Barr, A.H.,
Superquadrics and Angle-Preserving Transformations,
IEEE_CGA(1), No. 1, January 1981, pp. 11-23.
BibRef
8101
Barr, A.H.,
Global and Local Deformations of Solid Primitives,
Computer Graphics(18), No. 3, 1984, pp. xx.
BibRef
8400
Raja, N.S.[Narayan S.],
Jain, A.K.[Anil K.],
Recognizing Geons from Superquadrics Fitted to Range Data,
IVC(10), No. 3, April 1992, pp. 179-190.
Elsevier DOI relate superquadrics and geons.
BibRef
9204
Chen, L.H.[Liang-Hua],
Lin, W.C.[Wei-Chung],
Liao, H.Y.M.[Hong-Yuan Mark],
Recovery of Superquadric Primitive from Stereo Images,
IVC(12), No. 5, June 1994, pp. 285-296.
Elsevier DOI Superquadric primitive, sparse and noisey stereo data.
BibRef
9406
Keren, D.,
Cooper, D.B., and
Subrahmonia, J.,
Describing Complicated Objects by Implicit Polynomials,
PAMI(16), No. 1, January 1994, pp. 38-53.
IEEE DOI
BibRef
9401
Earlier:
BrownLEMS-102, 1992.
2-D curves in images are represented by fourth order polynomials
to describe basic shapes (superquadrics).
BibRef
Solina, F., and
Bajcsy, R.K.,
Recovery of Parametric Models from Range Images:
The Case for Superquadrics with Global Deformations,
PAMI(12), No. 2, February 1990, pp. 131-147.
IEEE DOI
BibRef
9002
Earlier:
Range Image Interpretation of Mail Pieces with Superquadrics,
AAAI-87(733-737).
Functional Minimization.
Descriptions, Superquadrics.
Descriptions, Parametric.
BibRef
Jaklic, A.[Ales],
Leonardis, A.[Ales],
Solina, F.[Franc],
Segmentation and Recovery of Superquadrics,
KluwerSeptember 2000, ISBN 0-7923-6601-8
WWW Link. Or:
HTML Version. How to describe objects, how to computer superquadrics.
BibRef
0009
Leonardis, A.,
Jaklic, A.,
Solina, F.,
Superquadrics for Segmenting and Modeling Range Data,
PAMI(19), No. 11, November 1997, pp. 1289-1295.
IEEE DOI
9712
Directly recover superquadric from range data.
BibRef
Jaklic, A.,
Solina, F.,
Moments of superellipsoids and their application to range image
registration,
SMC-B(33), No. 4, August 2003, pp. 648-657.
IEEE Abstract.
0308
BibRef
Leonardis, A.,
Solina, F.,
Macerl, A.,
A Direct Recovery of Superquadric Models in Range Images Using
Recover-and-Select Paradigm,
ECCV94(A:309-318).
Springer DOI
BibRef
9400
Solina, F.,
Leonardis, A.,
Selective Scene Modeling,
ICPR92(I:87-90).
IEEE DOI
BibRef
9200
Krivic, J.[Jaka],
Solina, F.[Franc],
Part-level object recognition using superquadrics,
CVIU(95), No. 1, July 2004, pp. 105-126.
Elsevier DOI
0407
BibRef
Earlier:
Superquadric-Based Object Recognition,
CAIP01(134 ff.).
Springer DOI
0210
Hypothesize in database, then verify by projecting and refitting.
BibRef
Gupta, A., and
Bogoni, L., and
Bajcsy, R.,
Quantitative and Qualitative Measures for the Evaluation of
the Superquadric Models,
3DWS89(162-169).
BibRef
8900
Bajcsy, R.[Ruzena],
Solina, F.[Franc], and
Gupta, A.[Alok],
Segmentation Versus Object Representation: Are They Separable?,
AIRI90(207-223).
BibRef
9000
Bajcsy, R.[Ruzena], and
Solina, F.[Franc],
Three Dimensional Object Representation Revisited,
ICCV87(231-240).
BibRef
8700
Ferrie, F.P.,
Lagarde, J., and
Whaite, P.,
Darboux Frames, Snakes, and Super-Quadrics: Geometry from the Bottom Up,
PAMI(15), No. 8, August 1993, pp. 771-784.
IEEE DOI
BibRef
9308
And:
3DWS89(170-176).
BibRef
Earlier:
Recovery of Volumetric Object Descriptions from Laser
Rangefinder Images,
ECCV90(385-396).
Springer DOI Bottom-up approach for articulated volumetric descriptions.
Use ellipsoid and superquadric models.
BibRef
Ferrie, F.P., and
Levine, M.D.,
Deriving Coarse 3-D Models of Objects,
CVPR88(345-353).
IEEE DOI Models based on cylinders or ellipsoids.
See also Integrating Information from Multiple Views.
BibRef
8800
Ayoung-Chee, N.,
Dudek, G.,
Ferrie, F.P.,
Enhanced 3D Representation Using a Hybrid Model,
ICPR96(I: 575-579).
IEEE DOI
9608
(McGill Univ., CDN)
BibRef
Hanson, A.J.[Andrew J.],
Hyperquadrics: Smoothly Deformable Shapes with Convex Polyhedral Bounds,
CVGIP(44), No. 2, November 1988, pp. 191-210.
Elsevier DOI
Hyperquadrics. The introductions of Hyperquadrics a generalization of superquadrics.
BibRef
8811
Chen, L.H.,
Liu, Y.T.,
Liao, H.Y.,
Similarity Measure for Superquadrics,
VISP(144), No. 4, August 1997, pp. 237-243.
9806
BibRef
Pilu, M.[Maurizio],
Fisher, R.B.[Robert B.],
Training PDMs on models: the case of deformable superellipses,
PRL(20), No. 5, May 1999, pp. 463-474.
BibRef
9905
Earlier:
Add: second of three:
Fitzgibbon, A.W.,
BMVC96(Deformable Models).
9608
BibRef
And:
DAINo. 818, July 1996.
BibRef
EdinburghUniversity of Edinburgh.
Trying to simplify the complex model.
BibRef
Pilu, M., and
Fisher, R.B.,
Equal-Distance Sampling of Superellipse Models,
BMVC95(xx-yy).
PDF File.
9509
BibRef
And:
DAI-No. 764, July 1995.
BibRef
Edinburgh
BibRef
Tasdizen, T.[Tolga],
Tarel, J.P.[Jean-Philippe],
Cooper, D.B.[David B.],
Improving the Stability of Algebraic Curves for Applications,
IP(9), No. 3, March 2000, pp. 405-416.
IEEE DOI
HTML Version.
0003
BibRef
Earlier:
Algebraic Curves that Work Better,
CVPR99(II: 35-41).
IEEE DOI Better than conics or superquadrics.
BibRef
Tasdizen, T.[Tolga],
Cooper, D.B.,
Boundary Estimation from Intensity/Color Images with Algebraic Curve
Models,
ICPR00(Vol I: 225-228).
IEEE DOI
0009
BibRef
Zhou, L.[Lin],
Kambhamettu, C.[Chandra],
Extending Superquadrics with Exponent Functions:
Modeling and Reconstruction,
GM(63), No. 1, January 2001, pp. 1-20.
0102
BibRef
And:
Representing and recognizing complete set of geons using extended
superquadrics,
ICPR02(III: 713-718).
IEEE DOI
0211
BibRef
Earlier:
CVPR99(II: 73-78).
IEEE DOI
BibRef
Hu, W.C.,
Sheu, H.T.,
Efficient and consistent method for superellipse detection,
VISP(148), No. 4, August 2001, pp. 227-233.
0201
See also Contour-Based Correspondence Using Fourier Descriptors.
BibRef
Zhang, X.M.[Xiao-Ming],
Rosin, P.L.[Paul L.],
Superellipse fitting to partial data,
PR(36), No. 3, March 2003, pp. 743-752.
Elsevier DOI
PDF File.
0301
BibRef
Pickup, D.[David],
Sun, X.F.[Xian-Fang],
Rosin, P.L.[Paul L.],
Martin, R.R.[Ralph R.],
Euclidean-distance-based canonical forms for non-rigid 3D shape
retrieval,
PR(48), No. 8, 2015, pp. 2500-2512.
Elsevier DOI
1505
Shape retrieval
BibRef
Zhang, Y.[Yan],
Experimental comparison of superquadric fitting objective functions,
PRL(24), No. 14, October 2003, pp. 2185-2193.
Elsevier DOI
0307
Compare different superquadric fitting functions.
BibRef
Wen, F.[Fur_Ong],
Yuan, B.[Bao_Zong],
Retracted: Least-squares fitting for deformable superquadric model based on
orthogonal distance,
PRL(25), No. 8, June 2004, pp. 933-941.
Elsevier DOI
0405
See retraction.
BibRef
Ho, T.K.[Tin Kam],
Article retraction: Least-squares fitting for deformable superquadric
model based on orthogonal distance,
PRL(26), No. 6, 1 May 2005, pp. 685-686.
Elsevier DOI
0501
Previous article retracted.
BibRef
Katsoulas, D.[Dimitrios],
Bastidas, C.C.[Christian Cea],
Kosmopoulos, D.I.[Dimitrios I.],
Superquadric Segmentation in Range Images via Fusion of Region and
Boundary Information,
PAMI(30), No. 5, May 2008, pp. 781-795.
IEEE DOI
0803
BibRef
Katsoulas, D.[Dimitrios],
Kosmopoulos, D.I.[Dimitrios I.],
Box-like Superquadric Recovery in Range Images by Fusing Region and
Boundary Information,
ICPR06(I: 719-722).
IEEE DOI
0609
BibRef
Katsoulas, D.[Dimitrios],
Reliable recovery of piled box-like objects via parabolically
deformable superquadrics,
ICCV03(931-938).
IEEE DOI
0311
Hypothesis generation and refinement.
BibRef
Katsoulas, D.,
Jakli, A.,
Fast Recovery of Piled Deformable Objects Using Superquadrics,
DAGM02(174 ff.).
Springer DOI
0303
BibRef
Biegelbauer, G.[Georg],
Vincze, M.[Markus],
Wohlkinger, W.[Walter],
Model-based 3D object detection: Efficient approach using superquadrics,
MVA(21), No. 4, June 2010, pp. xx-yy.
Springer DOI
1006
See also fast stereo matching algorithm suitable for embedded real-time systems, A.
BibRef
Fougerolle, Y.D.[Yohan D.],
Gielis, J.[Johan],
Truchetet, F.[Frederic],
A robust evolutionary algorithm for the recovery of rational Gielis
curves,
PR(46), No. 8, August 2013, pp. 2078-2091.
Elsevier DOI
1304
Superquadrics; Gielis curves; Optimization; Evolutionary algorithm;
R-functions
BibRef
Lin, Z.C.[Zhou-Chen],
Huang, Y.[Yameng],
Fast Multidimensional Ellipsoid-Specific Fitting by Alternating
Direction Method of Multipliers,
PAMI(38), No. 5, May 2016, pp. 1021-1026.
IEEE DOI
1604
Accuracy
BibRef
Kesäniemi, M.[Martti],
Virtanen, K.[Kai],
Direct Least Square Fitting of Hyperellipsoids,
PAMI(40), No. 1, January 2018, pp. 63-76.
IEEE DOI
1712
Ellipsoids, Estimation, Fitting, Iterative methods, Surface fitting,
regularization.
Shapes for bones.
BibRef
Vaskevicius, N.[Narunas],
Birk, A.[Andreas],
Revisiting Superquadric Fitting: A Numerically Stable Formulation,
PAMI(41), No. 1, January 2019, pp. 220-233.
IEEE DOI
1812
Shape, Cost function, Surface fitting, Numerical models, Fitting,
Robots, Superquadric fitting, optimization, numerical stability,
object recognition
BibRef
Cosmo, L.[Luca],
Minello, G.[Giorgia],
Bronstein, M.M.[Michael M.],
Rodolà, E.[Emanuele],
Rossi, L.[Luca],
Torsello, A.[Andrea],
3D Shape Analysis Through a Quantum Lens:
The Average Mixing Kernel Signature,
IJCV(130), No. 6, June 2022, pp. 1474-1493.
Springer DOI
2207
Signature for points on non-rigid three-dimensional shapes.
BibRef
Li, J.X.[Jia-Xin],
Wang, H.X.[Hong-Xing],
Tan, J.W.[Jia-Wei],
Yuan, J.S.[Jun-Song],
Shared Latent Membership Enables Joint Shape Abstraction and
Segmentation With Deformable Superquadrics,
IP(33), 2024, pp. 3564-3577.
IEEE DOI
2406
Shape, Task analysis, Semantics, Point cloud compression, Geometry,
Bending, Point cloud, shape abstraction, segmentation, joint task
BibRef
Zhao, M.Y.[Ming-Yang],
Jia, X.H.[Xiao-Hong],
Ma, L.[Lei],
Shi, Y.[Yuke],
Jiang, J.G.[Jin-Gen],
Li, Q.Z.[Qi-Zhai],
Yan, D.M.[Dong-Ming],
Huang, T.J.[Tie-Jun],
A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific
Fitting,
PAMI(46), No. 12, December 2024, pp. 10106-10123.
IEEE DOI
2411
Fitting, Ellipsoids, Surface fitting, Bayes methods, Robustness, Noise,
Ellipsoid fitting, Bayesian parameter estimate,
expectation maximization
BibRef
Wu, Y.W.[Yu-Wei],
Liu, W.X.[Wei-Xiao],
Ruan, S.[Sipu],
Chirikjian, G.S.[Gregory S.],
Primitive-Based Shape Abstraction via Nonparametric Bayesian Inference,
ECCV22(XXVII:479-495).
Springer DOI
2211
BibRef
Liu, W.X.[Wei-Xiao],
Wu, Y.W.[Yu-Wei],
Ruan, S.[Sipu],
Chirikjian, G.S.[Gregory S.],
Robust and Accurate Superquadric Recovery: a Probabilistic Approach,
CVPR22(2666-2675)
IEEE DOI
2210
Point cloud compression, Maximum likelihood estimation, Shape,
Switches, Probabilistic logic, Segmentation,
Scene analysis and understanding
BibRef
Fu, C.Q.[Chang-Qing],
Cohen, L.D.[Laurent D.],
Geometric Deformation on Objects: Unsupervised Image Manipulation via
Conjugation,
SSVM21(346-357).
Springer DOI
2106
BibRef
Paschalidou, D.[Despoina],
Ulusoy, A.O.[Ali Osman],
Geiger, A.[Andreas],
Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids,
CVPR19(10336-10345).
IEEE DOI
2002
BibRef
Mock, S.[Sebastian],
Lensing, P.[Philipp],
Broll, W.[Wolfgang],
Achieving Flexible 3D Reconstruction Volumes for RGB-D and RGB Camera
Based Approaches,
ICCVG16(221-232).
Springer DOI
1611
BibRef
Thamer, H.[Hendrik],
Taj, F.[Faisal],
Weimer, D.[Daniel],
Kost, H.[Henning],
Scholz-Reiter, B.[Bernd],
Combined Categorization and Localization of Logistic Goods Using
Superquadrics,
ICIAR13(215-224).
Springer DOI
1307
BibRef
Zhou, L.P.[Lu-Ping],
Salvado, O.,
A Comparison Study of Ellipsoid Fitting for Pose Normalization of
Hippocampal Shapes,
DICTA11(285-290).
IEEE DOI
1205
BibRef
Ditrich, F.[Frank],
Suesse, H.[Herbert],
Robust Fitting of 3D Objects by Affinely Transformed Superellipsoids
Using Normalization,
CAIP07(490-497).
Springer DOI
0708
See also Robust Determination of Rotation-Angles for Closed Regions Using Moments.
BibRef
Zhang, Y.,
Paik, J.,
Koschan, A.F.[Andreas F.],
Abidi, M.A.[Mongi A.],
3-D object representation from multi-view range data applying
deformable superquadrics,
ICPR02(III: 611-614).
IEEE DOI
0211
BibRef
Chevalier, L.,
Jaillet, F.,
Baskurt, A.,
3d Shape Coding with Superquadrics,
ICIP01(II: 93-96).
IEEE DOI
0108
BibRef
Plaenkers, R.[Ralf],
Fua, P.V.[Pascal V.],
Articulated Soft Objects for Video-based Body Modeling,
ICCV01(I: 394-401).
IEEE DOI
0106
Model of shape and motion from video.
Skeleton plus meta-ball surfaces plus skin.
BibRef
Zha, H.B.[Hong-Bin],
Hoshide, T.[Tsuyoshi],
Hasegawa, T.[Tsutomu],
A Recursive Fitting-and-Splitting Algorithm for 3-D
Object Modeling Using Superquadrics,
ICPR98(Vol I: 658-662).
IEEE DOI
9808
BibRef
van Dop, E.R.[Erik R.],
Regtien, P.P.L.[Paul P.L.],
Fitting Undeformed Superquadrics to Range Data:
Improving Model Recovery and Classification,
CVPR98(396-401).
IEEE DOI
BibRef
9800
Yokoya, N.,
Kaneta, M.,
Yamamoto, K.,
Recovery Of Superquadric Primitives from a Range
Image Using Simulated Annealing,
ICPR92(I:168-172).
IEEE DOI
BibRef
9200
Horikoshi, T., and
Suzuki, S.,
3D Parts Decomposition from Sparse Range Data Information Criterion,
CVPR93(168-173).
IEEE DOI Segmented descriptions for superquadrics.
BibRef
9300
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Active Volumes, Deformable Solids, 3-D Snakes, etc. .