16.7.2.7.23 Travel Time, Evaluation

Chapter Contents (Back)
Travel Time. Routing. Path Planning.
See also Traffic, Routing, Evaluation.

Wu, C.H.[Chun-Hsin], Ho, J.M.[Jan-Ming], Lee, D.T.,
Travel-time prediction with support vector regression,
ITS(5), No. 4, December 2004, pp. 276-281.
IEEE Abstract. 0501
BibRef

de Feijter, R., Evers, J.J.M., Lodewijks, G.,
Improving travel-time reliability by the use of trip booking,
ITS(5), No. 4, December 2004, pp. 288-292.
IEEE Abstract. 0501
BibRef

Rice, J., van Zwet, E.,
A simple and effective method for predicting travel times on freeways,
ITS(5), No. 3, September 2004, pp. 200-207.
IEEE Abstract. 0501
BibRef

van Lint, J.W.C.,
Online Learning Solutions for Freeway Travel Time Prediction,
ITS(9), No. 1, March 2008, pp. 38-47.
IEEE DOI 0803
BibRef

Jula, H., Dessouky, M., Ioannou, P.A.,
Real-Time Estimation of Travel Times Along the Arcs and Arrival Times at the Nodes of Dynamic Stochastic Networks,
ITS(9), No. 1, March 2008, pp. 97-110.
IEEE DOI 0803
BibRef

Yang, M., Liu, Y., You, Z.,
The Reliability of Travel Time Forecasting,
ITS(11), No. 1, March 2010, pp. 162-171.
IEEE DOI 1003
BibRef

Kwong, K., Kavaler, R., Rajagopal, R., Varaiya, P.,
Real-Time Measurement of Link Vehicle Count and Travel Time in a Road Network,
ITS(11), No. 4, December 2010, pp. 814-825.
IEEE DOI 1101
BibRef

Simroth, A., Zahle, H.,
Travel Time Prediction Using Floating Car Data Applied to Logistics Planning,
ITS(12), No. 1, March 2011, pp. 243-253.
IEEE DOI 1103
BibRef

Soriguera, F., Robuste, F.,
Requiem for Freeway Travel Time Estimation Methods Based on Blind Speed Interpolations Between Point Measurements,
ITS(12), No. 1, March 2011, pp. 291-297.
IEEE DOI 1103
BibRef

Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D., van Lint, J.W.C.,
Prediction Intervals to Account for Uncertainties in Travel Time Prediction,
ITS(12), No. 2, June 2011, pp. 537-547.
IEEE DOI 1101
BibRef

Hu, T.Y., Tong, C.C., Liao, T.Y., Ho, W.M.,
Simulation-Assignment-Based Travel Time Prediction Model for Traffic Corridors,
ITS(13), No. 3, September 2012, pp. 1277-1286.
IEEE DOI 1209
BibRef

Mu, T., Jiang, J., Wang, Y.,
Heterogeneous Delay Embedding for Travel Time and Energy Cost Prediction Via Regression Analysis,
ITS(14), No. 1, March 2013, pp. 214-224.
IEEE DOI 1303
BibRef

Chen, X., Li, L., Li, Z.,
Phase Diagram Analysis Based on a Temporal-Spatial Queueing Model,
ITS(13), No. 4, December 2012, pp. 1705-1716.
IEEE DOI 1212
BibRef

Li, L.[Li], Chen, X.[Xiqun], Li, Z.H.[Zhi-Heng], Zhang, L.[Lei],
Freeway Travel-Time Estimation Based on Temporal-Spatial Queueing Model,
ITS(14), No. 3, 2013, pp. 1536-1541.
IEEE DOI 1309
Speed interpolation BibRef

Kala, R., Warwick, K.,
Computing journey start times with recurrent traffic conditions,
IET-ITS(8), No. 8, 2014, pp. 681-687.
DOI Link 1502
road traffic BibRef

Zhang, Y., Haghani, A., Zeng, X.,
Component GARCH Models to Account for Seasonal Patterns and Uncertainties in Travel-Time Prediction,
ITS(16), No. 2, April 2015, pp. 719-729.
IEEE DOI 1504
Data models BibRef

Pirc, J., Turk, G., Zura, M.,
Using the robust statistics for travel time estimation on highways,
IET-ITS(9), No. 4, 2015, pp. 442-452.
DOI Link 1506
automobiles BibRef

Pirc, J., Turk, G., Žura, M.,
Highway travel time estimation using multiple data sources,
IET-ITS(10), No. 10, 2016, pp. 649-657.
DOI Link 1701
extrapolation BibRef

Tu, W.[Wei], Li, Q.Q.[Qing-Quan], Fang, Z.X.[Zhi-Xiang], Zhou, B.D.[Bao-Ding],
A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints,
IJGI(4), No. 4, 2015, pp. 2019.
DOI Link 1511
BibRef

Diaz, J.J.V.[J.J. Vinagre], Gonzalez, A.B.R.[A.B. Rodriguez], Wilby, M.R.,
Bluetooth Traffic Monitoring Systems for Travel Time Estimation on Freeways,
ITS(17), No. 1, January 2016, pp. 123-132.
IEEE DOI 1601
Bluetooth BibRef

Kachroo, P., Sastry, S.,
Travel Time Dynamics for Intelligent Transportation Systems: Theory and Applications,
ITS(17), No. 2, February 2016, pp. 385-394.
IEEE DOI 1602
Mathematical model BibRef

Kachroo, P., Sastry, S.,
Traffic Assignment Using a Density-Based Travel-Time Function for Intelligent Transportation Systems,
ITS(17), No. 5, May 2016, pp. 1438-1447.
IEEE DOI 1605
Delays BibRef

Salamanis, A., Kehagias, D.D., Filelis-Papadopoulos, C.K., Tzovaras, D., Gravvanis, G.A.,
Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction,
ITS(17), No. 6, June 2016, pp. 1678-1687.
IEEE DOI 1606
Accuracy BibRef

Jang, J.,
Outlier filtering algorithm for travel time estimation using dedicated short-range communications probes on rural highways,
IET-ITS(10), No. 6, 2016, pp. 453-460.
DOI Link 1608
median filters BibRef

Zhang, F.M.[Fa-Ming], Zhu, X.Y.[Xin-Yan], Hu, T.[Tao], Guo, W.[Wei], Chen, C.[Chen], Liu, L.J.[Ling-Jia],
Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations,
IJGI(5), No. 11, 2016, pp. 201.
DOI Link 1612
BibRef

Moylan, E.K.M., Rashidi, T.H.,
Latent-Segmentation, Hazard-Based Models of Travel Time,
ITS(18), No. 8, August 2017, pp. 2174-2180.
IEEE DOI 1708
Analytical models, Context, Context modeling, Data models, Hazards, Meteorology, Probabilistic logic, Travel time variability, congestion, hazard-based analysis, latent segmentation formulation, traffic, modeling BibRef

Shi, C.Y.[Chao-Yang], Chen, B.Y.[Bi Yu], Li, Q.Q.[Qing-Quan],
Estimation of Travel Time Distributions in Urban Road Networks Using Low-Frequency Floating Car Data,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Cebecauer, M.[Matej], Jenelius, E.[Erik], Burghout, W.[Wilco],
Integrated framework for real-time urban network travel time prediction on sparse probe data,
IET-ITS(12), No. 1, February 2018, pp. 66-74.
DOI Link 1801
BibRef

Li, W.[Wan], Cheng, D.H.[Dan-Hong], Bian, R.J.[Rui-Jie], Ishak, S.[Sherif], Osman, O.A.[Osama A.],
Accounting for travel time reliability, trip purpose and departure time choice in an agent-based dynamic toll pricing approach,
IET-ITS(12), No. 1, February 2018, pp. 58-65.
DOI Link 1801
BibRef

Jenelius, E., Koutsopoulos, H.N.,
Urban Network Travel Time Prediction Based on a Probabilistic Principal Component Analysis Model of Probe Data,
ITS(19), No. 2, February 2018, pp. 436-445.
IEEE DOI 1802
Computational modeling, Data models, Load modeling, Predictive models, Principal component analysis, probe data BibRef

Zhang, D.T.[De-Tian], Chow, C.Y.[Chi-Yin], Liu, A.[An], Zhang, X.L.[Xiang-Liang], Ding, Q.Z.[Qing-Zhu], Li, Q.[Qing],
Efficient evaluation of shortest travel-time path queries through spatial mashups,
GeoInfo(22), No. 1, January 2018, pp. 3-28.
Springer DOI 1802
BibRef

Zhu, L.[Lin], Guo, F.[Fangce], Polak, J.W.[John W.], Krishnan, R.[Rajesh],
Urban link travel time estimation using traffic states-based data fusion,
IET-ITS(12), No. 7, September 2018, pp. 651-663.
DOI Link 1808
BibRef

Tang, K., Chen, S., Liu, Z.,
Citywide Spatial-Temporal Travel Time Estimation Using Big and Sparse Trajectories,
ITS(19), No. 12, December 2018, pp. 4023-4034.
IEEE DOI 1812
Roads, Trajectory, Estimation, Tensile stress, Hidden Markov models, Correlation, Global Positioning System, Data-driven, occurrence probability BibRef

Yang, S.[Shu], Ou, J.[Jishun], Feng, Y.H.[Yi-Heng], Wang, Y.[Yuan],
Freeway travel time estimation based on the general motors model: a genetic algorithm calibration framework,
IET-ITS(13), No. 7, July 2019, pp. 1154-1163.
DOI Link 1906
BibRef

Sharmila, R.B., Velaga, N.R.[Nagendra R.], Kumar, A.[Akhilesh],
SVM-based hybrid approach for corridor-level travel-time estimation,
IET-ITS(13), No. 9, September 2019, pp. 1429-1439.
DOI Link 1908
Multiple roads and routes in a transportation corridor. Cars and buses. BibRef

Karimpour, A.[Abolfazl], Ariannezhad, A.[Amin], Wu, Y.J.[Yao-Jan],
Hybrid data-driven approach for truck travel time imputation,
IET-ITS(13), No. 10, October 2019, pp. 1518-1524.
DOI Link 1909
BibRef

van Essen, J.T., Correia, G.H.A.,
Exact Formulation and Comparison Between the User Optimum and System Optimum Solution for Routing Privately Owned Automated Vehicles,
ITS(20), No. 12, December 2019, pp. 4567-4578.
IEEE DOI 2001
Automobiles, Routing, Urban areas, Automation, Mathematical model, Autonomous vehicles, integer linear programming, value of travel time BibRef

Prokhorchuk, A., Dauwels, J., Jaillet, P.,
Estimating Travel Time Distributions by Bayesian Network Inference,
ITS(21), No. 5, May 2020, pp. 1867-1876.
IEEE DOI 2005
Global Positioning System, Estimation, Bayes methods, Public transportation, Trajectory, Data models, Bayesian network inference BibRef

Zhu, Y., He, Z., Sun, W.,
Network-Wide Link Travel Time Inference Using Trip-Based Data From Automatic Vehicle Identification Detectors,
ITS(21), No. 6, June 2020, pp. 2485-2495.
IEEE DOI 2006
Detectors, Estimation, Resource management, Probabilistic logic, Real-time systems, Task analysis, Stochastic processes, travel time allocation BibRef

Gundlegård, D.[David], Karlsson, J.M.[Johan M.],
Integrated tracking and route classification for travel time estimation based on cellular network signalling data,
IET-ITS(14), No. 9, September 2020, pp. 1087-1096.
DOI Link 2008
BibRef

Contreras, S., Kachroo, P.,
The Viscosity Solution for Hamilton Jacobi Travel Time Dynamics,
ITS(21), No. 11, November 2020, pp. 4715-4724.
IEEE DOI 2011
Mathematical model, Viscosity, Vehicle dynamics, Jacobian matrices, Intelligent transportation systems, Entropy, viscosity BibRef

Chiou, J.M., Liou, H.T., Chen, W.H.,
Modeling Time-Varying Variability and Reliability of Freeway Travel Time Using Functional Principal Component Analysis,
ITS(22), No. 1, January 2021, pp. 257-266.
IEEE DOI 2012
Reliability, Density functional theory, Logic gates, Traffic control, Analytical models, Kernel, Estimation, travel time reliability BibRef

Wang, Q., Xu, C., Zhang, W., Li, J.,
GraphTTE: Travel Time Estimation Based on Attention-Spatiotemporal Graphs,
SPLetters(28), 2021, pp. 239-243.
IEEE DOI 2102
Roads, Trajectory, Estimation, Network topology, Indexes, Spatiotemporal phenomena, Convolution, Attention mechanism, travel time estimation BibRef

Li, Z.H.[Zi-Hao], Chen, H.[Hui], Yan, W.T.[Wen-Tao],
Exploring Spatial Distribution of Urban Park Service Areas in Shanghai Based on Travel Time Estimation: A Method Combining Multi-Source Data,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Abioye, O.F.[Olumide F.], Dulebenets, M.A.[Maxim A.], Kavoosi, M.[Masoud], Pasha, J.[Junayed], Theophilus, O.[Oluwatosin],
Vessel Schedule Recovery in Liner Shipping: Modeling Alternative Recovery Options,
ITS(22), No. 10, October 2021, pp. 6420-6434.
IEEE DOI 2110
Schedules, Companies, Uncertainty, Containers, Delays, Mathematical model, Reliability, Liner shipping, vessel scheduling, profit loss BibRef

Kwak, S.[Semin], Geroliminis, N.[Nikolas],
Travel Time Prediction for Congested Freeways With a Dynamic Linear Model,
ITS(22), No. 12, December 2021, pp. 7667-7677.
IEEE DOI 2112
Predictive models, Traffic control, Intelligent transportation systems, Data models, minimum mean square error BibRef

Nian-Z, G.Y.[Guang-Yue], Sun, J.[Jian], Huang, J.Y.[Jian-Yun],
Exploring the Effects of Urban Built Environment on Road Travel Speed Variability with a Spatial Panel Data Model,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Both, A.[Alan], Gunn, L.[Lucy], Higgs, C.[Carl], Davern, M.[Melanie], Jafari, A.[Afshin], Boulange, C.[Claire], Giles-Corti, B.[Billie],
Achieving 'Active' 30 Minute Cities: How Feasible Is It to Reach Work within 30 Minutes Using Active Transport Modes?,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Zhang, J.F.[Jun-Feng], Peng, Z.H.[Zi-Han], Yang, C.[Chunwei], Wang, B.[Bin],
Data-driven flight time prediction for arrival aircraft within the terminal area,
IET-ITS(16), No. 2, 2022, pp. 263-275.
DOI Link 2201
BibRef

Tang, X.M.[Xin-Min], Ji, X.Q.[Xiao-Qi], Liu, J.[Jinan],
Predicting aircraft taxiing estimated time of arrival by cluster analysis,
IET-ITS(16), No. 2, 2022, pp. 252-262.
DOI Link 2201
BibRef

Yildirim, U.M.[U. Mahir], Çatay, B.[Bülent],
An Enhanced Network-Consistent Travel Speed Generation Scheme on Time-Dependent Shortest Path and Routing Problems,
ITS(23), No. 2, February 2022, pp. 873-884.
IEEE DOI 2202
Roads, Sensors, Routing, Urban areas, Benchmark testing, Global Positioning System, Routing, time-dependent travel times, minimum cost path BibRef

Feng, L.[Liang], Huang, Y.X.[Yu-Xiao], Tsang, I.W.[Ivor W.], Gupta, A.[Abhishek], Tang, K.[Ke], Tan, K.C.[Kay Chen], Ong, Y.S.[Yew-Soon],
Towards Faster Vehicle Routing by Transferring Knowledge From Customer Representation,
ITS(23), No. 2, February 2022, pp. 952-965.
IEEE DOI 2202
Vehicle routing, Routing, Knowledge transfer, Search problems, Optimization methods, Computer science, Vehicle routing, population-based search BibRef

Dabiri, A.[Azita], Hegyi, A.[Andreas], Hoogendoorn, S.[Serge],
Optimized Speed Trajectories for Cyclists, Based on Personal Preferences and Traffic Light Information: A Stochastic Dynamic Programming Approach,
ITS(23), No. 2, February 2022, pp. 777-793.
IEEE DOI 2202
Timing, Urban areas, Dynamic programming, Trajectory, Fuels, Heuristic algorithms, Acceleration, Speed advice, cycling, stochastic dynamic programming BibRef

Tang, K.[Keshuang], Chen, S.[Siqu], Cao, Y.[Yumin], Li, X.S.[Xiao-Song], Zang, D.[Di], Sun, J.[Jian], Ji, Y.[Yangbeibei],
Short-Term Travel Speed Prediction for Urban Expressways: Hybrid Convolutional Neural Network Models,
ITS(23), No. 3, March 2022, pp. 1829-1840.
IEEE DOI 2203
Predictive models, Data models, Feature extraction, Neural networks, Spatiotemporal phenomena, Detectors, hybrid models BibRef

Tang, K.[Keshuang], Chen, S.[Siqu], Cao, Y.M.[Yu-Min], Zang, D.[Di], Sun, J.[Jian],
Lane-level short-term travel speed prediction for urban expressways: An attentive spatio-temporal deep learning approach,
IET-ITS(18), No. 4, 2024, pp. 709-722.
DOI Link 2404
convolutional neural nets, intelligent transportation systems, learning (artificial intelligence), management and control, transportation BibRef

Fang, H.[Hao], Chen, C.H.[Chi-Hua], Chen, D.W.[De-Wang], Hwang, F.J.[Feng-Jang],
Neuron-Network-Based Mixture Probability Model for Passenger Walking Time Distribution Estimation,
IEICE(E105-D), No. 5, May 2022, pp. 1112-1115.
WWW Link. 2205
BibRef

Sun, Y.[Yiwen], Fu, K.[Kun], Wang, Z.[Zheng], Zhou, D.H.[Dong-Hua], Wu, K.L.[Kai-Lun], Ye, J.P.[Jie-Ping], Zhang, C.S.[Chang-Shui],
CoDriver ETA: Combine Driver Information in Estimated Time of Arrival by Driving Style Learning Auxiliary Task,
ITS(23), No. 5, May 2022, pp. 4037-4048.
IEEE DOI 2205
Vehicles, Task analysis, Trajectory, Data models, Predictive models, Deep learning, Regression tree analysis, transfer knowledge BibRef

Batista, S.F.A.[Sérgio F. A.], Ingole, D.[Deepak], Leclercq, L.[Ludovic], Menéndez, M.[Mónica],
The Role of Trip Lengths Calibration in Model-Based Perimeter Control Strategies,
ITS(23), No. 6, June 2022, pp. 5176-5186.
IEEE DOI 2206
Urban areas, Predictive models, Vehicles, Optimal control, Calibration, Uncertainty, Vehicle dynamics, Dynamic trip lengths, multi-regional networks BibRef

Sun, F.Y.[Fu-Yong], Gao, R.P.[Rui-Peng], Xing, W.W.[Wei-Wei], Zhang, Y.X.[Yao-Xue], Lu, W.[Wei], Fang, J.[Jun], Liu, S.[Shui],
Deep Fusion for Travel Time Estimation Based on Road Network Topology,
IEEE_Int_Sys(37), No. 3, May 2022, pp. 98-107.
IEEE DOI 2208
Road traffic, Location awareness, Estimation, Network topology, Trajectory, Intelligent transportation systems, Convolutional neural networks BibRef

Zhang, L.[Le], Khalgui, M.[Mohamed], Li, Z.W.[Zhi-Wu], Zhang, Y.S.[Yong-Sheng],
Fairness concern-based coordinated vehicle route guidance using an asymmetrical congestion game,
IET-ITS(16), No. 9, 2022, pp. 1236-1248.
DOI Link 2208
BibRef

Han, L.Z.[Liang-Zhe], Du, B.[Bowen], Lin, J.J.[Jing-Jing], Sun, L.L.[Lei-Lei], Li, X.C.[Xu-Cheng], Peng, Y.Z.[Yi-Zhou],
Multi-Semantic Path Representation Learning for Travel Time Estimation,
ITS(23), No. 8, August 2022, pp. 13108-13117.
IEEE DOI 2208
Roads, Estimation, Semantics, Space exploration, Global Positioning System, Trajectory, Task analysis, semantic representation BibRef

Liao, T.X.[Tian-Xi], Han, L.Z.[Liang-Zhe], Xu, Y.[Yi], Zhu, T.Y.[Tong-Yu], Sun, L.L.[Lei-Lei], Du, B.[Bowen],
Multi-Faceted Route Representation Learning for Travel Time Estimation,
ITS(25), No. 9, September 2024, pp. 11782-11793.
IEEE DOI 2409
Roads, Trajectory, Vectors, Semantics, Estimation, Representation learning, Global Positioning System, road vehicles BibRef

Song, G.X.[Gen-Xin], He, X.X.[Xin-Xin], Kong, Y.F.[Yun-Feng], Li, K.[Ke], Song, H.Q.[Hong-Quan], Zhai, S.Y.[Shi-Yan], Luo, J.J.[Jing-Jing],
Improving the Spatial Accessibility of Community-Level Healthcare Service toward the '15-Minute City' Goal in China,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Wang, C.X.[Chen-Xing], Zhao, F.[Fang], Zhang, H.C.[Hai-Chao], Luo, H.Y.[Hai-Yong], Qin, Y.J.[Yan-Jun], Fang, Y.C.[Yu-Chen],
Fine-Grained Trajectory-Based Travel Time Estimation for Multi-City Scenarios Based on Deep Meta-Learning,
ITS(23), No. 9, September 2022, pp. 15716-15728.
IEEE DOI 2209
Estimation, Trajectory, Task analysis, Urban areas, Roads, Data models, Global Positioning System, Spatial-temporal data mining, deep learning BibRef

Chen, M.Y.[Mu-Yen], Chiang, H.S.[Hsiu-Sen], Yang, K.J.[Kai-Jui],
Constructing Cooperative Intelligent Transport Systems for Travel Time Prediction With Deep Learning Approaches,
ITS(23), No. 9, September 2022, pp. 16590-16599.
IEEE DOI 2209
Roads, Regression tree analysis, Predictive models, Forecasting, Data models, Vehicles, Time series analysis, cooperative intelligent transport systems BibRef

Gao, R.P.[Rui-Peng], Sun, F.[Fuyong], Xing, W.W.[Wei-Wei], Tao, D.[Dan], Fang, J.[Jun], Chai, H.[Hua],
CTTE: Customized Travel Time Estimation via Mobile Crowdsensing,
ITS(23), No. 10, October 2022, pp. 19335-19347.
IEEE DOI 2210
Roads, Vehicles, Global Positioning System, Trajectory, Calibration, Gyroscopes, Brakes, Travel time estimation, mobile crowdsensing BibRef

Chen, X.[Xu], Wang, S.H.[Shao-Hua], Li, H.[Huilai], Lyu, F.Z.[Fang-Zheng], Liang, H.J.[Hao-Jian], Zhang, X.Y.[Xue-Yan], Zhong, Y.[Yang],
Ndist2vec: Node with Landmark and New Distance to Vector Method for Predicting Shortest Path Distance along Road Networks,
IJGI(11), No. 10, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Ye, Y.C.[Yong-Chao], Zhu, Y.[Yuanshao], Markos, C.[Christos], Yu, J.J.Q.[James J. Q.],
CatETA: A Categorical Approximate Approach for Estimating Time of Arrival,
ITS(23), No. 12, December 2022, pp. 24389-24400.
IEEE DOI 2212
Global Positioning System, Trajectory, Roads, Predictive models, Feature extraction, Estimation, Data models, spatio-temporal data mining BibRef

Guo, H.L.[Hong-Liang], He, Z.[Zhi], Gao, C.[Chen], Rus, D.[Daniela],
Navigation with Time Limits in Transportation Networks: A Fourth Moment Approach,
ITS(23), No. 12, December 2022, pp. 23781-23796.
IEEE DOI 2212
Transportation, Reliability, Convolution, Navigation, Bibliographies, Routing, Planning, Stochastic on time arrival (SOTA), tight lower bound BibRef

Dan, T.P.[Tang-Peng], Luo, C.Y.[Chang-Yin], Li, Y.H.[Yan-Hong], Guan, Z.[Zhong], Meng, X.F.[Xiao-Feng],
LG-Tree: An Efficient Labeled Index for Shortest Distance Search on Massive Road Networks,
ITS(23), No. 12, December 2022, pp. 23721-23735.
IEEE DOI 2212
Indexes, Roads, Costs, Labeling, Maintenance engineering, Internet, Directed graphs, LG-tree, shortest distance search, vertex label, massive graph data management BibRef

Zhu, Y.S.[Yuan-Shao], Ye, Y.C.[Yong-Chao], Liu, Y.[Yi], Yu, J.J.Q.[James J. Q.],
Cross-Area Travel Time Uncertainty Estimation From Trajectory Data: A Federated Learning Approach,
ITS(23), No. 12, December 2022, pp. 24966-24978.
IEEE DOI 2212
Trajectory, Estimation, Uncertainty, Data models, Deep learning, Collaborative work, Global Positioning System, privacy-preserving BibRef

Chen, C.[Chao], Li, L.[Lujia], Li, M.Y.[Ming-Yan], Li, R.[Ruiyuan], Wang, Z.[Zhu], Wu, F.[Fei], Xiang, C.C.[Chao-Can],
cuRL: A Generic Framework for Bi-Criteria Optimum Path-Finding Based on Deep Reinforcement Learning,
ITS(24), No. 2, February 2023, pp. 1949-1961.
IEEE DOI 2302
Routing, Costs, Roads, Reinforcement learning, Planning, Deep learning, Solar radiation, intelligent transportation systems (ITS), deep reinforcement learning BibRef

Lee, K.[Keyju], Chae, J.[Junjae],
Estimation of Travel Cost between Geographic Coordinates Using Artificial Neural Network: Potential Application in Vehicle Routing Problems,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Li, C.L.[Chang-Lin], Lin, S.[Shuai], Zhang, H.L.[Hong-Lei], Zhao, H.K.[Hong-Ke], Liu, L.[Lishan], Jia, N.[Ning],
A Sequence and Network Embedding Method for Bus Arrival Time Prediction Using GPS Trajectory Data Only,
ITS(24), No. 5, May 2023, pp. 5024-5038.
IEEE DOI 2305
Global Positioning System, Trajectory, Predictive models, Urban areas, Data models, Correlation, Statistical analysis, deep learning BibRef

Jia, X.L.[Xing-Li], Zhou, W.X.[Wu-Xiao], Yang, H.Z.[Hong-Zhi], Li, S.Q.[Shuang-Qing], Chen, X.P.[Xing-Peng],
Short-term traffic travel time forecasting using ensemble approach based on long short-term memory networks,
IET-ITS(17), No. 6, 2023, pp. 1262-1273.
DOI Link 2307
data analysis, intelligent transportation systems, learning (artificial intelligence), transportation BibRef

Li, Q.[Qiang], Jing, R.[Ranzhe], Dong, Z.J.S.[Zhi-Jie Sasha],
Flight Delay Prediction With Priority Information of Weather and Non-Weather Features,
ITS(24), No. 7, July 2023, pp. 7149-7165.
IEEE DOI 2307
Delays, Meteorology, Airports, Atmospheric modeling, Predictive models, Feature extraction, Analytical models, classification BibRef

Tang, Q.L.[Qiu-Ling], Dou, W.F.[Wan-Feng],
An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model,
IJGI(12), No. 7, 2023, pp. xx-yy.
DOI Link 2308
BibRef

Hosseini, R.[Reza], Tong, D.Q.[Dao-Qin], Lim, S.[Samsung], Sun, Q.C.[Qian Chayn], Sohn, G.[Gunho], Gidófalvi, G.[Gyözö], Alimohammadi, A.[Abbas], Seyedabrishami, S.[Seyedehsan],
A Novel Method for Extracting and Analyzing the Geometry Properties of the Shortest Pedestrian Paths Focusing on Open Geospatial Data,
IJGI(12), No. 7, 2023, pp. xx-yy.
DOI Link 2308
BibRef

Novak, H.[Hrvoje], Bronic, F.[Filip], Kolak, A.[Andelko], Lešic, V.[Vinko],
Data-Driven Modeling of Urban Traffic Travel Times for Short- and Long-Term Forecasting,
ITS(24), No. 10, October 2023, pp. 11198-11209.
IEEE DOI 2310
BibRef

Zou, G.J.[Guo-Jian], Lai, Z.[Ziliang], Ma, C.X.[Chang-Xi], Tu, M.[Meiting], Fan, J.[Jing], Li, Y.[Ye],
When Will We Arrive? A Novel Multi-Task Spatio-Temporal Attention Network Based on Individual Preference for Estimating Travel Time,
ITS(24), No. 10, October 2023, pp. 11438-11452.
IEEE DOI 2310
BibRef

Filipovska, M.[Monika], Mahmassani, H.S.[Hani S.],
Spatio-Temporal Characterization of Stochastic Dynamic Transportation Networks,
ITS(24), No. 9, September 2023, pp. 9929-9939.
IEEE DOI 2310
BibRef

Levering, N.[Nikki], Boon, M.[Marko], Mandjes, M.[Michel],
Estimating Probability Distributions of Travel Times by Fitting a Markovian Velocity Model,
ITS(24), No. 11, November 2023, pp. 12372-12392.
IEEE DOI 2311
BibRef

Sengupta, R.[Rahul], Reddy, R.R.K.[Rohith R. K.], Shah, P.[Parth], Dika, J.[James], Huang, X.H.[Xiao-Hui], Rangarajan, A.[Anand], Ranka, S.[Sanjay],
Computing Arterial Travel Time Distributions From Loop Detector and Probe Datasets,
ITS(24), No. 11, November 2023, pp. 11607-11622.
IEEE DOI 2311
BibRef

Guo, H.L.[Hong-Liang], Sheng, W.[Wenda], Zhou, Y.J.[Ying-Jie], Chen, Y.P.[Yun-Ping],
GE-DDRL: Graph Embedding and Deep Distributional Reinforcement Learning for Reliable Shortest Path: A Universal and Scale Free Solution,
ITS(24), No. 11, November 2023, pp. 12196-12214.
IEEE DOI 2311
BibRef

Li, Z.[Zhuhui], Zhao, L.[Liang], Min, G.[Geyong], Al-Dubai, A.Y.[Ahmed Y.], Hawbani, A.[Ammar], Zomaya, A.Y.[Albert Y.], Luo, C.[Chunbo],
Reliable and Scalable Routing Under Hybrid SDVN Architecture: A Graph Learning Based Method,
ITS(24), No. 12, December 2023, pp. 14022-14036.
IEEE DOI Code:
WWW Link. 2312
BibRef

Zhang, Z.C.[Zheng-Chao], Li, M.[Meng],
Finding Paths With Least Expected Time in Stochastic Time-Varying Networks Considering Uncertainty of Prediction Information,
ITS(24), No. 12, December 2023, pp. 14362-14377.
IEEE DOI 2312
BibRef

Li, R.[Rui], Hao, Z.[Zhengbo], Yang, X.[Xia], Yang, X.G.[Xiao-Guang], Wang, Y.Z.[Yi-Zhe], Su, Y.[Yuelong], Dong, Z.[Zhenning],
Urban road travel time prediction based on gated recurrent unit using internet data,
IET-ITS(17), No. 12, 2023, pp. 2396-2409.
DOI Link 2312
artificial intelligence, data analysis, traveller information BibRef

Yuan, S.X.[Shao-Xin], Zhao, K.[Ke], Xu, Z.G.[Zhi-Gang],
Adaptive Gaussian mixture model for identifying outliers in historical route travel times,
IET-ITS(17), No. 12, 2023, pp. 2458-2473.
DOI Link 2312
data analysis, information filtering, probability, reliability BibRef

Zhao, Z.H.[Zhi-Hua], Chao, L.[Li], Zhang, X.[Xue], Xie, N.[Nengfu], Zeng, Q.[Qingtian],
MCAGCN: Multi-component attention graph convolutional neural network for road travel time prediction,
IET-ITS(18), No. 1, 2024, pp. 139-153.
DOI Link 2401
data analysis, data mining, graph theory BibRef

Nguyen, N.A.[Ngoc An], Schweizer, J.[Joerg], Rupi, F.[Federico], Palese, S.[Sofia], Posati, L.[Leonardo],
Superblock Design and Evaluation by a Microscopic Door-to-Door Simulation Approach,
IJGI(13), No. 3, 2024, pp. 77.
DOI Link 2404
BibRef

Zochowska, R.[Renata], Pamula, T.[Teresa],
Impact of Traffic Flow Rate on the Accuracy of Short-Term Prediction of Origin-Destination Matrix in Urban Transportation Networks,
RS(16), No. 7, 2024, pp. 1202.
DOI Link 2404
BibRef

Li, Y.[Yue], Cai, K.[Kaiquan], Zhu, Y.[Yongwen], Yang, Y.[Yang],
Modeling Delay Propagation in Airport Networks via Causal Biased Random Walk,
ITS(25), No. 5, May 2024, pp. 4692-4703.
IEEE DOI 2405
Delays, Airports, Atmospheric modeling, Trajectory, Airline industry, Schedules, Entropy, Airport network, air traffic delay propagation, causal inference BibRef

Deng, W.[Wu], Li, K.[Kunpeng], Zhao, H.M.[Hui-Min],
A Flight Arrival Time Prediction Method Based on Cluster Clustering-Based Modular With Deep Neural Network,
ITS(25), No. 6, June 2024, pp. 6238-6247.
IEEE DOI 2406
Clustering algorithms, Artificial neural networks, Task analysis, Prediction algorithms, Training, Aircraft, Optimization, Bayesian optimization BibRef

Al Ghamdi, M.[Mostafa], Parr, G.[Gerard], Wang, W.J.[Wen-Jia],
Heterogeneous Machine Learning Ensembles for Predicting Train Delays,
ITS(25), No. 6, June 2024, pp. 5138-5153.
IEEE DOI 2406
Delays, Rails, Predictive models, Data models, Machine learning, Ensemble learning, Atmospheric modeling, Train delay prediction, diversity BibRef

Wei, Z.C.[Zhen-Chun], Zhu, S.W.[Si-Wei], Lyu, Z.[Zengwei], Qiao, Y.[Yan], Yuan, X.H.[Xiao-Hui], Zhao, Y.[Yang], Zhang, H.[Hao],
Multi-Step Regression Network With Attention Fusion for Airport Delay Prediction,
ITS(25), No. 7, July 2024, pp. 7093-7105.
IEEE DOI 2407
Airports, Delays, Atmospheric modeling, Correlation, Predictive models, Meteorology, Indexes, Airport delay prediction, sequence to sequence BibRef

Zhang, D.[Dezhi], Zhou, S.[Saiqi], Ji, B.[Bin], Li, S.[Shuangyan],
A Two-Echelon Capacitated Vehicle Routing Problem With Sharing Satellite Resources,
ITS(25), No. 9, September 2024, pp. 12216-12227.
IEEE DOI 2409
Satellites, Vehicle routing, Logistics, Costs, Transportation, Resource management, Collaboration, adaptive large neighborhood search BibRef


Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Transit Routing, Scheduling, Evaluation .


Last update:Sep 15, 2024 at 16:30:49