8.6.4.8 Unsupervised Semantic Segmentation

Chapter Contents (Back)
Semantic Segmentation. Unsupervised.

Li, R.[Rui], Cao, W.M.[Wen-Ming], Jiao, Q.F.[Qian-Fen], Wu, S.[Si], Wong, H.S.[Hau-San],
Simplified unsupervised image translation for semantic segmentation adaptation,
PR(105), 2020, pp. 107343.
Elsevier DOI 2006
Domain adaptation, Image segmentation, Image translation BibRef

Xu, H.Q.[Han-Qing], Yang, M.[Ming], Deng, L.Y.[Liu-Yuan], Qian, Y.Q.[Ye-Qiang], Wang, C.X.[Chun-Xiang],
Neutral Cross-Entropy Loss Based Unsupervised Domain Adaptation for Semantic Segmentation,
IP(30), 2021, pp. 4516-4525.
IEEE DOI 2105
Entropy, Semantics, Image segmentation, Minimization, Training, Perturbation methods, Optimization, Semantic segmentation, gradient neutralization BibRef

Yan, W.H.[Wei-Hao], Qian, Y.Q.[Ye-Qiang], Wang, C.X.[Chun-Xiang], Yang, M.[Ming],
Threshold-Adaptive Unsupervised Focal Loss for Domain Adaptation of Semantic Segmentation,
ITS(24), No. 1, January 2023, pp. 752-763.
IEEE DOI 2301
Training, Entropy, Semantics, Adaptation models, Real-time systems, Urban areas, Predictive models, Semantic segmentation, focal loss BibRef

Shenaj, D.[Donald], Barbato, F.[Francesco], Michieli, U.[Umberto], Zanuttigh, P.[Pietro],
Continual coarse-to-fine domain adaptation in semantic segmentation,
IVC(121), 2022, pp. 104426.
Elsevier DOI 2205
Coarse-to-fine learning, Unsupervised domain adaptation, Semantic segmentation, Continual learning, Deep learning BibRef

Nguyen-Meidine, L.T.[Le Thanh], Kiran, M.[Madhu], Pedersoli, M.[Marco], Dolz, J.[Jose], Blais-Morin, L.A.[Louis-Antoine], Granger, E.[Eric],
Incremental multi-target domain adaptation for object detection with efficient domain transfer,
PR(129), 2022, pp. 108771.
Elsevier DOI 2206
Deep learning, Convolutional NNs, Object detection, Unsupervised domain adaptation, Incremental learning BibRef

Chen, X.[Xu], Kuang, T.S.[Tian-Shu], Deng, H.[Hannah], Fung, S.H.[Steve H.], Gateno, J.[Jaime], Xia, J.J.[James J.], Yap, P.T.[Pew-Thian],
Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation,
MedImg(41), No. 11, November 2022, pp. 3445-3453.
IEEE DOI 2211
Image segmentation, Annotations, Semantics, Feature extraction, Task analysis, Medical diagnostic imaging, Adaptation models, medical image segmentation BibRef

Wu, X.[Xinyi], Wu, Z.Y.[Zhen-Yao], Ju, L.[Lili], Wang, S.[Song],
A One-Stage Domain Adaptation Network With Image Alignment for Unsupervised Nighttime Semantic Segmentation,
PAMI(45), No. 1, January 2023, pp. 58-72.
IEEE DOI 2212
Semantics, Image segmentation, Training, Adaptation models, Lighting, Meteorology, Computational modeling, Domain adaptation, image alignment BibRef

Wu, X.[Xinyi], Wu, Z.Y.[Zhen-Yao], Guo, H.[Hao], Ju, L.[Lili], Wang, S.[Song],
DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation,
CVPR21(15764-15773)
IEEE DOI 2111
Training, Bridges, Image segmentation, Annotations, Semantics, Neural networks BibRef

Wang, S.[Shuang], Zhao, D.[Dong], Zhang, C.[Chi], Guo, Y.W.[Yu-Wei], Zang, Q.[Qi], Gu, Y.[Yu], Li, Y.[Yi], Jiao, L.C.[Li-Cheng],
Cluster Alignment With Target Knowledge Mining for Unsupervised Domain Adaptation Semantic Segmentation,
IP(31), 2022, pp. 7403-7418.
IEEE DOI 2212
Adaptation models, Correlation, Semantic segmentation, Clustering methods, Transforms, Benchmark testing, Task analysis, graph cut BibRef

Pu, Y.N.[Yan-Nan], Sun, J.[Jian], Tang, N.S.[Nian-Sheng], Xu, Z.B.[Zong-Ben],
Deep expectation-maximization network for unsupervised image segmentation and clustering,
IVC(135), 2023, pp. 104717.
Elsevier DOI 2306
Deep clustering, EM algorithm, Image clustering, Representation learning, Unsupervised image segmentation BibRef

Zhao, Z.Y.[Zi-Yuan], Zhou, F.C.[Fang-Cheng], Xu, K.X.[Kai-Xin], Zeng, Z.[Zeng], Guan, C.T.[Cun-Tai], Zhou, S.K.[S. Kevin],
LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation,
MedImg(42), No. 3, March 2023, pp. 633-646.
IEEE DOI 2303
Image segmentation, Adaptation models, Biomedical imaging, Annotations, Adversarial machine learning, adversarial learning BibRef

Marnissi, M.A.[Mohamed Amine], Fradi, H.[Hajer], Sahbani, A.[Anis], Essoukri-Ben Amara, N.[Najoua],
Improved domain adaptive object detector via adversarial feature learning,
CVIU(230), 2023, pp. 103660.
Elsevier DOI 2303
BibRef
And: Corrigendum: CVIU(237), 2023, pp. 103685.
Elsevier DOI 2311
Unsupervised domain adaptation, Object detection, Adversarial learning, Feature alignment, Discriminator, Transferability BibRef

Wang, Z.J.[Zhi-Jie], Liu, X.[Xing], Suganuma, M.[Masanori], Okatani, T.[Takayuki],
Unsupervised domain adaptation for semantic segmentation via cross-region alignment,
CVIU(234), 2023, pp. 103743.
Elsevier DOI 2307
Domain adaptation, Semantic segmentation, CNN BibRef

Wang, Z.J.[Zhi-Jie], Suganuma, M.[Masanori], Okatani, T.[Takayuki],
Rethinking unsupervised domain adaptation for semantic segmentation,
PRL(186), 2024, pp. 119-125.
Elsevier DOI 2412
Domain adaptation, Semantic segmentation, Unsupervised learning BibRef

Cao, Y.H.[Yi-Hong], Zhang, H.[Hui], Lu, X.[Xiao], Chen, Y.R.[Yu-Rong], Xiao, Z.[Zheng], Wang, Y.N.[Yao-Nan],
Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation,
CirSysVideo(33), No. 8, August 2023, pp. 3822-3832.
IEEE DOI 2308
Semantic segmentation, Training, Semantics, Prototypes, Task analysis, Robots, Refining, Unsupervised domain adaptation, clustering technique BibRef

Li, L.Y.[Lu-Yang], Ma, T.[Tai], Lu, Y.[Yue], Li, Q.L.[Qing-Li], He, L.H.[Liang-Hua], Wen, Y.[Ying],
A multi-grained unsupervised domain adaptation approach for semantic segmentation,
PR(144), 2023, pp. 109841.
Elsevier DOI 2310
Domain adaptation, Unsupervised semantic segmentation, Neural network BibRef

Dong, Z.[Zihao], Niu, S.J.[Si-Jie], Gao, X.Z.[Xi-Zhan], Shao, X.L.[Xiu-Li],
Coarse-to-fine online latent representations matching for one-stage domain adaptive semantic segmentation,
PR(146), 2024, pp. 110019.
Elsevier DOI 2311
Unsupervised domain adaptation, Semantic segmentation, Coarse-to-fine matching, Latent representations, Adversarial structure BibRef

Shao, J.[Jie], Wu, J.C.[Jia-Cheng], Shen, W.Z.[Wen-Zhong], Yang, C.[Cheng],
A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection,
SPLetters(30), 2023, pp. 1667-1671.
IEEE DOI 2311
BibRef

Wang, Y.[Yan], Cheng, J.[Jian], Chen, Y.X.[Yi-Xin], Shao, S.[Shuai], Zhu, L.Y.[Lan-Yun], Wu, Z.Z.[Zhen-Zhou], Liu, T.[Tao], Zhu, H.G.[Hao-Gang],
FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation,
MedImg(42), No. 12, December 2023, pp. 3738-3751.
IEEE DOI 2312
BibRef

Xie, Q.S.[Qing-Song], Li, Y.X.[Yue-Xiang], He, N.[Nanjun], Ning, M.[Munan], Ma, K.[Kai], Wang, G.X.[Guo-Xing], Lian, Y.[Yong], Zheng, Y.F.[Ye-Feng],
Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training,
MedImg(43), No. 1, January 2024, pp. 4-14.
IEEE DOI 2401
BibRef

Kim, Y.E.[Young-Eun], Lee, Y.W.[Yu-Won], Lee, S.W.[Seong-Whan],
LC-MSM: Language-Conditioned Masked Segmentation Model for unsupervised domain adaptation,
PR(148), 2024, pp. 110201.
Elsevier DOI 2402
Unsupervised domain adaptation, Semantic segmentation, Text-image correlation BibRef

Ma, H.Y.[Hao-Yu], Lin, X.R.[Xiang-Ru], Yu, Y.Z.[Yi-Zhou],
I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic Segmentation,
PAMI(46), No. 3, March 2024, pp. 1695-1710.
IEEE DOI 2402
Semantic segmentation, Manifolds, Adaptation models, Task analysis, Pipelines, Semantics, Benchmark testing, Category triplet loss, unsupervised domain adaptation BibRef

Pei, C.H.[Chen-Hao], Wu, F.[Fuping], Yang, M.J.[Ming-Jing], Pan, L.[Lin], Ding, W.[Wangbin], Dong, J.[Jinwei], Huang, L.Q.[Li-Qin], Zhuang, X.[Xiahai],
Multi-Source Domain Adaptation for Medical Image Segmentation,
MedImg(43), No. 4, April 2024, pp. 1640-1651.
IEEE DOI 2404
Semantic segmentation, Adaptation models, Training, Task analysis, Predictive models, Feature extraction, Shape, Domain adaptation, unsupervised learning BibRef

Tian, Y.T.[Yun-Tong], Li, J.X.[Jia-Xi], Fu, H.Z.[Hua-Zhu], Zhu, L.[Lei], Yu, L.Q.[Le-Quan], Wan, L.[Liang],
Self-Mining the Confident Prototypes for Source-Free Unsupervised Domain Adaptation in Image Segmentation,
MultMed(26), 2024, pp. 7709-7720.
IEEE DOI 2405
Reliability, Image segmentation, Adaptation models, Data models, Prototypes, Federated learning, Predictive models, source-free unsupervised domain adaptation BibRef

Chen, L.[Lang], Bian, Y.[Yun], Zeng, J.B.[Jian-Bin], Meng, Q.Q.[Qing-Quan], Zhu, W.F.[Wei-Fang], Shi, F.[Fei], Shao, C.W.[Cheng-Wei], Chen, X.J.[Xin-Jian], Xiang, D.[Dehui],
Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation,
IP(33), 2024, pp. 4882-4895.
IEEE DOI 2409
Image segmentation, Biomedical imaging, Feature extraction, Pancreas, Generative adversarial networks, Training, entropy consistency BibRef

Guermazi, B.[Boujemaa], Ksantini, R.[Riadh], Khan, N.[Naimul],
DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity,
IVC(150), 2024, pp. 105206.
Elsevier DOI Code:
WWW Link. 2409
Unsupervised learning, Image segmentation BibRef

Zhuo, W.[Wei], Wang, Y.[Yuan], Chen, J.L.[Jun-Liang], Deng, S.[Songhe], Wang, Z.[Zhi], Shen, L.L.[Lin-Lin], Zhu, W.W.[Wen-Wu],
Enhancing Unsupervised Semantic Segmentation Through Context-Aware Clustering,
MultMed(26), 2024, pp. 10081-10093.
IEEE DOI 2410
Semantic segmentation, Semantics, Training, Annotations, Unsupervised learning, Convolutional neural networks, context-aware embedding BibRef

Liu, M.U.[Mingy-Uan], Zhang, J.C.[Ji-Cong], Tang, W.[Wei],
Imbalance-Aware Discriminative Clustering for Unsupervised Semantic Segmentation,
IJCV(132), No. 10, October 2024, pp. 4362-4378.
Springer DOI 2410
BibRef

Bao, D.[Dong], Zhou, J.[Jun], Tuxworth, G.[Gervase], Zhang, J.[Jue], Gao, Y.S.[Yong-Sheng],
Hierarchical Context Learning of object components for unsupervised semantic segmentation,
PR(167), 2025, pp. 111713.
Elsevier DOI Code:
WWW Link. 2506
Unsupervised semantic segmentation, Context learning, Self-supervised learning BibRef

Chen, J.M.[Jiang-Ming], Liu, L.[Li], Deng, W.X.[Wan-Xia], Liu, Z.[Zhen], Liu, Y.[Yu], Wei, Y.M.[Ying-Mei], Liu, Y.X.[Yong-Xiang],
Refining Pseudo Labeling via Multi-Granularity Confidence Alignment for Unsupervised Cross Domain Object Detection,
IP(34), 2025, pp. 279-294.
IEEE DOI 2501
Object detection, Detectors, Uncertainty, Location awareness, Layout, Accuracy, Labeling, Deep learning, Supervised learning, Noise, mean teacher BibRef

Chen, L.[Liang], Han, J.H.[Jian-Hong], Wang, Y.P.[Yu-Pei],
DATR: Unsupervised Domain Adaptive Detection Transformer With Dataset-Level Adaptation and Prototypical Alignment,
IP(34), 2025, pp. 982-994.
IEEE DOI Code:
WWW Link. 2502
Feature extraction, Detectors, Prototypes, Decoding, Transformers, Object detection, Memory modules, Contrastive learning BibRef


Seong, H.S.[Hyun Seok], Moon, W.[WonJun], Lee, S.[SuBeen], Heo, J.P.[Jae-Pil],
Progressive Proxy Anchor Propagation for Unsupervised Semantic Segmentation,
ECCV24(XLIX: 472-490).
Springer DOI 2412
BibRef

Kamra, C.G.[Chanda Grover], Mastan, I.D.[Indra Deep], Kumar, N.[Nitin], Gupta, D.[Debayan],
Simsam: Simple Siamese Representations Based Semantic Affinity Matrix for Unsupervised Image Segmentation,
ICIP24(1172-1178)
IEEE DOI Code:
WWW Link. 2411
Correlation, Codes, Annotations, Semantic segmentation, Semantics, Self-supervised learning, Object segmentation, Siamese network BibRef

Kim, C.[Chanyoung], Han, W.[Woojung], Ju, D.[Dayun], Hwang, S.J.[Seong Jae],
EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation,
CVPR24(3523-3533)
IEEE DOI 2410
Representation learning, Accuracy, Laplace equations, Semantic segmentation, Semantics, Prototypes, Graph Theory BibRef

Niu, D.[Dantong], Wang, X.D.[Xu-Dong], Han, X.Y.[Xin-Yang], Lian, L.[Long], Herzig, R.[Roei], Darrell, T.J.[Trevor J.],
Unsupervised Universal Image Segmentation,
CVPR24(22744-22754)
IEEE DOI 2410
Instance segmentation, Semantic segmentation, Computational modeling, Semantics, Manuals, Performance gain BibRef

Wang, J.Y.[Jing-Yun], Kang, G.L.[Guo-Liang],
Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation,
CVPR24(4102-4112)
IEEE DOI Code:
WWW Link. 2410
Visualization, Annotations, Semantic segmentation, Benchmark testing, Transformers, unsupervised semantic segmentation BibRef

Sick, L.[Leon], Engel, D.[Dominik], Hermosilla, P.[Pedro], Ropinski, T.[Timo],
Unsupervised Semantic Segmentation Through Depth-Guided Feature Correlation and Sampling,
CVPR24(3637-3646)
IEEE DOI 2410
Training, Correlation, Semantic segmentation, Semantics, Neural networks, Unsupervised Semantic Segmentation, Semantic Segmentation BibRef

Brorsson, E.[Erik], Åkesson, K.[Knut], Svensson, L.[Lennart], Bengtsson, K.[Kristofer],
ECAP: Extensive Cut-and-Paste Augmentation for Unsupervised Domain Adaptive Semantic Segmentation,
ICIP24(610-616)
IEEE DOI Code:
WWW Link. 2411
Training, Microwave integrated circuits, Adaptation models, Codes, Accuracy, Semantic segmentation, Semantics, Semantic Segmentation, Self-training BibRef

Liu, K.[Kebin], Zhu, C.[Chuang],
Unsupervised Domain Adaptive Semantic Segmentation Based on Clip-Guided Prototypical Contrastive Learning,
ICIP24(291-297)
IEEE DOI Code:
WWW Link. 2411
Training, Visualization, Adaptation models, Codes, Shape, Image color analysis, Semantic segmentation, Domain adaptation, CLIP BibRef

Pan, F.[Fei], Yin, X.[Xu], Lee, S.[Seokju], Niu, A.[Axi], Yoon, S.[Sungeui], Kweon, I.S.[In So],
MoDA: Leveraging Motion Priors from Videos for Advancing Unsupervised Domain Adaptation in Semantic Segmentation,
L3D-IVU24(2649-2658)
IEEE DOI 2410
Bridges, Adaptive systems, Navigation, Semantic segmentation, Motion segmentation, Semantics BibRef

Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.,
Unsupervised Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision,
CVPR20(3763-3772)
IEEE DOI 2008
Adaptation models, Entropy, Image segmentation, Semantics, Generators, Data models, Task analysis BibRef

Deng, Z.J.[Zhi-Jie], Luo, Y.[Yucen],
Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation,
ICCV23(551-561)
IEEE DOI Code:
WWW Link. 2401
BibRef

Feng, Q.L.[Qian-Li], Gadde, R.[Raghudeep], Liao, W.[Wentong], Ramon, E.[Eduard], Martinez, A.[Aleix],
Network-Free, Unsupervised Semantic Segmentation with Synthetic Images,
CVPR23(23602-23610)
IEEE DOI 2309
BibRef

Kennerley, M.[Mikhail], Wang, J.G.[Jian-Gang], Veeravalli, B.[Bharadwaj], Tan, R.T.[Robby T.],
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection,
CVPR23(11484-11493)
IEEE DOI 2309
BibRef

Seong, H.S.[Hyun Seok], Moon, W.[WonJun], Lee, S.[SuBeen], Heo, J.P.[Jae-Pil],
Leveraging Hidden Positives for Unsupervised Semantic Segmentation,
CVPR23(19540-19549)
IEEE DOI 2309
BibRef

Li, K.[Kehan], Wang, Z.[Zhennan], Cheng, Z.[Zesen], Yu, R.[Runyi], Zhao, Y.F.[Yi-Fan], Song, G.[Guoli], Liu, C.[Chang], Yuan, L.[Li], Chen, J.[Jie],
ACSeg: Adaptive Conceptualization for Unsupervised Semantic Segmentation,
CVPR23(7162-7172)
IEEE DOI 2309
BibRef

Li, T.Y.[Tian-Yu], Roy, S.[Subhankar], Zhou, H.Y.[Hua-Yi], Lu, H.T.[Hong-Tao], Lathuilière, S.[Stéphane],
Contrast, Stylize and Adapt: Unsupervised Contrastive Learning Framework for Domain Adaptive Semantic Segmentation,
L3D-IVU23(4869-4879)
IEEE DOI 2309
BibRef

Zheng, X.[Xu], Pan, T.[Tianbo], Luo, Y.H.[Yun-Hao], Wang, L.[Lin],
Look at the Neighbor: Distortion-aware Unsupervised Domain Adaptation for Panoramic Semantic Segmentation,
ICCV23(18641-18652)
IEEE DOI 2401
BibRef

Zheng, X.[Xu], Zhu, J.J.[Jin-Jing], Liu, Y.X.[Ye-Xin], Cao, Z.D.[Zi-Dong], Fu, C.[Chong], Wang, L.[Lin],
Both Style and Distortion Matter: Dual-Path Unsupervised Domain Adaptation for Panoramic Semantic Segmentation,
CVPR23(1285-1295)
IEEE DOI 2309
BibRef

Mattolin, G.[Giulio], Zanella, L.[Luca], Ricci, E.[Elisa], Wang, Y.M.[Yi-Ming],
ConfMix: Unsupervised Domain Adaptation for Object Detection via Confidence-based Mixing,
WACV23(423-433)
IEEE DOI 2302
Measurement, Training, Adaptation models, Uncertainty, Codes, Object detection, Algorithms: Machine learning architectures, visual reasoning BibRef

Chung, I.[Inseop], Yoo, J.[Jayeon], Kwak, N.[Nojun],
Exploiting Inter-pixel Correlations in Unsupervised Domain Adaptation for Semantic Segmentation,
RealWorld23(12-21)
IEEE DOI 2302
Knowledge engineering, Correlation, Semantic segmentation, Heuristic algorithms, Conferences, Benchmark testing BibRef

Piva, F.J.[Fabrizio J.], de Geus, D.[Daan], Dubbelman, G.[Gijs],
Empirical Generalization Study: Unsupervised Domain Adaptation vs. Domain Generalization Methods for Semantic Segmentation in the Wild,
WACV23(499-508)
IEEE DOI 2302
Training, Adaptation models, Protocols, Semantic segmentation, Computational modeling, Training data, Applications: Robotics, visual reasoning. BibRef

Hegde, D.[Deepti], Patel, V.M.[Vishal M.],
Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection,
WACV24(3054-3064)
IEEE DOI 2404
Training, Noise, Memory management, Prototypes, Object detection, Detectors, Algorithms, 3D computer vision, Algorithms, and algorithms BibRef

Vibashan, V.S., Oza, P.[Poojan], Patel, V.M.[Vishal M.],
Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection,
CVPR23(3520-3530)
IEEE DOI 2309
BibRef

Vibashan, V.S., Oza, P.[Poojan], Sindagi, V.A.[Vishwanath A.], Patel, V.M.[Vishal M.],
Mixture of Teacher Experts for Source-Free Domain Adaptive Object Detection,
ICIP22(3606-3610)
IEEE DOI 2211
Training, Adaptation models, Uncertainty, Monte Carlo methods, Law, Object detection, Object detection, Domain adaptation, Pseudo-labels BibRef

Scherer, S.[Sebastian], Brehm, S.[Stephan], Lienhart, R.[Rainer],
Consistency Regularization for Unsupervised Domain Adaptation in Semantic Segmentation,
CIAP22(I:500-511).
Springer DOI 2205
BibRef

Guizilini, V.[Vitor], Li, J.[Jie], Ambrus, R.[Rares], Gaidon, A.[Adrien],
Geometric Unsupervised Domain Adaptation for Semantic Segmentation,
ICCV21(8517-8527)
IEEE DOI 2203
Bridges, Visualization, Semantics, Estimation, Benchmark testing, Multitasking, Transfer/Low-shot/Semi/Unsupervised Learning, Vision for robotics and autonomous vehicles BibRef

Kuznietsov, Y.[Yevhen], Proesmans, M.[Marc], Van Gool, L.J.[Luc J.],
Towards Unsupervised Online Domain Adaptation for Semantic Segmentation,
Novelty22(261-271)
IEEE DOI 2202
Adaptation models, Conferences, Semantics, Pipelines, Training data, Predictive models BibRef

Klingner, M.[Marvin], Termöhlen, J.A.[Jan-Aike], Ritterbach, J.[Jacob], Fingscheidt, T.[Tim],
Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for Semantic Segmentation Without Using Source Domain Representations,
Novelty22(210-220)
IEEE DOI 2202
Training, Knowledge engineering, Adaptation models, Image segmentation, Semantics, Network architecture BibRef

Cardace, A.[Adriano], Ramirez, P.Z.[Pierluigi Zama], Salti, S.[Samuele], di Stefano, L.[Luigi],
Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries,
WACV22(2010-2020)
IEEE DOI 2202
Deep learning, Semantics, Neural networks, Task analysis, Transfer, Few-shot, Grouping and Shape BibRef

Chung, I.[Inseop], Kim, D.[Daesik], Kwak, N.[Nojun],
Maximizing Cosine Similarity Between Spatial Features for Unsupervised Domain Adaptation in Semantic Segmentation,
WACV22(1979-1988)
IEEE DOI 2202
Image segmentation, Head, Dictionaries, Semantics, Feature extraction, Task analysis, Segmentation, Scene Understanding BibRef

Yamazaki, M.[Masaki], Peng, X.C.[Xing-Chao], Saito, K.[Kuniaki], Hu, P.[Ping], Saenko, K.[Kate], Taniguchi, Y.[Yasuhiro],
Weakly Supervised Domain Adaptation using Super-pixel labeling for Semantic Segmentation,
MVA21(1-5)
DOI Link 2109
Deep learning, Image segmentation, Adaptation models, Annotations, Semantics, Object segmentation, Data models BibRef

Watanabe, K.[Kohei], Saito, K.[Kuniaki], Ushiku, Y.[Yoshitaka], Harada, T.[Tatsuya],
Multichannel Semantic Segmentation with Unsupervised Domain Adaptation,
AutoNUE18(V:600-616).
Springer DOI 1905
BibRef

Vu, T., Jain, H., Bucher, M., Cord, M., Pérez, P.P.,
DADA: Depth-Aware Domain Adaptation in Semantic Segmentation,
ICCV19(7363-7372)
IEEE DOI 2004
data models, image segmentation, DADA, depth-aware domain adaptation, unsupervised domain adaptation, Benchmark testing BibRef

Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.,
Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation,
ICCV19(6777-6786)
IEEE DOI 2004
feature extraction, image classification, image segmentation, neural nets, unsupervised learning, Data mining BibRef

Zou, Y.[Yang], Yu, Z.D.[Zhi-Ding], Kumar, B.V.K.V.[B. V. K. Vijaya], Wang, J.S.[Jin-Song],
Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-training,
ECCV18(III: 297-313).
Springer DOI 1810
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Weakly Supervised, Self Supervised Semantic Segmentation .


Last update:Sep 10, 2025 at 12:00:25