesture-mmWAVE: Compact and Accurate Millimeter-Wave Radar-Based
Dynamic Gesture Recognition for Embedded Devices,
HMS(54), No. 3, June 2024, pp. 337-347.
IEEE DOI
2405
Convolution, Feature extraction, Millimeter wave radar,
Gesture recognition, Transformers, Radar, Scattering, Deep learning,
transformer
BibRef
Wang, J.[Jiye],
Xiang, X.Z.[Xue-Zhi],
Ding, S.[Shuai],
El Saddik, A.[Abdulmotaleb],
3D hand pose estimation and reconstruction based on multi-feature
fusion,
JVCIR(101), 2024, pp. 104160.
Elsevier DOI
2406
Hand pose estimation, Shape reconstruction,
Multi-feature fusion, Multi-scale, Multi-root loss
BibRef
Jiang, J.P.[Jian-Ping],
Li, J.[Jiahe],
Zhang, B.[Baowen],
Deng, X.M.[Xiao-Ming],
Shi, B.X.[Bo-Xin],
EvHandPose: Event-Based 3D Hand Pose Estimation With Sparse
Supervision,
PAMI(46), No. 9, September 2024, pp. 6416-6430.
IEEE DOI
2408
Pose estimation, Cameras, Annotations, Streaming media, Optical flow,
Shape, 3D hand pose estimation, event camera
BibRef
Cheng, W.C.[Wen-Can],
Tang, H.[Hao],
Van Gool, L.J.[Luc J.],
Ko, J.H.[Jong Hwan],
HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud,
CVPR24(2274-2284)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Location awareness,
Human computer interaction, Accuracy, Pose estimation
BibRef
Millerdurai, C.[Christen],
Luvizon, D.[Diogo],
Rudnev, V.[Viktor],
Jonas, A.[André],
Wang, J.Y.[Jia-Yi],
Theobalt, C.[Christian],
Golyanik, V.[Vladislav],
3D Pose Estimation of Two Interacting Hands from a Monocular Event
Camera,
3DV24(291-301)
IEEE DOI Code:
WWW Link.
2408
Image segmentation, Visualization, Tracking, Motion segmentation,
Pose estimation, Benchmark testing, hand pose estimation, event-based vision
BibRef
Zhang, S.[Shujie],
Zheng, T.Y.[Tian-Yue],
Chen, Z.[Zhe],
Hu, J.Z.[Jing-Zhi],
Khamis, A.[Abdelwahed],
Liu, J.J.[Jia-Jun],
Luo, J.[Jun],
OCHID-Fi: Occlusion-Robust Hand Pose Estimation in 3D via RF-Vision,
ICCV23(15066-15075)
IEEE DOI
2401
BibRef
Wirth, V.[Vanessa],
Liphardt, A.M.[Anna-Maria],
Coppers, B.[Birte],
Bräunig, J.[Johanna],
Heinrich, S.[Simon],
Leyendecker, S.[Sigrid],
Kleyer, A.[Arnd],
Schett, G.[Georg],
Vossiek, M.[Martin],
Egger, B.[Bernhard],
Stamminger, M.[Marc],
ShaRPy: Shape Reconstruction and Hand Pose Estimation from RGB-D with
Uncertainty,
CVAMD23(2617-2625)
IEEE DOI
2401
BibRef
Song, Y.Q.[Yu-Qing],
Wu, L.[Longwen],
Zhao, Y.Q.[Ya-Qin],
Liu, P.[Puqiu],
Lv, R.[Ruchen],
Ullah, H.[Hikmat],
High-Accuracy Gesture Recognition using Mm-Wave Radar Based on
Convolutional Block Attention Module,
ICIP23(1485-1489)
IEEE DOI
2312
BibRef
Wang, Y.[Yintong],
Chen, L.[LiLi],
Li, J.[Jiamao],
Zhang, X.L.[Xiao-Lin],
HandGCNFormer: A Novel Topology-Aware Transformer Network for 3D Hand
Pose Estimation,
WACV23(5664-5673)
IEEE DOI
2302
Head, Network topology, Pose estimation, Kinematics, Transformers,
Topology, Algorithms: Biometrics, face, gesture, body pose, 3D computer vision
BibRef
Meng, H.[Hao],
Jin, S.[Sheng],
Liu, W.T.[Wen-Tao],
Qian, C.[Chen],
Lin, M.X.[Meng-Xiang],
Ouyang, W.L.[Wan-Li],
Luo, P.[Ping],
3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal,
ECCV22(VI:380-397).
Springer DOI
2211
BibRef
Ren, P.F.[Peng-Fei],
Sun, H.F.[Hai-Feng],
Hao, J.[Jiachang],
Wang, J.Y.[Jing-Yu],
Qi, Q.[Qi],
Liao, J.X.[Jian-Xin],
Mining Multi-View Information: A Strong Self-Supervised Framework for
Depth-based 3D Hand Pose and Mesh Estimation,
CVPR22(20523-20533)
IEEE DOI
2210
Training, Convolution, Aggregates, Semantics, Pose estimation,
Face and gestures, 3D from multi-view and sensors,
Self- semi- meta- unsupervised learning
BibRef
Chen, Z.[Zheng],
Wang, S.[Sihan],
Sun, Y.[Yi],
Ma, X.H.[Xiao-Hong],
Self-supervised Transfer Learning for Hand Mesh Recovery from
Binocular Images,
ICCV21(11606-11614)
IEEE DOI
2203
Training, Adaptation models, Annotations, Shape,
Computational modeling, Transfer learning,
3D from multiview and other sensors
BibRef
Xu, H.[Hao],
Wang, T.Y.[Tian-Yu],
Tang, X.[Xiao],
Fu, C.W.[Chi-Wing],
H2ONet: Hand-Occlusion-and-Orientation-Aware Network for Real-Time 3D
Hand Mesh Reconstruction,
CVPR23(17048-17058)
IEEE DOI
2309
BibRef
Earlier: A3, A2, A4, Only:
Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction,
ICCV21(11678-11687)
IEEE DOI
2203
Shape, Pipelines, Predictive models, Benchmark testing,
Real-time systems, Gestures and body pose,
BibRef
Rudnev, V.[Viktor],
Golyanik, V.[Vladislav],
Wang, J.Y.[Jia-Yi],
Seidel, H.P.[Hans-Peter],
Mueller, F.[Franziska],
Elgharib, M.[Mohamed],
Theobalt, C.[Christian],
EventHands: Real-Time Neural 3D Hand Pose Estimation from an Event
Stream,
ICCV21(12365-12375)
IEEE DOI
2203
Image color analysis, Pose estimation, Vision sensors, Cameras,
Throughput, 3D from a single image and shape-from-x, Motion and tracking
BibRef
Cheng, W.C.[Wen-Can],
Park, J.H.[Jae Hyun],
Ko, J.H.[Jong Hwan],
HandFoldingNet: A 3D Hand Pose Estimation Network Using
Multiscale-Feature Guided Folding of a 2D Hand Skeleton,
ICCV21(11240-11249)
IEEE DOI
2203
Point cloud compression, Human computer interaction,
Solid modeling, Computational modeling, Pose estimation,
Efficient training and inference methods
BibRef
Yang, J.[John],
Bhalgat, Y.[Yash],
Chang, S.[Simyung],
Porikli, F.M.[Fatih M.],
Kwak, N.[Nojun],
Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation,
WACV22(2703-2713)
IEEE DOI
2202
Training, Uncertainty, Protocols,
Pose estimation, Refining, Neural networks,
Real-time Tracking Virtual and Augmented Reality
BibRef
Bigalke, A.[Alexander],
Heinrich, M.P.[Mattias P.],
Fusing Posture and Position Representations for Point Cloud-Based
Hand Gesture Recognition,
3DV21(617-626)
IEEE DOI
2201
Point cloud compression, Codes, Tracking, Gesture recognition,
Computer architecture, Feature extraction, point cloud analysis
BibRef
Müller, M.[Markus],
Poier, G.[Georg],
Possegger, H.[Horst],
Bischof, H.[Horst],
Semi-Supervised Learning of Monocular 3D Hand Pose Estimation from
Multi-View Images,
ICIP21(1104-1108)
IEEE DOI
2201
Training, Annotations, Image processing, Pose estimation,
Semisupervised learning, hand pose estimation,
semi-supervised training
BibRef
Chen, L.J.[Liang-Jian],
Lin, S.Y.[Shih-Yao],
Xie, Y.S.[Yu-Sheng],
Lin, Y.Y.[Yen-Yu],
Xie, X.H.[Xiao-Hui],
MVHM: A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D
Hand Pose Estimation,
WACV21(836-845)
IEEE DOI
2106
Training, Annotations, Fuses,
Pose estimation, Pipelines
BibRef
Chen, L.J.[Liang-Jian],
Lin, S.Y.[Shih-Yao],
Xie, Y.S.[Yu-Sheng],
Lin, Y.Y.[Yen-Yu],
Xie, X.H.[Xiao-Hui],
Temporal-Aware Self-Supervised Learning for 3D Hand Pose and Mesh
Estimation in Videos,
WACV21(1049-1058)
IEEE DOI
2106
Training, Solid modeling,
Annotations, Computational modeling,
BibRef
Caramalau, R.[Razvan],
Bhattarai, B.[Binod],
Kim, T.K.[Tae-Kyun],
Active Learning for Bayesian 3D Hand Pose Estimation,
WACV21(3418-3427)
IEEE DOI
2106
Deep learning,
Uncertainty, Pose estimation, Redundancy
BibRef
Kok, F.[Felix],
Charles, J.[James],
Cipolla, R.[Roberto],
Footnet: An Efficient Convolutional Network for Multiview 3d Foot
Reconstruction,
ACCV20(VI:36-51).
Springer DOI
2103
BibRef
Jaswal, G.[Gaurav],
Srirangarajan, S.[Seshan],
Roy, S.D.[Sumantra Dutta],
Range-doppler Hand Gesture Recognition Using Deep Residual-3dcnn with
Transformer Network,
MPRSS20(759-772).
Springer DOI
2103
BibRef
Wang, J.,
Mueller, F.,
Bernard, F.,
Theobalt, C.,
Generative Model-Based Loss to the Rescue: A Method to Overcome
Annotation Errors for Depth-Based Hand Pose Estimation,
FG20(101-108)
IEEE DOI
2102
Gesture recognition, Face recognition,
hand pose estimation, annotation bias, generative loss, depth image
BibRef
Fang, L.P.[Lin-Pu],
Liu, X.Y.[Xing-Yan],
Liu, L.[Li],
Xu, H.[Hang],
Kang, W.X.[Wen-Xiong],
JGR-P2O: Joint Graph Reasoning Based Pixel-to-offset Prediction Network
for 3d Hand Pose Estimation from a Single Depth Image,
ECCV20(VI:120-137).
Springer DOI
2011
BibRef
Yang, J.[John],
Chang, H.J.[Hyung Jin],
Lee, S.[Seungeui],
Kwak, N.J.[No-Jun],
Seqhand: RGB-sequence-based 3d Hand Pose and Shape Estimation,
ECCV20(XII: 122-139).
Springer DOI
2010
BibRef
Wan, C.D.[Cheng-De],
Probst, T.[Thomas],
Van Gool, L.J.[Luc J.],
Yao, A.[Angela],
Dual Grid Net: Hand Mesh Vertex Regression from Single Depth Maps,
ECCV20(XXX: 442-459).
Springer DOI
2010
BibRef
Min, Y.,
Zhang, Y.,
Chai, X.,
Chen, X.,
An Efficient PointLSTM for Point Clouds Based Gesture Recognition,
CVPR20(5760-5769)
IEEE DOI
2008
Gesture recognition,
Feature extraction, Task analysis, Data mining, Logic gates
BibRef
Gu, J.,
Wang, Z.,
Ouyang, W.,
Zhang, W.,
Li, J.,
Zhuo, L.,
3D Hand Pose Estimation with Disentangled Cross-Modal Latent Space,
WACV20(380-389)
IEEE DOI
2006
Pose estimation, Task analysis, Solid modeling, Decoding
BibRef
Chen, L.,
Lin, S.,
Xie, Y.,
Lin, Y.,
Fan, W.,
Xie, X.,
DGGAN: Depth-image Guided Generative Adversarial Networks for
Disentangling RGB and Depth Images in 3D Hand Pose Estimation,
WACV20(400-408)
IEEE DOI
2006
Training, Image reconstruction,
Pose estimation, Task analysis, Solid modeling
BibRef
Zhu, T.,
Sun, Y.,
Ma, X.,
Lin, X.,
Hand Pose Ensemble Learning Based on Grouping Features of Hand Point
Sets,
Hands19(2856-2865)
IEEE DOI
2004
feature extraction, feature selection,
learning (artificial intelligence), pose estimation, Ensemble learning
BibRef
Ge, L.,
Cai, Y.,
Weng, J.,
Yuan, J.,
Hand PointNet: 3D Hand Pose Estimation Using Point Sets,
CVPR18(8417-8426)
IEEE DOI
1812
Pose estimation, Feature extraction,
Cameras, Neural networks, Sensitivity
BibRef
Malik, J.,
Elhayek, A.,
Nunnari, F.,
Varanasi, K.,
Tamaddon, K.,
Heloir, A.,
Stricker, D.,
DeepHPS: End-to-end Estimation of 3D Hand Pose and Shape by Learning
from Synthetic Depth,
3DV18(110-119)
IEEE DOI
1812
image classification, image motion analysis,
image segmentation, learning (artificial intelligence),
convolutional neural networks
BibRef
Baek, S.,
Kim, K.I.,
Kim, T.,
Augmented Skeleton Space Transfer for Depth-Based Hand Pose
Estimation,
CVPR18(8330-8339)
IEEE DOI
1812
Skeleton, Shape, Training, Cameras,
Pose estimation, Databases
BibRef
Li, J.,
Wang, Z.,
Local Regression Based Hourglass Network for Hand Pose Estimation
from a Single Depth Image,
ICPR18(1767-1772)
IEEE DOI
1812
Feature extraction, Task analysis, Pose estimation,
Convolutional neural networks, Sensors
BibRef
Yuan, S.,
Garcia-Hernando, G.,
Stenger, B.,
Moon, G.,
Chang, J.Y.,
Lee, K.M.,
Molchanov, P.,
Kautz, J.,
Honari, S.,
Ge, L.,
Yuan, J.,
Chen, X.,
Wang, G.,
Yang, F.,
Akiyama, K.,
Wu, Y.,
Wan, Q.,
Madadi, M.,
Escalera, S.,
Li, S.,
Lee, D.,
Oikonomidis, I.,
Argyros, A.,
Kim, T.,
Depth-Based 3D Hand Pose Estimation: From Current Achievements to
Future Goals,
CVPR18(2636-2645)
IEEE DOI
1812
Task analysis, Pose estimation,
Joints, Training, Solid modeling
BibRef
Wan, C.,
Probst, T.,
Van Gool, L.J.,
Yao, A.,
Dense 3D Regression for Hand Pose Estimation,
CVPR18(5147-5156)
IEEE DOI
1812
Pose estimation, Heating systems, Skeleton, Correlation
BibRef
Zhou, Y.[Yidan],
Lu, J.[Jian],
Du, K.[Kuo],
Lin, X.B.[Xiang-Bo],
Sun, Y.[Yi],
Ma, X.H.[Xiao-Hong],
HBE: Hand Branch Ensemble Network for Real-Time 3D Hand Pose Estimation,
ECCV18(XIV: 521-536).
Springer DOI
1810
BibRef
Zhang, J.,
Jiao, J.,
Chen, M.,
Qu, L.,
Xu, X.,
Yang, Q.,
A hand pose tracking benchmark from stereo matching,
ICIP17(982-986)
IEEE DOI
1803
Benchmark testing, Cameras, Image color analysis,
Image segmentation, Noise measurement, Skin, Training,
stereo matching and hand pose tracking
BibRef
Basaru, R.R.,
Child, C.,
Alonso, E.,
Slabaugh, G.,
Hand Pose Estimation Using Deep Stereovision and Markov-Chain Monte
Carlo,
Hands17(595-603)
IEEE DOI
1802
Cameras, Monte Carlo methods, Pose estimation,
Proposals, Robustness
BibRef
Otberdout, N.,
Ballihi, L.,
Aboutajdine, D.,
Hand pose estimation based on deep learning depth map for hand
gesture recognition,
ISCV17(1-8)
IEEE DOI
1710
Gesture recognition, Neural networks, Neurons,
Pose estimation, Solid modeling, Three-dimensional, displays
BibRef
Goudie, D.,
Galata, A.,
3D Hand-Object Pose Estimation from Depth with Convolutional Neural
Networks,
FG17(406-413)
IEEE DOI
1707
Cost function, Image segmentation, Neural networks,
Pose estimation, Sensors, Training
BibRef
Madadi, M.,
Escalera, S.,
Carruesco, A.,
Andujar, C.,
Baró, X.,
Gonzŕlez, J.,
Occlusion Aware Hand Pose Recovery from Sequences of Depth Images,
FG17(230-237)
IEEE DOI
1707
Cameras, Computational modeling, Feature extraction,
Pose estimation, Shape, Solid modeling, Three-dimensional, displays
BibRef
Asad, M.[Muhammad],
Gentet, E.[Enguerrand],
Basaru, R.R.[Rilwan Remilekun],
Slabaugh, G.[Greg],
Generatinga 3D hand model from frontal color and range scans,
ICIP15(4589-4593)
IEEE DOI
1512
Hand model; pose estimation; reconstruction
BibRef
Guo, H.,
Wang, G.,
Chen, X.,
Two-stream convolutional neural network for accurate RGB-D fingertip
detection using depth and edge information,
ICIP16(2608-2612)
IEEE DOI
1610
BibRef
And: A3, A2, A1:
Accurate fingertip detection from binocular mask images,
VCIP16(1-4)
IEEE DOI
1701
Image edge detection
BibRef
Khamis, S.[Sameh],
Taylor, J.[Jonathan],
Shotton, J.[Jamie],
Keskin, C.[Cem],
Izadi, S.[Shahram],
Fitzgibbon, A.W.[Andrew W.],
Learning an efficient model of hand shape variation from depth images,
CVPR15(2540-2548)
IEEE DOI
1510
BibRef
Fan, C.Y.[Chin-Yun],
Lin, M.H.[Meng-Hsuan],
Su, T.F.[Te-Feng],
Lai, S.H.[Shang-Hong],
Yu, C.H.[Chih-Hsiang],
3D hand skeleton model estimation from a depth image,
MVA15(489-492)
IEEE DOI
1507
Computational modeling
BibRef
Sohn, M.K.[Myoung-Kyu],
Kim, D.J.[Dong-Ju],
Kim, H.[Hyunduk],
Hand Part Classification Using Single Depth Images,
UCCV14(253-261).
Springer DOI
1504
BibRef
Rogez, G.[Grégory],
Khademi, M.[Maryam],
Supancic, III, J.S.,
Montiel, J.M.M.,
Ramanan, D.[Deva],
3D Hand Pose Detection in Egocentric RGB-D Images,
CDC4CV14(356-371).
Springer DOI
1504
BibRef
Taylor, J.[Jonathan],
Stebbing, R.[Richard],
Ramakrishna, V.[Varun],
Keskin, C.[Cem],
Shotton, J.[Jamie],
Izadi, S.[Shahram],
Hertzmann, A.[Aaron],
Fitzgibbon, A.W.[Andrew W.],
User-Specific Hand Modeling from Monocular Depth Sequences,
CVPR14(644-651)
IEEE DOI
1409
BibRef
Kang, B.[Byungkyu],
Rodrigue, M.,
Hollerer, T.,
Lim, H.[Hwasup],
Real time hand pose recognition with depth sensors for mixed
reality interfaces,
3DUI13(171-172)
IEEE DOI
1406
decision trees
BibRef
Bagdanov, A.D.[Andrew D.],
del Bimbo, A.[Alberto],
Seidenari, L.[Lorenzo],
Usai, L.[Lorenzo],
Real-time hand status recognition from RGB-D imagery,
ICPR12(2456-2459).
WWW Link.
1302
BibRef
Wang, Q.[Qi],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Skin Color Weighted Disparity Competition for Hand Segmentation from
Stereo Camera,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Tran, C.[Cuong],
Trivedi, M.M.[Mohan M.],
Hand modeling and tracking from voxel data: An integrated framework
with automatic initialization,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Delamarre, Q.,
Faugeras, O.D.,
Finding Pose of Hand in Video Images: A Stereo-Based Approach,
AFGR98(585-590).
IEEE DOI
PS File.
BibRef
9800
Chapter on Face Recognition, Human Pose, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Hand Tracking for Gestures .