Kseneman, M.[Matej],
Gleich, D.[Duan],
Potocnik, B.[Boidar],
Soil-moisture estimation from TerraSAR-X data using neural networks,
MVA(23), No. 5, September 2012, pp. 937-952.
WWW Link.
1208
BibRef
Gleich, D.[Dusan],
SAR patch scene categorization,
WSSIP14(31-34)
1406
Continuous wavelet transforms
BibRef
Kseneman, M.[Matej],
Gleich, D.[Duan],
Soil-Moisture Estimation From X-Band Data Using Tikhonov Regularization
and Neural Net,
GeoRS(51), No. 7, 2013, pp. 3885-3898.
IEEE DOI
BibRef
1300
Earlier:
Soil Moisture Estimation with TerraSAR-X: With Dubois Empirical Model,
WSSIP09(1-4).
IEEE DOI
0906
Soil measurements; neural network
1307
BibRef
Morrison, K.,
Bennett, J.C.,
Nolan, M.,
Using DInSAR to Separate Surface and Subsurface Features,
GeoRS(51), No. 6, 2013, pp. 3424-3430.
IEEE DOI radar interferometry; moisture content;
ground-penetrating radar
1307
BibRef
Jacome, A.[Andres],
Bernier, M.[Monique],
Chokmani, K.[Karem],
Gauthier, Y.[Yves],
Poulin, J.[Jimmy],
de Sčve, D.[Danielle],
Monitoring Volumetric Surface Soil Moisture Content at the La Grande
Basin Boreal Wetland by Radar Multi Polarization Data,
RS(5), No. 10, 2013, pp. 4919-4941.
DOI Link
1311
BibRef
Tran, A.P.[Anh Phuong],
Andre, F.,
Lambot, S.,
Validation of Near-Field Ground-Penetrating Radar Modeling Using
Full-Wave Inversion for Soil Moisture Estimation,
GeoRS(52), No. 9, Sept 2014, pp. 5483-5497.
IEEE DOI
1407
ground penetrating radar
BibRef
Wu, K.J.[Kai-Jun],
Desesquelles, H.[Henri],
Cockenpot, R.[Rodolphe],
Guyard, L.[Léon],
Cuisiniez, V.[Victor],
Lambot, S.[Sébastien],
Ground-Penetrating Radar Full-Wave Inversion for Soil Moisture
Mapping in Trench-Hill Potato Fields for Precise Irrigation,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ouellette, J.D.,
Johnson, J.T.,
Kim, S.,
van Zyl, J.J.,
Moghaddam, M.,
Spencer, M.W.,
Tsang, L.,
Entekhabi, D.,
A Simulation Study of Compact Polarimetry for Radar Retrieval of Soil
Moisture,
GeoRS(52), No. 9, Sept 2014, pp. 5966-5973.
IEEE DOI
1407
moisture
BibRef
de Zan, F.,
Parizzi, A.,
Prats-Iraola, P.,
Lopez-Dekker, P.,
A SAR Interferometric Model for Soil Moisture,
GeoRS(52), No. 1, January 2014, pp. 418-425.
IEEE DOI
1402
dielectric properties
BibRef
Dostálová, A.[Alena],
Doubková, M.[Marcela],
Sabel, D.[Daniel],
Bauer-Marschallinger, B.[Bernhard],
Wagner, W.[Wolfgang],
Seven Years of Advanced Synthetic Aperture Radar (ASAR) Global
Monitoring (GM) of Surface Soil Moisture over Africa,
RS(6), No. 8, 2014, pp. 7683-7707.
DOI Link
1410
BibRef
Song, X.N.[Xiao-Ning],
Ma, J.W.[Jian-Wei],
Li, X.T.[Xiao-Tao],
Leng, P.[Pei],
Zhou, F.C.[Fang-Cheng],
Li, S.A.[Shu-Ang],
First Results of Estimating Surface Soil Moisture in the Vegetated
Areas Using ASAR and Hyperion Data:
The Chinese Heihe River Basin Case Study,
RS(6), No. 12, 2014, pp. 12055-12069.
DOI Link
1412
BibRef
Tabatabaeenejad, A.,
Burgin, M.,
Duan, X.Y.[Xue-Yang],
Moghaddam, M.,
P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a
Second-Order Polynomial: First AirMOSS Results,
GeoRS(53), No. 2, February 2015, pp. 645-658.
IEEE DOI
1411
hydrological techniques
BibRef
He, B.B.[Bin-Bin],
Xing, M.F.[Min-Feng],
Bai, X.J.[Xiao-Jing],
A Synergistic Methodology for Soil Moisture Estimation in an Alpine
Prairie Using Radar and Optical Satellite Data,
RS(6), No. 11, 2014, pp. 10966-10985.
DOI Link
1412
BibRef
Truong-Lol, M.L.[My-Linh],
Saatchi, S.,
Jaruwatanadilok, S.,
Soil Moisture Estimation Under Tropical Forests Using UHF Radar
Polarimetry,
GeoRS(53), No. 4, April 2015, pp. 1718-1727.
IEEE DOI
1502
environmental monitoring (geophysics)
BibRef
Chai, X.[Xun],
Zhang, T.T.[Ting-Ting],
Shao, Y.[Yun],
Gong, H.[Huaze],
Liu, L.[Long],
Xie, K.X.[Kai-Xin],
Modeling and Mapping Soil Moisture of Plateau Pasture Using
RADARSAT-2 Imagery,
RS(7), No. 2, 2015, pp. 1279-1299.
DOI Link
1503
BibRef
Du, J.Y.[Jin-Yang],
Kimball, J.S.[John S.],
Moghaddam, M.[Mahta],
Theoretical Modeling and Analysis of L- and P-band Radar Backscatter
Sensitivity to Soil Active Layer Dielectric Variations,
RS(7), No. 7, 2015, pp. 9450.
DOI Link
1506
BibRef
Gorrab, A.[Azza],
Zribi, M.[Mehrez],
Baghdadi, N.[Nicolas],
Mougenot, B.[Bernard],
Chabaane, Z.L.[Zohra Lili],
Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR Data for the
Assessment of Physical Soil Parameters,
RS(7), No. 1, 2015, pp. 747-766.
DOI Link
1502
BibRef
Gorrab, A.[Azza],
Zribi, M.[Mehrez],
Baghdadi, N.[Nicolas],
Mougenot, B.[Bernard],
Fanise, P.[Pascal],
Chabaane, Z.L.[Zohra Lili],
Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images,
RS(7), No. 8, 2015, pp. 10098.
DOI Link
1509
BibRef
Hosseini, R.[Reza],
Newlands, N.K.[Nathaniel K.],
Dean, C.B.[Charmaine B.],
Takemura, A.[Akimichi],
Statistical Modeling of Soil Moisture, Integrating Satellite
Remote-Sensing (SAR) and Ground-Based Data,
RS(7), No. 3, 2015, pp. 2752-2780.
DOI Link
1504
BibRef
Zwieback, S.[Simon],
Hensley, S.[Scott],
Hajnsek, I.[Irena],
A Polarimetric First-Order Model of Soil Moisture Effects on the
DInSAR Coherence,
RS(7), No. 6, 2015, pp. 7571.
DOI Link
1507
BibRef
Tomer, S.K.[Sat Kumar],
Bitar, A.A.[Ahmad Al],
Sekhar, M.[Muddu],
Zribi, M.[Mehrez],
Bandyopadhyay, S.,
Sreelash, K.,
Sharma, A.K.,
Corgne, S.[Samuel],
Kerr, Y.[Yann],
Retrieval and Multi-scale Validation of Soil Moisture from
Multi-temporal SAR Data in a Semi-Arid Tropical Region,
RS(7), No. 6, 2015, pp. 8128.
DOI Link
1507
BibRef
Zhang, X.[Xiang],
Chen, B.Z.[Bao-Zhang],
Fan, H.D.[Hong-Dong],
Huang, J.[Jilei],
Zhao, H.[Hui],
The Potential Use of Multi-Band SAR Data for Soil Moisture Retrieval
over Bare Agricultural Areas: Hebei, China,
RS(8), No. 1, 2016, pp. 7.
DOI Link
1602
BibRef
Bai, X.,
He, B.,
Li, X.,
Optimum Surface Roughness to Parameterize Advanced Integral Equation
Model for Soil Moisture Retrieval in Prairie Area Using Radarsat-2
Data,
GeoRS(54), No. 4, April 2016, pp. 2437-2449.
IEEE DOI
1604
Mathematical model
BibRef
Ponnurangam, G.G.,
Jagdhuber, T.,
Hajnsek, I.,
Rao, Y.S.,
Soil Moisture Estimation Using Hybrid Polarimetric SAR Data of
RISAT-1,
GeoRS(54), No. 4, April 2016, pp. 2033-2049.
IEEE DOI
1604
Agriculture
BibRef
di Martino, G.,
Iodice, A.,
Natale, A.,
Riccio, D.,
Polarimetric Two-Scale Two-Component Model for the Retrieval of Soil
Moisture Under Moderate Vegetation via L-Band SAR Data,
GeoRS(54), No. 4, April 2016, pp. 2470-2491.
IEEE DOI
1604
Scattering
BibRef
He, L.,
Panciera, R.,
Tanase, M.A.,
Walker, J.P.,
Qin, Q.,
Soil Moisture Retrieval in Agricultural Fields Using Adaptive
Model-Based Polarimetric Decomposition of SAR Data,
GeoRS(54), No. 8, August 2016, pp. 4445-4460.
IEEE DOI
1608
moisture
BibRef
Stamenkovic, J.,
Guerriero, L.,
Ferrazzoli, P.,
Notarnicola, C.,
Greifeneder, F.,
Thiran, J.P.,
Soil Moisture Estimation by SAR in Alpine Fields Using Gaussian
Process Regressor Trained by Model Simulations,
GeoRS(55), No. 9, September 2017, pp. 4899-4912.
IEEE DOI
1709
Gaussian processes, remote sensing by radar,
synthetic aperture radar,
C-band VV-polarized Wide Swath images, Envisat Advanced SAR,
Gaussian Process Regression, Mazia valley, South Tyrol,
backscatter model simulations,
correlation coefficient, discrete radiative transfer model,
grassland alpine area, meteorological stations,
BibRef
Högström, E.,
Bartsch, A.,
Impact of Backscatter Variations Over Water Bodies on Coarse-Scale
Radar Retrieved Soil Moisture and the Potential of Correcting With
Meteorological Data,
GeoRS(55), No. 1, January 2017, pp. 3-13.
IEEE DOI
1701
backscatter
BibRef
Sadeghi, M.[Morteza],
Tabatabaeenejad, A.[Alireza],
Tuller, M.[Markus],
Moghaddam, M.[Mahta],
Jones, S.B.[Scott B.],
Advancing NASA's AirMOSS P-Band Radar Root Zone Soil Moisture
Retrieval Algorithm via Incorporation of Richards' Equation,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Xie, Q.X.[Qiu-Xia],
Meng, Q.Y.[Qing-Yan],
Zhang, L.L.[Lin-Lin],
Wang, C.M.[Chun-Mei],
Sun, Y.X.[Yun-Xiao],
Sun, Z.H.[Zhen-Hui],
A Soil Moisture Retrieval Method Based on Typical Polarization
Decomposition Techniques for a Maize Field from Full-Polarization
Radarsat-2 Data,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Özerdem, M.S.[Mehmet Siraç],
Acar, E.[Emrullah],
Ekinci, R.[Remzi],
Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris
Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition
Models and a Generalized Regression Neural Network,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Zwieback, S.,
Hensley, S.,
Hajnsek, I.,
Soil Moisture Estimation Using Differential Radar Interferometry:
Toward Separating Soil Moisture and Displacements,
GeoRS(55), No. 9, September 2017, pp. 5069-5083.
IEEE DOI
1709
estimation theory, radar interferometry,
remote sensing by radar, synthetic aperture radar,
Coherence, Estimation,
Interferometry.
Time series analysis, displacement measurement,
electromagnetic scattering, estimation,
measurement errors, phase noise,
BibRef
Joerg, H.,
Pardini, M.,
Hajnsek, I.,
Papathanassiou, K.P.,
3-D Scattering Characterization of Agricultural Crops at C-Band Using
SAR Tomography,
GeoRS(56), No. 7, July 2018, pp. 3976-3989.
IEEE DOI
1807
Agriculture, Scattering, Soil measurements, Soil moisture,
Synthetic aperture radar, Vegetation mapping,
vegetation water content (VWC)
BibRef
Bauer-Marschallinger, B.[Bernhard],
Paulik, C.[Christoph],
Hochstöger, S.[Simon],
Mistelbauer, T.[Thomas],
Modanesi, S.[Sara],
Ciabatta, L.[Luca],
Massari, C.[Christian],
Brocca, L.[Luca],
Wagner, W.[Wolfgang],
Soil Moisture from Fusion of Scatterometer and SAR:
Closing the Scale Gap with Temporal Filtering,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Li, J.H.[Jun-Hua],
Wang, S.[Shusen],
Using SAR-Derived Vegetation Descriptors in a Water Cloud Model to
Improve Soil Moisture Retrieval,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Cenci, L.[Luca],
Pulvirenti, L.[Luca],
Boni, G.[Giorgio],
Pierdicca, N.[Nazzareno],
Defining a Trade-off Between Spatial and Temporal Resolution of a
Geosynchronous SAR Mission for Soil Moisture Monitoring,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Shamir, O.[Omer],
Goldshleger, N.[Naftaly],
Basson, U.[Uri],
Reshef, M.[Moshe],
Laboratory Measurements of Subsurface Spatial Moisture Content by
Ground-Penetrating Radar (GPR) Diffraction and Reflection Imaging of
Agricultural Soils,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Earlier:
Mapping Spatial Moisture Content Of Unsaturated Agricultural Soils With
Ground-penetrating Radar,
ISPRS16(B8: 1279-1285).
DOI Link
1610
Ths 10: Spatial ecology and ecosystem services mapping using Essential
Biodiversity Variables (ebvs)
BibRef
Etminan, A.,
Tabatabaeenejad, A.,
Moghaddam, M.,
Retrieving Root-Zone Soil Moisture Profile From P-Band Radar via
Hybrid Global and Local Optimization,
GeoRS(58), No. 8, August 2020, pp. 5400-5408.
IEEE DOI
2007
Soil moisture, Mathematical model, Optimization, Radar,
Atmospheric modeling, Data models, Electromagnetic scattering,
surface and subsurface properties
BibRef
Tabatabaeenejad, A.,
Chen, R.H.,
Burgin, M.S.,
Duan, X.,
Cuenca, R.H.,
Cosh, M.H.,
Scott, R.L.,
Moghaddam, M.,
Assessment and Validation of AirMOSS P-Band Root-Zone Soil Moisture
Products,
GeoRS(58), No. 9, September 2020, pp. 6181-6196.
IEEE DOI
2008
Soil moisture, Forestry, Atmospheric modeling,
Synthetic aperture radar, Radar remote sensing,
simulated annealing
BibRef
Zribi, M.[Mehrez],
Muddu, S.[Sekhar],
Bousbih, S.[Safa],
Bitar, A.A.[Ahmad Al],
Tomer, S.K.[Sat Kumar],
Baghdadi, N.[Nicolas],
Bandyopadhyay, S.[Soumya],
Analysis of L-Band SAR Data for Soil Moisture Estimations over
Agricultural Areas in the Tropics,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Xing, M.F.[Min-Feng],
He, B.B.[Bin-Bin],
Ni, X.L.[Xi-Liang],
Wang, J.F.[Jin-Fei],
An, G.Q.A.[Gang-Qi-Ang],
Shang, J.L.[Jia-Li],
Huang, X.D.[Xiao-Dong],
Retrieving Surface Soil Moisture over Wheat and Soybean Fields during
Growing Season Using Modified Water Cloud Model from Radarsat-2 SAR
Data,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Xing, M.F.[Min-Feng],
Chen, L.[Lin],
Wang, J.F.[Jin-Fei],
Shang, J.L.[Jia-Li],
Huang, X.D.[Xiao-Dong],
Soil Moisture Retrieval Using SAR Backscattering Ratio Method during
the Crop Growing Season,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Merzouki, A.[Amine],
McNairn, H.[Heather],
Powers, J.[Jarrett],
Friesen, M.[Matthew],
Synthetic Aperture Radar (SAR) Compact Polarimetry for Soil Moisture
Retrieval,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Santi, E.[Emanuele],
Dabboor, M.[Mohammed],
Pettinato, S.[Simone],
Paloscia, S.[Simonetta],
Combining Machine Learning and Compact Polarimetry for Estimating
Soil Moisture from C-Band SAR Data,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Xu, C.Y.[Chen-Yang],
Qu, J.J.[John J.],
Hao, X.J.[Xian-Jun],
Wu, D.[Di],
Monitoring Surface Soil Moisture Content over the Vegetated Area by
Integrating Optical and SAR Satellite Observations in the Permafrost
Region of Tibetan Plateau,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Molan, Y.E.[Yusuf Eshqi],
Lu, Z.[Zhong],
Can InSAR Coherence and Closure Phase Be Used to Estimate Soil
Moisture Changes?,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Eshqi Molan, Y.[Yusuf],
Lu, Z.[Zhong],
Modeling InSAR Phase and SAR Intensity Changes Induced by Soil
Moisture,
GeoRS(58), No. 7, July 2020, pp. 4967-4975.
IEEE DOI
2006
Soil moisture, Synthetic aperture radar, Scattering,
Mathematical model, Solid modeling, Atmospheric modeling,
soil moisture
BibRef
Zhang, L.[Li],
Lv, X.L.[Xiao-Lei],
Chen, Q.[Qi],
Sun, G.C.[Guang-Cai],
Yao, J.C.[Jing-Chuan],
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR
and Optical Data Using a Combined Scattering Model,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Molan, Y.E.,
Lu, Z.,
Kim, J.W.,
Influence of the Statistical Properties of Phase and Intensity on
Closure Phase,
GeoRS(58), No. 10, October 2020, pp. 7346-7354.
IEEE DOI
2009
Coherence, Dielectric constant, Soil moisture, Radar polarimetry,
Synthetic aperture radar, Strain, Closure phase, coherence,
single-looked pixel's intensity and phase changes
Comments:
See also Comments on Influence of the Statistical Properties of Phase and Intensity on Closure Phase.
BibRef
Hänsch, R.,
Jagdhuber, T.,
Fersch, B.,
Soil-Permittivity Estimation Under Grassland Using Machine-Learning
and Polarimetric Decomposition Techniques,
GeoRS(59), No. 4, April 2021, pp. 2877-2887.
IEEE DOI
2104
Permittivity, Synthetic aperture radar,
Maximum likelihood estimation, Soil moisture, Scattering,
soil moisture
BibRef
Hamze, M.[Mohamad],
Baghdadi, N.[Nicolas],
El Hajj, M.M.[Marcel M.],
Zribi, M.[Mehrez],
Bazzi, H.[Hassan],
Cheviron, B.[Bruno],
Faour, G.[Ghaleb],
Integration of L-Band Derived Soil Roughness into a Bare Soil
Moisture Retrieval Approach from C-Band SAR Data,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
de Zan, F.[Francesco],
Rocca, F.[Fabio],
Ferretti, A.[Alessandro],
López-Dekker, P.[Paco],
Eineder, M.[Michael],
Comments on 'Influence of the Statistical Properties of Phase and
Intensity on Closure Phase',
GeoRS(59), No. 7, July 2021, pp. 6277-6278.
IEEE DOI
2106
Moisture, Synthetic aperture radar, Interferometry, Scattering,
Imaging, Image color analysis, Sociology, Closure phase, SAR interferometry
See also Influence of the Statistical Properties of Phase and Intensity on Closure Phase.
BibRef
Gao, Y.[Ya],
Gao, M.[Maofang],
Wang, L.G.[Li-Guo],
Rozenstein, O.[Offer],
Soil Moisture Retrieval over a Vegetation-Covered Area Using ALOS-2
L-Band Synthetic Aperture Radar Data,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Gharechelou, S.[Saeid],
Tateishi, R.[Ryutaro],
Sumantyo, J.T.S.[Josaphat Tetuko Sri],
Johnson, B.A.[Brian Alan],
Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental
Observations in an Arid Environment,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Hegazi, E.H.[Ehab H.],
Yang, L.B.[Ling-Bo],
Huang, J.F.[Jing-Feng],
A Convolutional Neural Network Algorithm for Soil Moisture Prediction
from Sentinel-1 SAR Images,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Dann, J.[Julian],
Bennett, K.E.[Katrina E.],
Bolton, W.R.[W. Robert],
Wilson, C.J.[Cathy J.],
Factors Controlling a Synthetic Aperture Radar (SAR) Derived
Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Magagi, R.[Ramata],
Jammali, S.[Safa],
Goďta, K.[Kalifa],
Wang, H.Q.[Hong-Quan],
Colliander, A.[Andreas],
Potential of L- and C- Bands Polarimetric SAR Data for Monitoring
Soil Moisture over Forested Sites,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liao, T.H.[Tien-Hao],
Kim, S.B.[Seung-Bum],
Dual-Frequency Retrieval of Soil Moisture from L- and S-Band Radar
Data for Corn and Soybean,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, Z.L.[Zhi-Lian],
Zeng, Z.F.[Zhao-Fa],
Xiong, H.Q.[Hong-Qiang],
Lu, Q.[Qi],
An, B.Z.[Bai-Zhou],
Yan, J.[Jiahe],
Li, R.S.[Ri-Sheng],
Xia, L.F.[Long-Fei],
Wang, H.Y.[Hao-Yu],
Liu, K.[Kexin],
Study on Rapid Inversion of Soil Water Content from
Ground-Penetrating Radar Data Based on Deep Learning,
RS(15), No. 7, 2023, pp. 1906.
DOI Link
2304
BibRef
Lee, J.H.[Ju Hyoung],
Lindenschmidt, K.E.[Karl-Erich],
Bias-Corrected RADARSAT-2 Soil Moisture Dynamics Reveal Discharge
Hysteresis at An Agricultural Watershed,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
And:
Correction:
RS(15), No. 13, 2023, pp. 3342.
DOI Link
2307
BibRef
Lu, Q.[Qi],
Liu, K.[Kexin],
Zeng, Z.F.[Zhao-Fa],
Liu, S.X.[Si-Xin],
Li, R.S.[Ri-Sheng],
Xia, L.F.[Long-Fei],
Guo, S.L.[Shi-Long],
Li, Z.L.[Zhi-Lian],
Estimation of the Soil Water Content Using the Early Time Signal of
Ground-Penetrating Radar in Heterogeneous Soil,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Goďta, K.[Kalifa],
Magagi, R.[Ramata],
Beauregard, V.[Vincent],
Wang, H.Q.[Hong-Quan],
Retrieval of Surface Soil Moisture over Wheat Fields during Growing
Season Using C-Band Polarimetric SAR Data,
RS(15), No. 20, 2023, pp. 4925.
DOI Link
2310
BibRef
Xu, C.B.[Chong-Bin],
Liu, Q.L.[Qing-Li],
Wang, Y.L.[Ying-Lin],
Chen, Q.[Qian],
Sun, X.M.[Xiao-Min],
Zhao, H.[He],
Zhao, J.H.[Jian-Hui],
Li, N.[Ning],
Inversion of Farmland Soil Moisture Based on Multi-Band Synthetic
Aperture Radar Data and Optical Data,
RS(16), No. 13, 2024, pp. 2296.
DOI Link
2407
BibRef
Zakharov, I.[Igor],
Kohlsmith, S.[Sarah],
Hornung, J.[Jon],
Charbonneau, F.[François],
Bobby, P.[Pradeep],
Howell, M.[Mark],
Surface Soil Moisture Estimation from Time Series of RADARSAT
Constellation Mission Compact Polarimetric Data for the
Identification of Water-Saturated Areas,
RS(16), No. 14, 2024, pp. 2664.
DOI Link
2408
BibRef
Dinesh, D.[Dev],
Kumar, S.[Shashi],
Saran, S.[Sameer],
Machine Learning Modelling for Soil Moisture Retrieval from Simulated
NASA-ISRO SAR (NISAR) L-Band Data,
RS(16), No. 18, 2024, pp. 3539.
DOI Link
2410
BibRef
Mahrooghy, M.[Majid],
Aanstoos, J.V.[James V.],
Hasan, K.[Khaled],
Prasad, S.[Saurabh],
Younan, N.H.[Nicolas H.],
Effect of vegetation height and volume scattering on soil moisture
classification using synthetic aperture radar (SAR) images,
AIPR11(1-5).
IEEE DOI
1204
See also Unsupervised classification of SAR imagery using polarimetric decomposition to preserve scattering characteristics.
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Soil Moisture, Evaluations and Comparisions of Different Methods .