Bergholm, F., and
Carlsson, S.,
A 'Theory' of Optical Flow,
CVGIP(53), No. 2, March 1991, pp. 171-188.
Elsevier DOI
BibRef
9103
Earlier: A1 only:
ISRN KTH/NA/P--88/10--SE, 1988.
BibRef
Earlier:
Global Structure of Velocity Fields and the
Aperture Problem in the Large,
ISRN KTH/NA/P-87/15-SE, 1987.
Analysis of curves
in motion with normal flow and a few estimates at feature points, produce a
catalog of ambiguous curves and also derive field lines of optical flow.
Theory is appropriate in the title.
BibRef
Bergholm, F.,
Motion from Flow Along Contours:
A Note on Robustness and Ambiguous Cases,
IJCV(2), No. 4, April 1989, pp. 395-415.
Springer DOI
BibRef
8904
And:
`
ISRN KTH/NA/P--87/07--SE.
Ambiguous curves: contours without unique motion from normal
velocity. Must use more global information since local information is almost
always ambiguous.
BibRef
Bergholm, F.,
On the Content of Information in Edges and Optical Flow,
Ph.D.Dept. of Numerical Analysis and Computing Science, Royal
Institute of Technology, May 1989.
BibRef
8905
ISRN KTH/NA/P--89/04--SE.
BibRef
Bergholm, F.,
Decomposition Theory and Transformations of Visual Directions,
ICCV90(85-90).
IEEE DOI
BibRef
9000
Hildreth, E.C., (MIT),
Computing the Velocity Field along Contours,
Motion83(26-32).
BibRef
8300
Earlier:
The Integration of Motion Information along Contours,
CVWS82(83-91).
Requires application of local constraints, since the problem is
inherently ambiguous. The use of the moving contour is important.
Compare to Davis paper.
See also Computation of the Velocity Field, The.
BibRef
Davis, L.S.[Larry S.],
Wu, Z.Q.[Zhong-Quan], and
Sun, H.F.[Han-Fang],
Contour-Based Motion Estimation,
CVGIP(23), No. 3, September 1983, pp. 313-326.
Elsevier DOI
BibRef
8309
And:
Correction:
CVGIP(28), No. 1, October 1984, pp. 134.
BibRef
Earlier:
DARPA82(124-131).
A contour based approach to motion, compute motion at corners, then propagate
along the contours to reach a steady state based on a local 2.5-D motion
assumption. Compare to Hildreth
BibRef
Faugeras, O.D.,
On the Motion of 3D Curves and Its Relationship to Optical Flow,
ECCV90(105-117).
Springer DOI
BibRef
9000
And:
INRIA-Sophia AntipolisNo. 1183, March 1990.
Establish equations given that the curves do not change much.
BibRef
Faugeras, O.D.,
Papadopoulo, T.,
A Theory of the Motion Fields of Curves,
IJCV(10), 1993, pp. 125-156.
Springer DOI
PS File.
BibRef
9300
Papadopoulo, T.[Theo],
Faugeras, O.D.[Olivier D.],
Computing Structure and Motion of General 3D Curves from Monocular
Sequences of Perspective Images,
ECCV96(II:696-708).
Springer DOI
BibRef
9600
And:
Motion Field of Curves: Applications,
ECCV94(A:71-82).
Springer DOI
BibRef
Wohn, K.[Kwangyoen],
Waxman, A.M.[Allen M.],
The Analytic Structure of Image Flows: Deformation and Segmentation,
CVGIP(49), No. 2, February 1990, pp. 127-151.
Elsevier DOI From local and global flow structure, determine the analytic boundaries and
thus motion based segmentations. Multiple frame extensions are suggested.
See also Binocular Image Flows: Steps Toward Stereo-Motion Fusion.
BibRef
9002
Waxman, A.M.[Allen M.],
Wohn, K.[Kwangyoen],
Contour Evolution, Neighbourhood Deformation and Global Image Flow:
Planar Surfaces in Motion,
IJRR(4), 1985, pp. 95-108.
BibRef
8500
Earlier:
UMD-CAR-TR-58, April, 1984.
Introduces the Taylor series expansion of the motion equations.
BibRef
Waxman, A.M.[Allen M.],
Wohn, K.[Kwangyoen],
Contour Evolution, Neighborhood Deformation and Image Flow:
Textured Surfaces in Motion,
IU87(72-98).
BibRef
8700
Waxman, A.M.[Allen M.],
Wohn, K.[Kwangyoen],
Image Flow Theory: A Framework for 3-D Inference from
Time-Varying Imagery,
ACV88(I 165-224).
BibRef
8800
Waxman, A.M.[Allen M.], (UMd),
An Image Flow Paradigm,
CVWS84(49-57).
BibRef
8400
And:
RCV87(145-168).
A general paper to address several issues of what is required for
using optic flow data, and generating
3-D descriptions from the 2-D input data.
BibRef
Wu, J.[Jian], and
Wohn, K.,
On the Deformation of Image Intensity and Zero-Crossing Contours
under Motion,
CVGIP(53), No. 1, January 1991, pp. 66-75.
Elsevier DOI
BibRef
9101
Waxman, A.M.,
Wu, J.,
Bergholm, F.,
Convected Activation Profiles and the Measurement of Visual Motion,
CVPR88(717-723).
IEEE DOI
BibRef
8800
Waxman, A.M., and
Bergholm, F.,
Convected Activation Profiles and Image Flow Extraction,
ISRN KTH/NA/P-87/10-SE, August 1987.
BibRef
8708
Bhanu, B.[Bir],
Burger, W.[Wilhelm],
Approximation of Displacement Fields Using Wavefront Region Growing,
CVGIP(41), No. 3, March 1988, pp. 306-322.
Elsevier DOI
BibRef
8803
And:
Estimation of Image Motion Using Wavefront Region Growing,
ICCV87(428-432).
BibRef
And:
System for computing the self-motion of moving images devices,
US_Patent4,969,036, Nov 6, 1990
WWW Link. It might really be motion, but it seems to be contour matching.
Match the contours through a sequence and get the corresponding
points along the contour.
BibRef
Wu, J.,
Brockett, R., and
Wohn, K.,
A Contour-Based Recovery of Image Flow: Iterative Transformation Method,
PAMI(13), No. 8, August 1991, pp. 746-760.
IEEE DOI
BibRef
9108
Earlier:
A Contour-based Recovery of Image Flow: Iterative Method,
CVPR89(124-129).
IEEE DOI Start from the (normal velocity) flow of the contour and smooth it
across the image to get a complete flow field.
BibRef
Brockett, R.W.,
Gramians, Generalized Inverses, and the Least-Squares Approximation of
Optical Flow,
JVCIR(1), 1990, pp. 3-11.
BibRef
9000
Wohn, K., and
Wu, J.,
3-D Motion Recovery from Time-Varying Optical Flows,
AAAI-86(670-675).
BibRef
8600
d'Haeyer, J.P.F.[Johan P.F],
Bruyland, I.[Ignace],
Parallel Computation of Image Curve Velocity Fields,
CVGIP(43), No. 2, August 1988, pp. 239-255.
Elsevier DOI Parallel solution of a regularization problem.
BibRef
8808
d'Haeyer, J.P.F.[Johan P.F],
Determining Motion of Image Curves from Local Pattern Changes,
CVGIP(34), No. 2, May 1986, pp. 166-188.
Elsevier DOI (Univ. of Ghent).
The velocity field along a contour is found using a differential
equation. A minimum dilation principle is used to find nonelastic
motion or 2-D rigid motion. Applied to sign language images.
BibRef
8605
Arnspang, J.,
On the Use of the Horizon of a Translating Planar Curve,
PRL(10), 1989, pp. 61-69.
BibRef
8900
Park, J.S.[Jong Seung], and
Han, J.H.[Joon Hee],
Estimating Optical Flow by Tracking Contours,
PRL(18), No. 7, July 1997, pp. 641-648.
9711
BibRef
Earlier:
A Curvature-Based Approach to Contour Motion Estimation,
ICCV98(1018-1023).
IEEE DOI
See also Contour Matching: A Curvature-Based Approach.
BibRef
Park, J.S.[Jong Seung],
Han, J.H.[Joon Hee],
Contour Motion Estimation from Image Sequences Using
Curvature Information,
PR(31), No. 1, January 1998, pp. 31-39.
Elsevier DOI
9802
BibRef
Guerrero, J.J.,
Sagues, C.,
Camera motion from brightness on lines. Combination of features and
normal flow,
PR(32), No. 2, February 1999, pp. 203-216.
Elsevier DOI Straight lines and flow for camera motion.
BibRef
9902
Kalmoun, E.[El_Mostafa],
Garrido, L.[Luis],
Caselles, V.[Vicent],
Line Search Multilevel Optimization as Computational Methods for Dense
Optical Flow,
SIIMS(4), No. 2, 2011, pp. 695-722.
WWW Link.
1110
BibRef
Garrido, L.[Lluís],
Kalmoun, E.[El_Mostafa],
A Line Search Multilevel Truncated Newton Algorithm for Computing the
Optical Flow,
IPOL(5), 2015, pp. 124-138.
DOI Link
1508
Code, Optical Flow.
BibRef
Zheng, J.[Jia],
Wang, H.Y.[Hong-Yan],
Pei, B.N.[Bing-Nan],
Robust optical flow estimation based on wavelet,
SIViP(13), No. 7, October 2019, pp. 1303-1310.
WWW Link.
1911
BibRef
Mahabalagiri, A.[Anvith],
Ozcan, K.[Koray],
Velipasalar, S.[Senem],
Camera motion detection for mobile smart cameras using segmented
edge-based optical flow,
AVSS14(271-276)
IEEE DOI
1411
Cameras
BibRef
Artner, N.M.[Nicole M.],
Kropatsch, W.G.[Walter G.],
Structural Cues in 2D Tracking: Edge Lengths vs. Barycentric
Coordinates,
CIARP13(II:503-511).
Springer DOI
1311
BibRef
Barron, J.L.[John L.],
Daniel, M.,
Mari, J.,
Using 3D Spline Differentiation to Compute Quantitative Optical Flow,
CRV06(11-11).
IEEE DOI
0607
BibRef
Estépar, R.S.J.[Raúl San José],
Haker, S.[Steve],
Westin, C.F.[Carl-Fredrik],
Riemannian Mean Curvature Flow,
ISVC05(613-620).
Springer DOI
0512
BibRef
Chamorro-Martinez, J.,
Fdez-Valdivia, J.,
Optical flow estimation based on the extraction of motion patterns,
ICIP03(I: 925-928).
IEEE DOI
0312
BibRef
Neckels, K.[Kai],
Fast Local Estimation of Optical Flow Using Variational and Wavelet
Methods,
CAIP01(349 ff.).
Springer DOI
0210
BibRef
El-Feghali, R.,
Mitiche, A.,
Fast Computation of a Boundary Preserving Estimate of Optical Flow,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Otsuka, K.,
Horikoshi, T.,
Suzuki, S.,
Image Velocity Estimation from Trajectory Surface in
Spatiotemporal Space,
CVPR97(200-205).
IEEE DOI
9704
Spatio-temporal space use edges.
BibRef
Bergholm, F.,
A Theory on Optical Velocity Fields and Ambiguous Motion of Curves,
ICCV88(165-176).
IEEE DOI
BibRef
8800
Chapter on Optical Flow Field Computations and Use continues in
Optical Flow Field Computation -- Gradient Techniques .