Osella, A.,
Martinelli, P.,
Favetto, A.B.,
Lopez, E.,
Induction effects of 2-D structures on buried pipelines,
GeoRS(40), No. 1, January 2002, pp. 197-205.
IEEE Top Reference.
0203
BibRef
Borgioli, G.,
Capineri, L.,
Falorni, P.,
Matucci, S.,
Windsor, C.G.,
The Detection of Buried Pipes From Time-of-Flight Radar Data,
GeoRS(46), No. 8, August 2008, pp. 2254-2266.
IEEE DOI
0808
BibRef
Pettinelli, E.,
di Matteo, A.,
Mattei, E.,
Crocco, L.,
Soldovieri, F.,
Redman, J.D.,
Annan, A.P.,
GPR Response From Buried Pipes: Measurement on Field Site and
Tomographic Reconstructions,
GeoRS(47), No. 8, August 2009, pp. 2639-2645.
IEEE DOI
0907
BibRef
Khan, U.S.[Umar S.],
Al-Nuaimy, W.[Waleed],
El-Samie, F.E.A.[Fathi E. Abd],
Detection of landmines and underground utilities from acoustic and GPR
images with a cepstral approach,
JVCIR(21), No. 7, October 2010, pp. 731-740.
Elsevier DOI
1003
Landmine detection; GPR; Acoustic images; MFCCs; Polynomial
coefficients; Discrete cosine transform (DCT); Discrete sine transform
(DST); Discrete wavelet transform (DWT)
BibRef
Boniger, U.,
Tronicke, J.,
Subsurface Utility Extraction and Characterization:
Combining GPR Symmetry and Polarization Attributes,
GeoRS(50), No. 3, March 2012, pp. 736-746.
IEEE DOI
1203
BibRef
Camilo, J.A.,
Collins, L.M.,
Malof, J.M.,
A Large Comparison of Feature-Based Approaches for Buried Target
Classification in Forward-Looking Ground-Penetrating Radar,
GeoRS(56), No. 1, January 2018, pp. 547-558.
IEEE DOI
1801
Antenna arrays, Array signal processing, Feature extraction,
Ground penetrating radar, Pipelines, Radar imaging,
radar imaging
BibRef
Zhou, X.,
Chen, H.,
Li, J.,
An Automatic GPR B-Scan Image Interpreting Model,
GeoRS(56), No. 6, June 2018, pp. 3398-3412.
IEEE DOI
1806
Clustering algorithms, Estimation, Feature extraction,
Ground penetrating radar, Noise measurement, Pipelines, Transforms,
image processing
BibRef
Wang, S.[Shuai],
Guo, Q.S.[Qing-Sheng],
Xu, X.L.[Xing-Lin],
Xie, Y.[Yuwu],
A Study on a Matching Algorithm for Urban Underground Pipelines,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Bernatek-Jakiel, A.[Anita],
Kondracka, M.[Marta],
Detection of Soil Pipes Using Ground Penetrating Radar,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Meng, L.X.[Ling-Xuan],
Peng, Z.X.[Zhi-Xing],
Zhou, J.[Ji],
Zhang, J.[Jirong],
Lu, Z.Y.[Zhen-Yu],
Baumann, A.[Andreas],
Du, Y.[Yan],
Real-Time Detection of Ground Objects Based on Unmanned Aerial
Vehicle Remote Sensing with Deep Learning: Application in Excavator
Detection for Pipeline Safety,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Šarlah, N.[Nikolaj],
Podobnikar, T.[Tomaž],
Ambrožic, T.[Tomaž],
Mušic, B.[Branko],
Application of Kinematic GPR-TPS Model with High 3D Georeference
Accuracy for Underground Utility Infrastructure Mapping:
A Case Study from Urban Sites in Celje, Slovenia,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Radulovic, A.[Aleksandra],
Sladic, D.[Dubravka],
Govedarica, M.[Miro],
Ristic, A.[Aleksandar],
Jovanovic, D.[Dušan],
LADM Based Utility Network Cadastre in Serbia,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Yan, J.Y.[Jing-Ya],
Jaw, S.W.[Siow Wei],
Soon, K.H.[Kean Huat],
Wieser, A.[Andreas],
Schrotter, G.[Gerhard],
Towards an Underground Utilities 3D Data Model for Land
Administration,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Gabrys, M.[Marta],
Ortyl, L.[Lukasz],
Georeferencing of Multi-Channel GPR: Accuracy and Efficiency of
Mapping of Underground Utility Networks,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Jin, Y.[Yang],
Duan, Y.L.[Yun-Ling],
Wavelet Scattering Network-Based Machine Learning for Ground
Penetrating Radar Imaging: Application in Pipeline Identification,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Amoroso, N.[Nicola],
Cilli, R.[Roberto],
Bellantuono, L.[Loredana],
Massimi, V.[Vincenzo],
Monaco, A.[Alfonso],
Nitti, D.O.[Davide Oscar],
Nutricato, R.[Raffaele],
Samarelli, S.[Sergio],
Taggio, N.[Niccolò],
Tangaro, S.[Sabina],
Tateo, A.[Andrea],
Guerriero, L.[Luciano],
Bellotti, R.[Roberto],
PSI Clustering for the Assessment of Underground Infrastructure
Deterioration,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Hu, Z.[Zihe],
Guo, J.[Jing],
Zhang, X.Q.[Xue-Quan],
Three-Dimensional (3D) Parametric Modeling and Organization for
Web-Based Visualization of City-Scale Pipe Network,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Solla, M.[Mercedes],
Pérez-Gracia, V.[Vega],
Fontul, S.[Simona],
A Review of GPR Application on Transport Infrastructures:
Troubleshooting and Best Practices,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Yang, H.[Han],
Xu, H.C.[Hong-Cheng],
Jiao, S.J.[Shuang-Jian],
Yin, F.D.[Feng-De],
Semantic Image Segmentation Based Cable Vibration Frequency Visual
Monitoring Using Modified Convolutional Neural Network with
Pixel-wise Weighting Strategy,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Shahri, A.A.[Abbas Abbaszadeh],
Kheiri, A.[Ali],
Hamzeh, A.[Aliakbar],
Subsurface Topographic Modeling Using Geospatial and Data Driven
Algorithm,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Yamaguchi, T.[Takahiro],
Mizutani, T.[Tsukasa],
Nagayama, T.[Tomonori],
Mapping Subsurface Utility Pipes by 3-D Convolutional Neural Network
and Kirchhoff Migration Using GPR Images,
GeoRS(59), No. 8, August 2021, pp. 6525-6536.
IEEE DOI
2108
Training, Detection algorithms, Antenna measurements,
Radar imaging, Convolutional neural networks, Inspection,
subsurface utility pipes
BibRef
Iftimie, N.[Nicoleta],
Savin, A.[Adriana],
Steigmann, R.[Rozina],
Dobrescu, G.S.[Gabriel Silviu],
Underground Pipeline Identification into a Non-Destructive Case Study
Based on Ground-Penetrating Radar Imaging,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zheng, G.[Gen],
Zhao, J.H.[Jian-Hu],
Li, S.B.[Shao-Bo],
Feng, J.[Jie],
Zero-Shot Pipeline Detection for Sub-Bottom Profiler Data Based on
Imaging Principles,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Donini, E.[Elena],
Carrer, L.[Leonardo],
Gerekos, C.[Christopher],
Bruzzone, L.[Lorenzo],
Bovolo, F.[Francesca],
An Unsupervised Fuzzy System for the Automatic Detection of Candidate
Lava Tubes in Radar Sounder Data,
GeoRS(60), 2022, pp. 1-19.
IEEE DOI
2112
Electron tubes, Radar, Moon, Surface waves, Radar detection,
Optical surface waves, Mars, Fuzzy logic, image processing,
subsurface
BibRef
Heggy, E.[Essam],
Normand, J.[Jonathan],
Palmer, E.M.[Elizabeth M.],
Abotalib, A.Z.[Abotalib Z.],
Exploring the nature of buried linear features in the Qatar
peninsula: Archaeological and paleoclimatic implications,
PandRS(183), 2022, pp. 210-227.
Elsevier DOI
2201
Optical and radar imagery, Desert hydrology,
Structural elements, Land classification, Paleoclimate, Archaeology
BibRef
Jaufer, R.M.[Rakeeb Mohamed],
Ihamouten, A.[Amine],
Goyat, Y.[Yann],
Todkar, S.S.[Shreedhar Savant],
Guilbert, D.[David],
Assaf, A.[Ali],
Dérobert, X.[Xavier],
A Preliminary Numerical Study to Compare the Physical Method and
Machine Learning Methods Applied to GPR Data for Underground Utility
Network Characterization,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Li, F.[Fanruo],
Yang, F.[Feng],
Yan, R.[Rui],
Qiao, X.[Xu],
Xing, H.J.[Hong-Jia],
Li, Y.J.[Yi-Jin],
Study on Significance Enhancement Algorithm of Abnormal Features of
Urban Road Ground Penetrating Radar Images,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Feng, D.S.[De-Shan],
Ding, S.Y.[Si-Yuan],
Wang, X.[Xun],
Su, X.[Xuan],
Liu, S.[Shuo],
Cao, C.[Cen],
Wavefield Reconstruction Inversion Based on the Multi-Scale
Cumulative Frequency Strategy for Ground-Penetrating Radar Data:
Application to Urban Underground Pipeline,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hartshorn, C.A.[Caylin A.],
Isaacson, S.D.[Sven D.],
Barrowes, B.E.[Benjamin E.],
Perren, L.J.[Lee J.],
Lozano, D.[David],
Shubitidze, F.[Fridon],
Analysis of the Feasibility of UAS-Based EMI Sensing for Underground
Utilities Detection and Mapping,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Popov, A.V.,
Reznikov, A.E.,
Berkut, A.I.,
Edemsky, D.E.,
Morozov, P.A.,
Prokopovich, I.V.,
Methods and Algorithms of Subsurface Holographic Sounding,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhu, C.K.[Cheng-Ke],
Ye, H.X.[Hong-Xia],
A Modular Method for GPR Hyperbolic Feature Detection and
Quantitative Parameter Inversion of Underground Pipelines,
RS(15), No. 8, 2023, pp. 2114.
DOI Link
2305
BibRef
Zhang, D.H.[Dong-Hao],
Wang, Z.Z.[Zheng-Zheng],
Qin, H.[Hui],
Geng, T.[Tiesuo],
Pan, S.[Shengshan],
GAN-Based Inversion of Crosshole GPR Data to Characterize Subsurface
Structures,
RS(15), No. 14, 2023, pp. 3650.
DOI Link
2307
BibRef
Gamal, M.[Mohamed],
Di, Q.Y.[Qing-Yun],
Zhang, J.H.[Jin-Hai],
Fu, C.M.[Chang-Min],
Ebrahim, S.[Shereen],
El-Raouf, A.A.[Amr Abd],
Utilizing Ground-Penetrating Radar for Water Leak Detection and Pipe
Material Characterization in Environmental Studies: A Case Study,
RS(15), No. 20, 2023, pp. 4924.
DOI Link
2310
BibRef
Wei, L.X.[Ling-Xiang],
Guo, D.[Dongjun],
Chen, Z.L.[Zhi-Long],
Hu, Y.Y.[Ying-Ying],
Wu, Y.H.[Yan-Hua],
Ji, J.[Junyuan],
Growth Simulations of Urban Underground Space with Ecological
Constraints Using a Patch-Based Cellular Automaton,
IJGI(12), No. 10, 2023, pp. 387.
DOI Link
2311
BibRef
Lin, Y.[Yun],
Wang, J.[Jiachun],
Ma, D.[Deyun],
Wang, Y.P.[Yan-Ping],
Ye, S.[Shengbo],
Improved Cycle-Consistency Generative Adversarial Network-Based
Clutter Suppression Methods for Ground-Penetrating Radar Pipeline
Data,
RS(16), No. 6, 2024, pp. 1043.
DOI Link
2403
BibRef
Zhang, J.[Ju],
Hu, Q.W.[Qing-Wu],
Zhou, Y.[Yemei],
Zhao, P.C.[Peng-Cheng],
Duan, X.[Xuzhe],
A Multi-Level Robust Positioning Method for Three-Dimensional Ground
Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban
Areas,
RS(16), No. 9, 2024, pp. 1559.
DOI Link
2405
BibRef
Lin, X.H.[Xiao-Hu],
Yang, X.[Xin],
Yao, W.Q.[Wan-Qiang],
Wang, X.[Xiqi],
Ma, X.W.[Xiong-Wei],
Ma, B.[Bolin],
Graph-based adaptive weighted fusion SLAM using multimodal data in
complex underground spaces,
PandRS(217), 2024, pp. 101-119.
Elsevier DOI
2409
Complex underground spaces, Multimodal data,
Adaptive weighted fusion, SLAM, Autonomous exploration
BibRef
Liu, J.L.[Jia-Lin],
Tang, X.S.[Xiao-Song],
Yang, F.[Feng],
Qiao, X.[Xu],
Li, F.[Fanruo],
Peng, S.[Suping],
Huang, X.X.[Xin-Xin],
Fang, Y.[Yuanjin],
Xu, M.X.[Mao-Xuan],
Study on the Identification Method of Planar Geological Structures in
Coal Mines Using Ground-Penetrating Radar,
RS(16), No. 21, 2024, pp. 3990.
DOI Link
2411
BibRef
Hansen, L.H.[Lasse H.],
Jensen, S.B.[Simon B.],
Philipsen, M.P.[Mark P.],
Møgelmose, A.[Andreas],
Bodum, L.[Lars],
Moeslund, T.B.[Thomas B.],
OpenTrench3D: A Photogrammetric 3D Point Cloud Dataset for Semantic
Segmentation of Underground Utilities,
UrbanModel24(7646-7655)
IEEE DOI
2410
Point cloud compression, Training, Technological innovation,
Semantic segmentation, District heating, Urban planning, Photogrammetry
BibRef
Liu, Y.[Yi],
Zhang, X.[Xuan],
Li, Y.[Ying],
Liang, G.X.[Gui-Xin],
Jiang, Y.B.[Ya-Bing],
Qiu, L.X.[Li-Xia],
Tang, H.P.[Hai-Ping],
Xie, F.[Fei],
Yao, W.[Wei],
Dai, Y.[Yi],
Qiao, Y.[Yu],
Wang, Y.[Yali],
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban
Pipe Inspection,
ICPR22(4967-4973)
IEEE DOI
2212
Location awareness, Measurement,
Machine learning algorithms, Smart cities, Face recognition, Benchmark testing
BibRef
Zhao, H.T.,
Zhou, J.,
Jing, C.F.,
Li, X.F.,
A Praxis on Data Quality Evaluation of Underground Pipeline,
ISPRS21(B3-2021: 811-816).
DOI Link
2201
BibRef
Chen, Z.,
Pouliot, J.,
Hubert, F.,
A First Attempt to Define Level of Details Based on Decision-making
Tasks: Application to Underground Utility Network,
GeoInfo21(137-144).
DOI Link
2201
BibRef
Hansen, L.H.,
van Son, R.,
Wieser, A.,
Kjems, E.,
Addressing the Elephant In the Underground: An Argument for The
Integration of Heterogeneous Data Sources for Reconciliation Of
Subsurface Utility Data,
GeoInfo21(43-48).
DOI Link
2201
BibRef
Hansen, L.H.,
Pedersen, T.M.,
Kjems, E.,
Wyke, S.,
Smartphone-based Reality Capture for Subsurface Utilities:
Experiences From Water Utility Companies In Denmark,
GeoInfo21(25-31).
DOI Link
2201
Data integration and information fusion
BibRef
Feng, J.L.[Jing-Lun],
Yang, L.[Liang],
Wang, H.Y.[Hai-Yan],
Tian, Y.L.[Ying-Li],
Xiao, J.Z.[Ji-Zhong],
Subsurface Pipes Detection Using DNN-based Back Projection on GPR
Data,
WACV21(266-275)
IEEE DOI
2106
Location awareness, Learning systems,
MIMICs, Radar imaging, Feature extraction, Robustness
BibRef
Lieberman, J.,
Roensdorf, C.,
Modular Approach to 3d Representation of Underground Infrastructure In
The Model for Underground Data Definition and Integration (MUDDI),
GeoInfo20(75-81).
DOI Link
2012
BibRef
Caselli, A.,
Falquet, G.,
Métral, C.,
Knowledge Graph Construction for Subsurface Objects Including
Uncertainty and Time Variation,
GeoInfo21(131-136).
DOI Link
2201
BibRef
Métral, C.,
Daponte, V.,
Caselli, A.,
di Marzo, G.,
Falquet, G.,
Ontology-based Rule Compliance Checking for Subsurface Objects,
GeoInfo20(91-94).
DOI Link
2012
BibRef
Yan, J.,
Jaw, S.W.,
Soon, K.H.,
Schrotter, G.,
The LADM-Based 3D Underground Utility Mapping: Case Study in Singapore,
GeoInfo19(117-122).
DOI Link
1912
BibRef
van Son, R.,
Jaw, S.W.,
Wieser, A.,
A Data Capture Framework for Improving The Quality of Subsurface
Utility Information,
GeoInfo19(97-104).
DOI Link
1912
BibRef
Tabarro, P.G.,
Pouliot, J.,
Fortier, R.,
Losier, L.M.,
A Webgis to Support GPR 3D Data Acquisition: A First Step for The
Integration of Underground Utility Networks in 3D City Models,
GeoInfo17(43-48).
DOI Link
1805
BibRef
Cazzaniga, N.E.,
Pagliari, D.,
Pinto, L.,
Photogrammetry For Mapping Underground Utility Lines With Ground
Penetrating Radar In Urban Areas,
ISPRS12(XXXIX-B1:297-302).
DOI Link
1209
BibRef
van Son, R.,
Jaw, S.W.,
Yan, J.,
Khoo, V.,
Loo, R.,
Teo, S.,
Schrotter, G.,
A Framework for Reliable Three-dimensional Underground Utility Mapping
For Urban Planning,
GeoInfo18(209-214).
DOI Link
1901
BibRef
Pouliot, J.,
Larrivée, S.,
Ellul, C.,
Boudhaim, A.,
Exploring Schema Matching To Compare Geospatial Standards:
Application To Underground Utility Networks,
GeoInfo18(157-164).
DOI Link
1901
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Through the Wall Imaging, Radar, Microwave Imaging .