Winkler, G.,
Vattrodt, K.,
Measures for Conspicuousness,
CGIP(8), No. 3, December 1978, pp. 355-368.
Elsevier DOI
BibRef
7812
Pratt, W.K.,
Faugeras, O.D.,
Gagalowicz, A.,
Visual Discrimination of Stochastic Texture Fields,
SMC(8), 1978, pp. 796-804.
BibRef
7800
Gagalowicz, A.,
Visual Discrimination of Stochastic Texture Fields Based upon Their
Second Order Statistics,
ICPR80(786-788).
BibRef
8000
Earlier:
Analysis of Texture Using a Stochastic Model,
ICPR78(541-544).
BibRef
Gagalowicz, A.,
Stochastic Texture Fields Synthesis from a Priori Given Second
Order Statistice,
PRIP79(376-381).
BibRef
7900
Wang, S.,
Velasco, F.R.D.,
Wu, A.,
Rosenfeld, A.,
Relative Effectiveness of Selected Texture Primitive Statistics
for Texture Discrimination,
SMC(11), 1981, pp. 360-370.
BibRef
8100
Hsu, S.Y.[Shin-Yi],
The Mahalanobis Classifier with the Generalized Inverse Approach
for Automated Analysis of Imagery Texture Data,
CGIP(9), No. 2, February 1979, pp. 117-134.
Elsevier DOI
BibRef
7902
Hirota, K.[Kaoru],
The Bounded Variation Quantity (B.V.Q.) and its Application to Feature
Extraction,
PR(15), No. 2, 1982, pp. 93-101.
Elsevier DOI
0309
BibRef
Liu, S.S.[Song-Sheng],
Jernigan, M.E.,
Texture Analysis and Discrimination in Additive Noise,
CVGIP(49), No. 1, January 1990, pp. 52-67.
Elsevier DOI
BibRef
9001
Greenspan, H.,
Goodman, R.,
Chellappa, R.,
Anderson, C.H.,
Learning Texture-Discrimination Rules in a Multiresolution System,
PAMI(16), No. 9, September 1994, pp. 894-901.
IEEE DOI
BibRef
9409
Malik, J.,
Perona, P.,
Preattentive Texture Discrimination with Early Vision Mechanism,
JOSA-A(7), No. 5, May 1990, pp. 923-932.
BibRef
9005
Earlier:
A Computational Model of Texture Perception,
UCBCSD-89-491, 1989.
BibRef
And:
A Computational Model of Texture Segmentation,
CVPR89(326-332).
IEEE DOI
See also Deformable Kernels for Early Vision.
BibRef
Lovell, R.[Robb],
Uttal, W.R.[William R.],
Shepherd, T.[Thomas],
Dayanand, S.[Sriram],
A Model of Visual Texture Discrimination Using Multiple Weak Operators
and Spatial Averaging,
PR(25), No. 10, October 1992, pp. 1157-1170.
Elsevier DOI
BibRef
9210
He, D.C.[Dong-Chien],
Wang, L.[Li],
Guibert, J.[Jean],
Texture Discrimination Based on an Optimal Utilization of Texture
Features,
PR(21), No. 2, 1988, pp. 141-146.
Elsevier DOI
0309
BibRef
Thomson, M.G.A.,
Foster, D.H.,
Role of Second-Order and Third-Order Statistics in the
Discriminability of Natural Images,
JOSA-A(14), No. 9, September 1997, pp. 2081-2090.
9709
BibRef
Yuille, A.L.,
Coughlan, J.M.[James M.],
Wu, Y.N.[Ying-Nian],
Zhu, S.C.[Song Chun],
Order Parameters for Detecting Target Curves in Images:
When Does High Level Knowledge Help?,
IJCV(41), No. 1-2, January-February 2001, pp. 9-33.
DOI Link Bayesian inference, curve detection, order parameters,
minimax entropy
Generalize earlier
See also Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking.
0105
BibRef
Yuille, A.L.,
Coughlan, J.M.[James M.],
Zhu, S.C.[Song Chun],
Wu, Y.N.[Ying-Nian],
Order Parameters for Minimax Entropy Distributions:
When does High Level Knowledge Help?,
CVPR00(I: 558-565).
IEEE DOI
0005
Choose the model
BibRef
Coughlan, J.M.[James M.],
Yuille, A.L.[Alan L.],
G-factors: Relating Distributions on Features to Distributions on
Images,
SCTV01(xx-yy).
0106
BibRef
Kim, K.I.,
Park, S.H.,
Kim, H.J.,
Kernel Principal Component Analysis for Texture Classification,
SPLetters(8), No. 2, February 2001, pp. 39-41.
IEEE Top Reference.
0101
BibRef
Kim, K.I.[Kwang In],
Jung, K.C.[Kee-Chul],
Park, S.H.[Se Hyun],
Kim, H.J.[Hang Joon],
Support Vector Machines for Texture Classification,
PAMI(24), No. 11, November 2002, pp. 1542-1550.
IEEE Abstract.
0211
No feature extraction, just the gray levels.
BibRef
Epifanio, I.,
Ayala, G.,
A random set view of texture classification,
IP(11), No. 8, August 2002, pp. 859-867.
IEEE DOI
0209
BibRef
Sánchez Yáñez, R.E.[Raúl E.],
Kurmyshev, E.V.[Evguenii V.],
Cuevas, F.J.[Francisco J.],
A framework for texture classification using the coordinated clusters
representation,
PRL(24), No. 1-3, January 2003, pp. 21-31.
Elsevier DOI
0211
BibRef
Sánchez Yáñez, R.E.[Raúl E.],
Kurmyshev, E.V.[Evguenii V.],
Fernández, A.[Antonio],
One-class texture classifier in the CCR feature space,
PRL(24), No. 9-10, June 2003, pp. 1503-1511.
Elsevier DOI
0304
BibRef
Kurmyshev, E.V.[Evguenii V.],
Sanchez Yanez, R.E.[Raul E.],
Comparative experiment with colour texture classifiers using the CCR
feature space,
PRL(26), No. 9, 1 July 2005, pp. 1346-1353.
Elsevier DOI
0506
BibRef
Deng, H.[Huawu],
Chan, K.L.[Kap Luk],
Liu, J.[Jun],
The Poisson equation for image texture modelling,
PRL(24), No. 9-10, June 2003, pp. 1571-1582.
Elsevier DOI
0304
BibRef
Huang, Y.[Yong],
Chan, K.L.[Kap Luk],
Huang, Z.Y.[Zhong-Yang],
An Adaptive Model for Texture Classification,
ICPR00(Vol III: 893-896).
IEEE DOI
0009
BibRef
Li, S.T.[Shu-Tao],
Kwok, J.T.[James T.],
Zhu, H.L.[Hai-Long],
Wang, Y.N.[Yao-Nan],
Texture classification using the support vector machines,
PR(36), No. 12, December 2003, pp. 2883-2893.
Elsevier DOI
0310
BibRef
Kwok, J.T.[James T.],
Support Vector Mixture for Classification and Regression Problems,
ICPR98(Vol I: 255-258).
IEEE DOI
9808
BibRef
Christodoulou, C.I.,
Michaelides, S.C.,
Pattichis, C.S.,
Multifeature texture analysis for the classification of clouds in
satellite imagery,
GeoRS(41), No. 11, November 2003, pp. 2662-2668.
IEEE Abstract.
0311
BibRef
Pietikäinen, M.[Matti],
Nurmela, T.[Tomi],
Mäenpää, T.[Topi],
Turtinen, M.[Markus],
View-based recognition of real-world textures,
PR(37), No. 2, February 2004, pp. 313-323.
Elsevier DOI
0311
BibRef
Chen, Q.,
Gong, P.,
Automatic Variogram Parameter Extraction for Textural Classification of
the Panchromatic IKONOS Imagery,
GeoRS(42), No. 5, May 2004, pp. 1106-1115.
IEEE Abstract.
0407
Automatically extract range and sill from variogram.
BibRef
Martinez Alajarin, J.,
Luis Delgado, J.D.,
Tomas Balibrea, L.M.,
Automatic system for quality-based classification of marble textures,
SMC-C(35), No. 4, November 2005, pp. 488-497.
IEEE DOI
0512
BibRef
Chen, X.W.[Xue-Wen],
Zeng, X.Y.[Xiang-Yan],
van Alphen, D.[Deborah],
Multi-class feature selection for texture classification,
PRL(27), No. 14, 15 October 2006, pp. 1685-1691.
Elsevier DOI
0609
Multi-class feature selection; Texture classification;
Least squares support vector machine; Recursive feature elimination;
Min-max value
BibRef
Choy, S.K.[Siu-Kai],
Tong, C.S.[Chong-Sze],
Supervised Texture Classification Using Characteristic Generalized
Gaussian Density,
JMIV(29), No. 1, Septmeber 2007, pp. 35-47.
Springer DOI
0709
BibRef
Choy, S.K.,
Tong, C.S.,
Statistical Properties of Bit-Plane Probability Model and Its
Application in Supervised Texture Classification,
IP(17), No. 8, August 2008, pp. 1399-1405.
IEEE DOI
0808
See also Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval, A.
BibRef
Choy, S.K.,
Tong, C.S.,
Statistical Wavelet Subband Characterization Based on Generalized Gamma
Density and Its Application in Texture Retrieval,
IP(19), No. 2, February 2010, pp. 281-289.
IEEE DOI
1002
BibRef
Li, L.,
Tong, C.S.[Chong-Sze],
Choy, S.K.[Siu-Kai],
Texture Classification Using Refined Histogram,
IP(19), No. 5, May 2010, pp. 1371-1378.
IEEE DOI
1004
BibRef
Shoshany, M.[Maxim],
An evolutionary patch pattern approach for texture discrimination,
PR(41), No. 7, July 2008, pp. 2327-2336.
Elsevier DOI
0804
Patch patterns; Spatial dynamics; Spatial duality; Texture discrimination
BibRef
Caputo, B.[Barbara],
Class Specific Object Recognition using Kernel Gibbs Distributions,
ELCVIA(7), No. 2, 2008, pp. xx-yy.
DOI Link
0903
BibRef
Caputo, B.[Barbara],
Cusano, C.[Claudio],
Lanzi, M.[Martina],
Napoletano, P.[Paolo],
Schettini, R.[Raimondo],
On the Importance of Domain Adaptation in Texture Classification,
CIAP17(I:380-390).
Springer DOI
1711
BibRef
Caputo, B.[Barbara],
Hayman, E.[Eric],
Mallikarjuna, P.,
Class-Specific Material Categorisation,
ICCV05(II: 1597-1604).
IEEE DOI
0510
Decision tree, each node is a SVM to split one class from all others.
BibRef
Hayman, E.[Eric],
Caputo, B.[Barbara],
Fritz, M.[Mario],
Eklundh, J.O.[Jan-Olof],
On the Significance of Real-World Conditions for Material
Classification,
ECCV04(Vol IV: 253-266).
Springer DOI
0405
SVM application.
Texture recognition.
Still not a solved problem in general.
BibRef
Targhi, A.T.[Alireza Tavakoli],
Hayman, E.[Eric],
Eklundh, J.O.[Jan-Olof],
Shahshahani, M.[Mehrdad],
The Eigen-Transform and Applications,
ACCV06(I:70-79).
Springer DOI
0601
Texture measure of roughness.
Bottom up detection, top down segmentation.
BibRef
Drbohlav, O.[Ondrej],
Leonardis, A.[Ales],
Towards correct and informative evaluation methodology for texture
classification under varying viewpoint and illumination,
CVIU(114), No. 4, April 2010, pp. 439-449.
Elsevier DOI
1003
Texture classification; Illumination invariance; Viewpoint invariance;
Evaluation methodology; Generalization ability
BibRef
Rengers, N.[Norman],
Prinz, T.[Torsten],
JAVA-based Texture Analysis Employing Neighborhood Gray-Tone Difference
Matrix (NGTDM) for Optimization of Land Use Classifications in High
Resolution Remote Sensing Data,
PFG(2009), No. 5, 2009, pp. 455-467.
WWW Link.
1211
Code, Texture Analysis.
Code, Texture Analysis, Java.
BibRef
Sun, X.P.[Xiang-Ping],
Wang, J.[Jin],
She, M.F.H.[Mary F.H.],
Kong, L.X.[Ling-Xue],
Sparse representation with multi-manifold analysis for texture
classification from few training images,
IVC(32), No. 11, 2014, pp. 835-846.
Elsevier DOI
1410
Texture classification
BibRef
Zhang, W.,
Zhang, W.,
Liu, K.,
Gu, J.,
A Feature Descriptor Based on Local Normalized Difference for
Real-World Texture Classification,
MultMed(20), No. 4, April 2018, pp. 880-888.
IEEE DOI
1804
Feature extraction, Histograms, Interpolation, Lighting, Robustness,
Sensitivity, Visualization, Normalized difference vector,
texture representation
BibRef
Huo, Z.Q.[Zhan-Qiang],
Zhang, Y.Q.[Yan-Qi],
Liu, H.M.[Hong-Min],
Wang, J.[Jing],
Liu, X.[Xin],
Zhang, J.Y.[Ji-Yong],
Improved covariant local feature detector,
PRL(135), 2020, pp. 1-7.
Elsevier DOI
2006
Local feature, Image matching, Covariant features, Feature repeatability
BibRef
Chen, K.X.[Kai-Xuan],
Ren, J.Y.[Jie-Yi],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
Covariance descriptors on a Gaussian manifold and their application
to image set classification,
PR(107), 2020, pp. 107463.
Elsevier DOI
2008
Covariance descriptors, Riemannian local difference vector,
Riemannian covariance descriptors, Image set classification
See also ETH-80 Dataset, The.
BibRef
Ren, J.Y.[Jie-Yi],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
Discriminative block-diagonal covariance descriptors for image set
classification,
PRL(136), 2020, pp. 230-236.
Elsevier DOI
2008
Covariance descriptor, SPD matrix, Riemannian manifold,
Image set classification
BibRef
Mao, S.B.[Shang-Bo],
Rajan, D.[Deepu],
Chia, L.T.[Liang Tien],
Deep residual pooling network for texture recognition,
PR(112), 2021, pp. 107817.
Elsevier DOI
2102
Texture recognition, Residual pooling
BibRef
Zhu, K.[Kai],
Cao, Y.[Yang],
Zhai, W.[Wei],
Zha, Z.J.[Zheng-Jun],
One-Shot Texture Retrieval Using Global Grouping Metric,
MultMed(23), 2021, pp. 3726-3737.
IEEE DOI
2110
Image segmentation, Task analysis, Measurement, Adaptation models,
Feature extraction, Semantics, Attention, texture
BibRef
Zhai, W.[Wei],
Cao, Y.[Yang],
Zha, Z.J.[Zheng-Jun],
Xie, H.[Hai_Yong],
Wu, F.[Feng],
Deep Structure-Revealed Network for Texture Recognition,
CVPR20(11007-11016)
IEEE DOI
2008
Feature extraction, Phase change materials, Collaboration,
Convolution, Image recognition, Task analysis
BibRef
Fang, P.F.[Peng-Fei],
Zhou, J.M.[Jie-Ming],
Roy, S.[Soumava],
Petersson, L.[Lars],
Harandi, M.[Mehrtash],
Bilinear Attention Networks for Person Retrieval,
ICCV19(8029-8038)
IEEE DOI
2004
Second order statistical information.
feature extraction, higher order statistics,
image representation, learning (artificial intelligence),
Computer architecture
BibRef
Zhai, W.,
Cao, Y.,
Zhang, J.,
Zha, Z.,
Deep Multiple-Attribute-Perceived Network for Real-World Texture
Recognition,
ICCV19(3612-3621)
IEEE DOI
2004
convolutional neural nets, feature extraction, image coding,
image recognition, image texture,
abstracted semantic concepts
BibRef
Alonso-Cuevas, J.L.[Juan L.],
Sanchez-Yanez, R.E.[Raul E.],
Kurmyshev, E.V.[Evguenii V.],
Scaled CCR Histogram for Scale-Invariant Texture Classification,
MCPR18(277-286).
Springer DOI
1807
BibRef
Dai, X.Y.[Xi-Yang],
Ng, J.Y.H.[Joe Yue-Hei],
Davis, L.S.[Larry S.],
FASON:
First and Second Order Information Fusion Network for Texture Recognition,
CVPR17(6100-6108)
IEEE DOI
1711
Architecture, Benchmark testing, Computational modeling,
Computer architecture, Fuses, Training
See also TAN: Temporal Aggregation Network for Dense Multi-Label Action Recognition.
BibRef
Faraki, M.[Masoud],
Harandi, M.T.[Mehrtash T.],
Porikli, F.M.[Fatih M.],
Image set classification by symmetric positive semi-definite matrices,
WACV16(1-8)
IEEE DOI
1606
BibRef
Earlier:
Material Classification on Symmetric Positive Definite Manifolds,
WACV15(749-756)
IEEE DOI
1503
Covariance matrices.
Databases. Second order statistics.
BibRef
Eberhardt, S.[Sven],
Zetzsche, C.[Christoph],
Self-localization on texture statistics,
ICIP14(976-980)
IEEE DOI
1502
Cities and towns
BibRef
Schaeffer, H.[Hayden],
Osher, S.J.[Stanley J.],
A Low Patch-Rank Interpretation of Texture,
SIIMS(6), No. 1, 2013, pp. 226-262.
DOI Link
1304
BibRef
Chakraborty, D.,
Thakur, S.,
Jeyaram, A.,
Krishna Murthy, Y.V.N.,
Dadhwal, V.K.,
Texture Analysis for Classification of RISAT-II Images,
ISPRS12(XXXIX-B3:461-466).
DOI Link
1209
BibRef
Xu, M.Q.[Min-Qiang],
Zhou, X.[Xi],
Li, Z.[Zhen],
Dai, B.Q.[Bei-Qian],
Huang, T.S.[Thomas S.],
Extended Hierarchical Gaussianization for scene classification,
ICIP10(1837-1840).
IEEE DOI
1009
Gaussian Mixture Model in Bayesian framework.
BibRef
Guermeur, P.[Philippe],
Manzanera, A.[Antoine],
Image Characterization from Statistical Reduction of Local Patterns,
CIARP09(571-578).
Springer DOI
0911
BibRef
Wang, G.S.[Gui-Song],
Kinser, J.M.,
Texture discrimination and classification using pulse images,
AIPR04(55-60).
IEEE DOI
0410
BibRef
Thumfart, S.[Stefan],
Heidl, W.[Wolfgang],
Scharinger, J.[Josef],
Eitzinger, C.[Christian],
A Quantitative Evaluation of Texture Feature Robustness and
Interpolation Behaviour,
CAIP09(1154-1161).
Springer DOI
0909
BibRef
Tan, X.[Xi],
Ingredient Separation of Natural Images:
A Multiple Transform Domain Method Based on Sparse Coding Strategy,
ICIAR07(752-760).
Springer DOI
0708
BibRef
Zhang, P.[Peng],
Peng, J.[Jing],
Buckles, B.[Bill],
Learning Optimal Filter Representation for Texture Classification,
ICPR06(II: 1138-1141).
IEEE DOI
0609
BibRef
Qin, L.[Lei],
Zheng, Q.F.[Qing-Fang],
Jiang, S.Q.[Shu-Qiang],
Huang, Q.M.[Qing-Ming],
Gao, W.[Wen],
Unsupervised texture classification: Automatically discover and
classify texture patterns,
IVC(26), No. 5, May 2008, pp. 647-656.
Elsevier DOI
0803
Unsupervised texture classification; NMF; PLSI; Invariant descriptor
BibRef
Qin, L.[Lei],
Wang, W.Q.[Wei-Qiang],
Huang, Q.M.[Qing-Ming],
Gao, W.[Wen],
Unsupervised Texture Classification:
Automatically Discover and Classify Texture Patterns,
ICPR06(II: 433-436).
IEEE DOI
0609
BibRef
Southam, P.,
Harvey, R.,
Towards texture classification in real scenes,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Earlier:
Compact rotation-invariant texture classification,
ICIP04(V: 3033-3036).
IEEE DOI
0505
BibRef
Win, K.[Khin],
Baik, S.[Sung],
Baik, R.[Ran],
Ahn, S.[Sung],
Kim, S.[Sang],
Jo, Y.[Yung],
Texture Feature Extraction and Selection for Classification of Images
in a Sequence,
IWCIA04(750-757).
Springer DOI
0505
BibRef
Targhi, A.T.[Alireza Tavakoli],
Geusebroek, J.M.[Jan-Mark],
Zisserman, A.[Andrew],
Texture classification with minimal training images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Pavan, M.,
Pelillo, M.,
Unsupervised texture segmentation by dominant sets and game dynamics,
CIAP03(302-307).
IEEE DOI
0310
BibRef
Jain, A.K.[Anil K.],
Karu, K.[Kalle],
Texture analysis: Representation and matching,
CIAP95(2-10).
Springer DOI
9509
BibRef
Earlier:
Automatic filter design for texture discrimination,
ICPR94(A:454-458).
IEEE DOI
9410
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Color Textures and Texture with Color .