16.7.2.5.5 Traffic Flow Analysis Using Phone Signals, Cell Data, Wi-Fi data

Chapter Contents (Back)
Traffic Flow. Smart Highways. Using phone data for traffic. Including pedestrian movement.

Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.,
Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome,
ITS(12), No. 1, March 2011, pp. 141-151.
IEEE DOI 1103
BibRef

Gisdakis, S., Manolopoulos, V., Tao, S., Rusu, A., Papadimitratos, P.,
Secure and Privacy-Preserving Smartphone-Based Traffic Information Systems,
ITS(16), No. 3, June 2015, pp. 1428-1438.
IEEE DOI 1506
Authentication BibRef

Jahangiri, A., Rakha, H.A.,
Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data,
ITS(16), No. 5, October 2015, pp. 2406-2417.
IEEE DOI 1511
decision trees BibRef

Wahlström, J., Skog, I., Händel, P.,
Smartphone-Based Vehicle Telematics: A Ten-Year Anniversary,
ITS(18), No. 10, October 2017, pp. 2802-2825.
IEEE DOI 1710
Internet of Things, Smartphones, driver classification, telematics, usage-based-insurance, vehicle, navigation BibRef

Gan, H.C.[Hong-Cheng],
To switch travel mode or not? Impact of Smartphone delivered high-quality multimodal information,
IET-ITS(9), No. 4, 2015, pp. 382-390.
DOI Link 1506
mobile computing BibRef

Janecek, A., Valerio, D., Hummel, K.A., Ricciato, F., Hlavacs, H.,
The Cellular Network as a Sensor: From Mobile Phone Data to Real-Time Road Traffic Monitoring,
ITS(16), No. 5, October 2015, pp. 2551-2572.
IEEE DOI 1511
cellular radio BibRef

Lv, M., Chen, L., Wu, X., Chen, G.,
A Road Congestion Detection System Using Undedicated Mobile Phones,
ITS(16), No. 6, December 2015, pp. 3060-3072.
IEEE DOI 1512
Accelerometers BibRef

Assemi, B., Safi, H., Mesbah, M., Ferreira, L.,
Developing and Validating a Statistical Model for Travel Mode Identification on Smartphones,
ITS(17), No. 7, July 2016, pp. 1920-1931.
IEEE DOI 1608
data privacy BibRef

Demissie, M.G., Phithakkitnukoon, S., Sukhvibul, T., Antunes, F., Gomes, R., Bento, C.,
Inferring Passenger Travel Demand to Improve Urban Mobility in Developing Countries Using Cell Phone Data: A Case Study of Senegal,
ITS(17), No. 9, September 2016, pp. 2466-2478.
IEEE DOI 1609
Africa BibRef

Xu, Y.[Yang], Shaw, S.L.[Shih-Lung], Fang, Z.X.[Zhi-Xiang], Yin, L.[Ling],
Estimating Potential Demand of Bicycle Trips from Mobile Phone Data: An Anchor-Point Based Approach,
IJGI(5), No. 8, 2016, pp. 131.
DOI Link 1609
BibRef

Lai, W.K.[Wei-Kuang], Kuo, T.H.[Ting-Huan],
Vehicle Positioning and Speed Estimation Based on Cellular Network Signals for Urban Roads,
IJGI(5), No. 10, 2016, pp. 181.
DOI Link 1610
BibRef

Yang, X.P.[Xi-Ping], Fang, Z.X.[Zhi-Xiang], Xu, Y.[Yang], Shaw, S.L.[Shih-Lung], Zhao, Z.Y.[Zhi-Yuan], Yin, L.[Ling], Zhang, T.[Tao], Lin, Y.[Yunong],
Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data,
IJGI(5), No. 10, 2016, pp. 177.
DOI Link 1610
BibRef

Lu, S.W.[Shi-Wei], Fang, Z.X.[Zhi-Xiang], Zhang, X.R.[Xi-Rui], Shaw, S.L.[Shih-Lung], Yin, L.[Ling], Zhao, Z.Y.[Zhi-Yuan], Yang, X.P.[Xi-Ping],
Understanding the Representativeness of Mobile Phone Location Data in Characterizing Human Mobility Indicators,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Su, X., Caceres, H., Tong, H., He, Q.,
Online Travel Mode Identification Using Smartphones With Battery Saving Considerations,
ITS(17), No. 10, October 2016, pp. 2921-2934.
IEEE DOI 1610
Global Positioning System BibRef

Zhong, G., Wan, X., Zhang, J., Yin, T., Ran, B.,
Characterizing Passenger Flow for a Transportation Hub Based on Mobile Phone Data,
ITS(18), No. 6, June 2017, pp. 1507-1518.
IEEE DOI 1706
Base stations, Matrix converters, Mobile communication, Mobile handsets, Time series analysis, Transportation, Urban areas, Base station, mobile phone data, passenger transportation hub, temporal-spatial clustering, wireless, communication BibRef

Zhou, C., Jia, H., Juan, Z., Fu, X., Xiao, G.,
A Data-Driven Method for Trip Ends Identification Using Large-Scale Smartphone-Based GPS Tracking Data,
ITS(18), No. 8, August 2017, pp. 2096-2110.
IEEE DOI 1708
Big data, Data models, Global Positioning System, Internet, Timing, Transportation, GPS tracking data processing, data-driven method, random forest, trip, ends, identification BibRef

Basyoni, Y.[Yarah], Abbas, H.M.[Hazem M.], Talaat, H.[Hoda], El Dimeery, I.[Ibrahim],
Speed prediction from mobile sensors using cellular phone-based traffic data,
IET-ITS(11), No. 7, September 2017, pp. 387-396.
DOI Link 1710
BibRef

Lemmens, R.[Rob], Lungo, J.[Juma], Georgiadou, Y.[Yola], Verplanke, J.[Jeroen],
Monitoring Rural Water Points in Tanzania with Mobile Phones: The Evolution of the SEMA App,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link 1710
BibRef

Jin, C.J.[Cheng-Jie], Knoop, V.L.[Victor L.], Jiang, R.[Rui], Wang, W.[Wei], Wang, H.[Hao],
Calibration and validation of cellular automaton traffic flow model with empirical and experimental data,
IET-ITS(12), No. 5, June 2018, pp. 359-365.
DOI Link 1805
BibRef

Yin, M., Sheehan, M., Feygin, S., Paiement, J.F., Pozdnoukhov, A.,
A Generative Model of Urban Activities from Cellular Data,
ITS(19), No. 6, June 2018, pp. 1682-1696.
IEEE DOI 1806
Activity recognition, Analytical models, Context modeling, Data models, Global Positioning System, Hidden Markov models, latent variables BibRef

Rupi, F.[Federico], Schweizer, J.[Joerg],
Evaluating cyclist patterns using GPS data from smartphones,
IET-ITS(12), No. 4, May 2018, pp. 279-285.
DOI Link 1804
BibRef

Wang, B., Gao, L., Juan, Z.,
Travel Mode Detection Using GPS Data and Socioeconomic Attributes Based on a Random Forest Classifier,
ITS(19), No. 5, May 2018, pp. 1547-1558.
IEEE DOI 1805
Automobiles, Feature extraction, Global Positioning System, Public transportation, Smart phones, GPS data, ROC curve, socioeconomic attributes BibRef

Wang, X.O.[Xi-Ong], Zhang, J.B.[Jin-Bei], Tian, X.H.[Xiao-Hua], Gan, X.Y.[Xiao-Ying], Guan, Y.F.[Yun-Feng], Wang, X.B.[Xin-Bing],
Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition,
ITS(19), No. 8, August 2018, pp. 2536-2547.
IEEE DOI 1808
Roads, Reliability, Sensors, Mobile communication, Inference algorithms, Smart phones, Wireless sensor networks, incentive BibRef

Batran, M.[Mohamed], Mejia, M.G.[Mariano Gregorio], Kanasugi, H.[Hiroshi], Sekimoto, Y.[Yoshihide], Shibasaki, R.[Ryosuke],
Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Kim, Y.S.[Young-Sung], Ghorpade, A.[Ajinkya], Zhao, F.[Fang], Pereira, F.C.[Francisco C.], Zegras, P.C.[P. Christopher], Ben-Akiva, M.[Moshe],
Activity Recognition for a Smartphone and Web-Based Human Mobility Sensing System,
IEEE_Int_Sys(33), No. 4, July 2018, pp. 5-23.
IEEE DOI 1810
BibRef
Earlier: A1, A4, A3, A2, A5, A6:
Activity Recognition for a Smartphone Based Travel Survey Based on Cross-User History Data,
ICPR14(432-437)
IEEE DOI 1412
Frequency modulation, Quantization (signal), Activity recognition, Global Positioning System, Sociology, interactive data collection. Accuracy. Transport models, why the trip is made. BibRef

Zhou, Z.P.[Zhu-Ping], Yang, J.[Jiwei], Qi, Y.[Yong], Cai, Y.F.[Yi-Fei],
Support vector machine and back propagation neutral network approaches for trip mode prediction using mobile phone data,
IET-ITS(12), No. 10, December 2018, pp. 1220-1226.
DOI Link 1812
BibRef

Ashqar, H.I., Almannaa, M.H., Elhenawy, M., Rakha, H.A., House, L.,
Smartphone Transportation Mode Recognition Using a Hierarchical Machine Learning Classifier and Pooled Features From Time and Frequency Domains,
ITS(20), No. 1, January 2019, pp. 244-252.
IEEE DOI 1901
Feature extraction, Frequency-domain analysis, Transportation, Sensors, Time-domain analysis, Global Positioning System, hierarchical modeling BibRef

Ghahramani, M., Zhou, M., Hon, C.T.,
Extracting Significant Mobile Phone Interaction Patterns Based on Community Structures,
ITS(20), No. 3, March 2019, pp. 1031-1041.
IEEE DOI 1903
Mobile handsets, Urban areas, Data analysis, Clustering methods, Transportation, Planning, Spatial databases, Big data, spatio-temporal analysis BibRef

Demissie, M.G., Phithakkitnukoon, S., Kattan, L.,
Trip Distribution Modeling Using Mobile Phone Data: Emphasis on Intra-Zonal Trips,
ITS(20), No. 7, July 2019, pp. 2605-2617.
IEEE DOI 1907
Mobile handsets, Poles and towers, Data models, Estimation, Gravity, Transportation, Sociology, Gravity model, intra-zonal trips, trip distribution model BibRef

He, S.L.[Shang-Lu], Ding, F.[Fan], Zhou, Y.[Yang], Cheng, Y.[Yang], Ran, B.[Bin],
Investigating and modelling the relationship between traffic volume and extracts from cellphone activity data,
IET-ITS(13), No. 8, August 2019, pp. 1299-1308.
DOI Link 1908
BibRef

Wu, H.[Hao], Liu, L.[Lingbo], Yu, Y.[Yang], Peng, Z.H.[Zheng-Hong], Jiao, H.[Hongzan], Niu, Q.A.[Qi-Ang],
An Agent-based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion,
IJGI(8), No. 7, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Rupi, F.[Federico], Poliziani, C.[Cristian], Schweizer, J.[Joerg],
Data-driven Bicycle Network Analysis Based on Traditional Counting Methods and GPS Traces from Smartphone,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Gore, N.[Ninad], Arkatkar, S.[Shriniwas], Joshi, G.[Gaurang], Bhaskar, A.[Ashish],
Exploring credentials of Wi-Fi sensors as a complementary transport data: an Indian experience,
IET-ITS(13), No. 12, December 2019, pp. 1860-1869.
DOI Link 1912
BibRef

Derrmann, T., Frank, R., Viti, F., Engel, T.,
How Road and Mobile Networks Correlate: Estimating Urban Traffic Using Handovers,
ITS(21), No. 2, February 2020, pp. 521-530.
IEEE DOI 2002
Handover, Roads, Data models, Mobile handsets, Urban areas, Mobile network, cellular, traffic state, traffic flow theory, macroscopic fundamental diagram BibRef

Ebrahimpour, Z.[Zeinab], Wan, W.[Wanggen], García, J.L.V.[José Luis Velázquez], Cervantes, O.[Ofelia], Hou, L.[Li],
Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003
BibRef


Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Shared Ride Systems, Car Sharing, Bike Sharing, Taxi, Analysis .


Last update:Mar 29, 2020 at 12:14:19