Yu, X.W.[Xiao-Wei],
Hyyppä, J.[Juha],
Kukko, A.[Antero],
Maltamo, M.[Matti],
Kaartinen, H.[Harri],
Change Detection Techniques for Canopy Height Growth Measurements Using
Airborne Laser Scanner Data,
PhEngRS(72), No. 12, December 2006, pp. 1339-1348.
WWW Link.
0704
The individual tree height growth of Scots pine was estimated from two
laser surveys with three different techniques, and the accuracy of the
estimation was evaluated with sample trees.
BibRef
Simard, M.,
Pinto, N.,
Fisher, J.B.,
Baccini, A.,
Mapping forest canopy height globally with spaceborne lidar,
GeopResSpacePh(116), 2011, pp. 04021.
DOI Link
WWW Link.
BibRef
1100
Simard, M.,
Fatoyinbo, T.L.,
Smetanka, C.,
Rivera-Monroy, V.H.,
Castañeda-Moya, E.,
Thomas, N.,
van der Stocken, T.,
Mangrove canopy height globally related to precipitation,
temperature and cyclone frequency,
NatGeosci(12), 2018, pp. 40-45.
DOI Link
BibRef
1800
Miliaresis, G.,
Delikaraoglou, D.,
Effects of Percent Tree Canopy Density and DEM Misregistration on
SRTM/NED Vegetation Height Estimates.,
RS(1), No. 2, June 2009, pp. 36-49.
DOI Link
1203
BibRef
Neuenschwander, A.L.[Amy L.],
Magruder, L.A.[Lori A.],
The Potential Impact of Vertical Sampling Uncertainty on
ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple
Ecosystems,
RS(8), No. 12, 2016, pp. 1039.
DOI Link
1612
BibRef
Chen, C.F.[Chuan-Fa],
Wang, Y.[Yifu],
Li, Y.Y.[Yan-Yan],
Yue, T.X.[Tian-Xiang],
Wang, X.[Xin],
Robust and Parameter-Free Algorithm for Constructing Pit-Free Canopy
Height Models,
IJGI(6), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Sumnall, M.[Matthew],
Fox, T.R.[Thomas R.],
Wynne, R.H.[Randolph H.],
Thomas, V.A.[Valerie A.],
Mapping the height and spatial cover of features beneath the forest
canopy at small-scales using airborne scanning discrete return Lidar,
PandRS(133), No. Supplement C, 2017, pp. 186-200.
Elsevier DOI
1711
Managed forest, Loblolly pine, Lidar, Voxel, Height-bin,
Understorey layer, Height, Horizontal, cover
BibRef
Wilke, N.[Norman],
Siegmann, B.[Bastian],
Klingbeil, L.[Lasse],
Burkart, A.[Andreas],
Kraska, T.[Thorsten],
Muller, O.[Onno],
van Doorn, A.[Anna],
Heinemann, S.[Sascha],
Rascher, U.[Uwe],
Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based
Canopy Height Model Combined with an Objective Threshold Approach,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wilke, N.[Norman],
Siegmann, B.[Bastian],
Frimpong, F.,
Muller, O.,
Klingbeil, L.[Lasse],
Rascher, U.,
Quantifying Lodging Percentage, Lodging Development and Lodging
Severity Using a Uav-based Canopy Height Model,
UAV-g19(649-655).
DOI Link
1912
BibRef
Liu, M.B.[Ming-Bo],
Cao, C.X.[Chun-Xiang],
Chen, W.[Wei],
Wang, X.J.[Xue-Jun],
Mapping Canopy Heights of Poplar Plantations in Plain Areas Using
ZY3-02 Stereo and Multispectral Data,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Swinfield, T.[Tom],
Lindsell, J.A.[Jeremy A.],
Williams, J.V.[Jonathan V.],
Harrison, R.D.[Rhett D.],
Agustiono,
Habibi,
Gemita, E.[Elva],
Schönlieb, C.B.[Carola B.],
Coomes, D.A.[David A.],
Accurate Measurement of Tropical Forest Canopy Heights and
Aboveground Carbon Using Structure From Motion,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Neuenschwander, A.L.[Amy L.],
Magruder, L.A.[Lori A.],
Canopy and Terrain Height Retrievals with ICESat-2: A First Look,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Cui, L.[Lei],
Jiao, Z.[Ziti],
Dong, Y.D.[Ya-Dong],
Sun, M.[Mei],
Zhang, X.N.[Xiao-Ning],
Yin, S.Y.[Si-Yang],
Ding, A.X.[An-Xin],
Chang, Y.X.[Ya-Xuan],
Guo, J.[Jing],
Xie, R.[Rui],
Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing
Typical-Angle Reflectances,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Wang, Q.A.[Qi-Ang],
Ni-Meister, W.[Wenge],
Forest Canopy Height and Gaps from Multiangular BRDF, Assessed with
Airborne LiDAR Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
(Short Title: Vegetation Structure from LiDAR and Multiangular Data)
BibRef
And:
Erratum:
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Fradette, M.S.[Marie-Soleil],
Leboeuf, A.[Antoine],
Riopel, M.[Martin],
Bégin, J.[Jean],
Method to Reduce the Bias on Digital Terrain Model and Canopy Height
Model from LiDAR Data,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Osinska-Skotak, K.[Katarzyna],
Bakula, K.[Krzysztof],
Jelowicki, L.[Lukasz],
Podkowa, A.[Anna],
Using Canopy Height Model Obtained with Dense Image Matching of
Archival Photogrammetric Datasets in Area Analysis of Secondary
Succession,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Boutsoukis, C.[Christos],
Manakos, I.[Ioannis],
Heurich, M.[Marco],
Delopoulos, A.[Anastasios],
Canopy Height Estimation from Single Multispectral 2D Airborne
Imagery Using Texture Analysis and Machine Learning in Structurally
Rich Temperate Forests,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Alagialoglou, L.[Leonidas],
Manakos, I.[Ioannis],
Heurich, M.[Marco],
Cervenka, J.[Jaroslav],
Delopoulos, A.[Anastasios],
Canopy Height Estimation from Spaceborne Imagery Using Convolutional
Encoder-decoder,
MMMod21(II:307-317).
Springer DOI
2106
BibRef
Nie, S.,
Wang, C.,
Xi, X.,
Luo, S.,
Zhu, X.,
Li, G.,
Liu, H.,
Tian, J.,
Zhang, S.,
Assessing the Impacts of Various Factors on Treetop Detection Using
LiDAR-Derived Canopy Height Models,
GeoRS(57), No. 12, December 2019, pp. 10099-10115.
IEEE DOI
1912
Vegetation, Surface topography, Biological system modeling, Shape,
Forestry, Remote sensing, Canopy height models (CHM),
topographic normalization
BibRef
Ghosh, S.M.[Sujit Madhab],
Behera, M.D.[Mukunda Dev],
Paramanik, S.[Somnath],
Canopy Height Estimation Using Sentinel Series Images through Machine
Learning Models in a Mangrove Forest,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Yang, W.[Wei],
Kondoh, A.[Akihiko],
Evaluation of the Simard et al. 2011 Global Canopy Height Map in
Boreal Forests,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Kashongwe, H.B.[Herve B.],
Roy, D.P.[David P.],
Bwangoy, J.R.B.[Jean Robert B.],
Democratic Republic of the Congo Tropical Forest Canopy Height and
Aboveground Biomass Estimation with Landsat-8 Operational Land Imager
(OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image
Selection,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Shimizu, K.[Katsuto],
Ota, T.[Tetsuji],
Mizoue, N.[Nobuya],
Saito, H.[Hideki],
Comparison of Multi-Temporal PlanetScope Data with Landsat 8 and
Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height
in Temperate Forests,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Liu, Q.W.[Qing-Wang],
Fu, L.Y.[Li-Yong],
Chen, Q.[Qiao],
Wang, G.X.[Guang-Xing],
Luo, P.[Peng],
Sharma, R.P.[Ram P.],
He, P.[Peng],
Li, M.[Mei],
Wang, M.X.[Meng-Xi],
Duan, G.S.[Guang-Shuang],
Analysis of the Spatial Differences in Canopy Height Models from UAV
LiDAR and Photogrammetry,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Arjasakusuma, S.[Sanjiwana],
Kusuma, S.S.[Sandiaga Swahyu],
Phinn, S.[Stuart],
Evaluating Variable Selection and Machine Learning Algorithms for
Estimating Forest Heights by Combining Lidar and Hyperspectral Data,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Lin, X.J.[Xiao-Juan],
Xu, M.[Min],
Cao, C.X.[Chun-Xiang],
Dang, Y.F.[Yong-Feng],
Bashir, B.[Barjeece],
Xie, B.[Bo],
Huang, Z.B.[Zhi-Bin],
Estimates of Forest Canopy Height Using a Combination of
ICESat-2/ATLAS Data and Stereo-Photogrammetry,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Adam, M.[Markus],
Urbazaev, M.[Mikhail],
Dubois, C.[Clémence],
Schmullius, C.[Christiane],
Accuracy Assessment of GEDI Terrain Elevation and Canopy Height
Estimates in European Temperate Forests: Influence of Environmental
and Acquisition Parameters,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wen, Z.,
Zhao, L.,
Zhang, W.,
Chen, E.,
Xu, K.,
The Effects of Coherence Calculation on Forest Height Estimation Using
Sinc Model,
ISPRS20(B1:637-642).
DOI Link
2012
BibRef
Kumar, S.[Shashi],
Govil, H.[Himanshu],
Srivastava, P.K.[Prashant K.],
Thakur, P.K.[Praveen K.],
Kushwaha, S.P.S.[Satya P. S.],
Spaceborne Multifrequency PolInSAR-Based Inversion Modelling for
Forest Height Retrieval,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Pourshamsi, M.[Maryam],
Xia, J.[Junshi],
Yokoya, N.[Naoto],
Garcia, M.[Mariano],
Lavalle, M.[Marco],
Pottier, E.[Eric],
Balzter, H.[Heiko],
Tropical forest canopy height estimation from combined polarimetric
SAR and LiDAR using machine-learning,
PandRS(172), 2021, pp. 79-94.
Elsevier DOI
2101
Polarimetric synthetic aperture radar (PolSAR), LiDAR, L-band,
Forest height, Machine learning
BibRef
Chen, W.[Wei],
Zheng, Q.H.[Qi-Hui],
Xiang, H.B.[Hai-Bing],
Chen, X.[Xu],
Sakai, T.[Tetsuro],
Forest Canopy Height Estimation Using Polarimetric Interferometric
Synthetic Aperture Radar (PolInSAR) Technology Based on
Full-Polarized ALOS/PALSAR Data,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Huang, Y.[Yue],
Zhang, Q.[Qiaoping],
Ferro-Famil, L.[Laurent],
Forest Height Estimation Using a Single-Pass Airborne L-Band
Polarimetric and Interferometric SAR System and Tomographic
Techniques,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Jiang, F.[Fugen],
Zhao, F.[Feng],
Ma, K.[Kaisen],
Li, D.S.[Dong-Sheng],
Sun, H.[Hua],
Mapping the Forest Canopy Height in Northern China by Synergizing
ICESat-2 with Sentinel-2 Using a Stacking Algorithm,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lu, H.L.[Hong-Liang],
Zhang, H.[Heng],
Fan, H.[Huaitao],
Liu, D.C.[Da-Cheng],
Wang, J.[Jili],
Wan, X.X.[Xiang-Xing],
Zhao, L.[Lei],
Deng, Y.K.[Yun-Kai],
Zhao, F.J.[Feng-Jun],
Wang, R.[Robert],
Forest height retrieval using P-band airborne multi-baseline SAR
data: A novel phase compensation method,
PandRS(175), 2021, pp. 99-118.
Elsevier DOI
2105
Forest 3-D structure, Phase errors compensation,
Network construction, Phase gradient autofocus, SAR tomography
BibRef
Ku, N.W.[Nian-Wei],
Popescu, S.[Sorin],
Eriksson, M.[Marian],
Regionalization of an Existing Global Forest Canopy Height Model for
Forests of the Southern United States,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Benson, M.L.[Michael L.],
Pierce, L.[Leland],
Bergen, K.[Kathleen],
Sarabandi, K.[Kamal],
Model-Based Estimation of Forest Canopy Height and Biomass in the
Canadian Boreal Forest Using Radar, LiDAR, and Optical Remote Sensing,
GeoRS(59), No. 6, June 2021, pp. 4635-4653.
IEEE DOI
2106
Forestry, Laser radar, Remote sensing, Biomass,
Biological system modeling, Synthetic aperture radar,
synthetic aperture radar (SAR)
BibRef
Fayad, I.[Ibrahim],
Baghdadi, N.[Nicolas],
Alvares, C.A.[Clayton Alcarde],
Stape, J.L.[Jose Luiz],
Bailly, J.S.[Jean Stéphane],
Scolforo, H.F.[Henrique Ferraço],
Cegatta, I.R.[Italo Ramos],
Zribi, M.[Mehrez],
Le Maire, G.[Guerric],
Terrain Slope Effect on Forest Height and Wood Volume Estimation from
GEDI Data,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Peng, X.[Xing],
Li, X.[Xinwu],
Du, Y.[Yanan],
Xie, Q.H.[Qing-Hua],
Forest Height Estimation from a Robust TomoSAR Method in the Case of
Small Tomographic Aperture with Airborne Dataset at L-Band,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Quan, Y.[Ying],
Li, M.Z.[Ming-Ze],
Hao, Y.S.[Yuan-Shuo],
Wang, B.[Bin],
Comparison and Evaluation of Different Pit-Filling Methods for
Generating High Resolution Canopy Height Model Using UAV Laser
Scanning Data,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chen, F.[Fade],
Guo, F.[Fei],
Liu, L.L.[Li-Long],
Nan, Y.[Yang],
An Improved Method for Pan-Tropical Above-Ground Biomass and Canopy
Height Retrieval Using CYGNSS,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Goldbergs, G.[Grigorijs],
Impact of Base-to-Height Ratio on Canopy Height Estimation Accuracy
of Hemiboreal Forest Tree Species by Using Satellite and Airborne
Stereo Imagery,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Chen, H.[Hao],
Cloude, S.R.[Shane R.],
White, J.C.[Joanne C.],
Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping:
A Combined SINC + Legendre Approach,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Li, M.[Mei],
Li, Z.Y.[Zeng-Yuan],
Liu, Q.W.[Qing-Wang],
Chen, E.[Erxue],
Comparison of Coniferous Plantation Heights Using Unmanned Aerial
Vehicle (UAV) Laser Scanning and Stereo Photogrammetry,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Zhang, H.[He],
Bauters, M.[Marijn],
Boeckx, P.[Pascal],
van Oost, K.[Kristof],
Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost
UAV-Derived Photogrammetric Point Clouds and Machine Learning
Approaches,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Parache, H.B.[Helen Blue],
Mayer, T.[Timothy],
Herndon, K.E.[Kelsey E.],
Flores-Anderson, A.I.[Africa Ixmucane],
Lei, Y.[Yang],
Nguyen, Q.[Quyen],
Kunlamai, T.[Thannarot],
Griffin, R.[Robert],
Estimating Forest Stand Height in Savannakhet, Lao PDR Using InSAR
and Backscatter Methods with L-Band SAR Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Mao, Y.[Yu],
Michel, O.O.[Opelele Omeno],
Yu, Y.[Ying],
Fan, W.Y.[Wen-Yi],
Sui, A.[Ao],
Liu, Z.H.[Zhi-Hui],
Wu, G.M.[Guo-Ming],
Retrieval of Boreal Forest Heights Using an Improved Random Volume
over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric
SAR Interferometry: The Case Study of Saihanba, China,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xi, Z.L.[Zhi-Long],
Xu, H.D.[Hua-Dong],
Xing, Y.Q.[Yan-Qiu],
Gong, W.S.[Wei-Shu],
Chen, G.Z.[Gui-Zhen],
Yang, S.H.[Shu-Hang],
Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1,
Sentinel-2 and Topographic Information Based on Machine Learning
Methods,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhao, J.P.[Jun-Peng],
Zhao, L.[Lei],
Chen, E.[Erxue],
Li, Z.Y.[Zeng-Yuan],
Xu, K.P.[Kun-Peng],
Ding, X.Y.[Xiang-Yuan],
An Improved Generalized Hierarchical Estimation Framework with
Geostatistics for Mapping Forest Parameters and Its Uncertainty: A
Case Study of Forest Canopy Height,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Oh, S.C.[Sung-Chan],
Jung, J.[Jinha],
Shao, G.[Guofan],
Shao, G.[Gang],
Gallion, J.[Joey],
Fei, S.L.[Song-Lin],
High-Resolution Canopy Height Model Generation and Validation Using
USGS 3DEP LiDAR Data in Indiana, USA,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhang, Q.[Qi],
Ge, L.L.[Lin-Lin],
Hensley, S.[Scott],
Isabel Metternicht, G.[Graciela],
Liu, C.[Chang],
Zhang, R.H.[Rui-Heng],
PolGAN: A deep-learning-based unsupervised forest height estimation
based on the synergy of PolInSAR and LiDAR data,
PandRS(186), 2022, pp. 123-139.
Elsevier DOI
2203
Repeat-pass, L-band, PolInSAR, LiDAR, Forest height, GAN
BibRef
Bulluck, L.[Lesley],
Lin, B.[Baron],
Schold, E.[Elizabeth],
Fine Resolution Imagery and LIDAR-Derived Canopy Heights Accurately
Classify Land Cover with a Focus on Shrub/Sapling Cover in a
Mountainous Landscape,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Schreyer, J.[Johannes],
Byron Walker, B.[Blake],
Lakes, T.[Tobia],
Implementing urban canopy height derived from a TanDEM-X-DEM: An
expert survey and case study,
PandRS(187), 2022, pp. 345-361.
Elsevier DOI
2205
BibRef
Zhang, J.S.[Jian-Shuang],
Zhang, Y.J.[Yang-Jian],
Fan, W.Y.[Wen-Yi],
He, L.Y.[Li-Yuan],
Yu, Y.[Ying],
Mao, X.G.[Xue-Gang],
A Modified Two-Steps Three-Stage Inversion Algorithm for Forest
Height Inversion Using Single-Baseline L-Band PolInSAR Data,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Morin, D.[David],
Planells, M.[Milena],
Baghdadi, N.[Nicolas],
Bouvet, A.[Alexandre],
Fayad, I.[Ibrahim],
Toan, T.L.[Thuy Le],
Mermoz, S.[Stéphane],
Villard, L.[Ludovic],
Improving Heterogeneous Forest Height Maps by Integrating GEDI-Based
Forest Height Information in a Multi-Sensor Mapping Process,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Huang, Z.H.[Zeng-Hui],
Yun, Y.[Ye],
Chai, H.M.[Hui-Ming],
Lv, X.L.[Xiao-Lei],
The Iterative Extraction of the Boundary of Coherence Region and
Iterative Look-Up Table for Forest Height Estimation Using
Polarimetric Interferometric Synthetic Aperture Radar Data,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Adrah, E.[Esmaeel],
Jaafar, W.S.W.M.[Wan Shafrina Wan Mohd],
Omar, H.[Hamdan],
Bajaj, S.[Shaurya],
Leite, R.V.[Rodrigo Vieira],
Mazlan, S.M.[Siti Munirah],
Silva, C.A.[Carlos Alberto],
Ooi, M.C.G.[Maggie Chel Gee],
Said, M.N.M.[Mohd Nizam Mohd],
Maulud, K.N.A.[Khairul Nizam Abdul],
Cardil, A.[Adrián],
Mohan, M.[Midhun],
Analyzing Canopy Height Patterns and Environmental Landscape Drivers
in Tropical Forests Using NASA's GEDI Spaceborne LiDAR,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Strunk, J.L.[Jacob L.],
Bell, D.M.[David M.],
Gregory, M.J.[Matthew J.],
Pushbroom Photogrammetric Heights Enhance State-Level Forest
Attribute Mapping with Landsat and Environmental Gradients,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Xu, K.P.[Kun-Peng],
Zhao, L.[Lei],
Chen, E.[Erxue],
Li, K.[Kun],
Liu, D.C.[Da-Cheng],
Li, T.[Tao],
Li, Z.Y.[Zeng-Yuan],
Fan, Y.X.[Ya-Xiong],
Forest Height Estimation Approach Combining P-Band and X-Band
Interferometric SAR Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, C.J.[Cang-Jiao],
Elmore, A.J.[Andrew J.],
Numata, I.[Izaya],
Cochrane, M.A.[Mark A.],
Lei, S.G.[Shao-Gang],
Hakkenberg, C.R.[Christopher R.],
Li, Y.Y.[Yuan-Yuan],
Zhao, Y.[Yibo],
Tian, Y.[Yu],
A Framework for Improving Wall-to-Wall Canopy Height Mapping by
Integrating GEDI LiDAR,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Torres de Almeida, C.[Catherine],
Gerente, J.[Jéssica],
Rodrigo dos Prazeres Campos, J.[Jamerson],
Caruso Gomes Junior, F.[Francisco],
Providelo, L.A.[Lucas Antonio],
Marchiori, G.[Guilherme],
Chen, X.J.[Xin-Jian],
Canopy Height Mapping by Sentinel 1 and 2 Satellite Images, Airborne
LiDAR Data, and Machine Learning,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, Z.[Zhao],
Shi, J.[Jiang],
Sun, S.[Sashuang],
Zhu, L.J.[Li-Jun],
He, Y.[Yiyin],
Jin, R.[Rong],
Luo, L.[Letan],
Zhao, L.[Lin],
Peng, J.X.[Jun-Xiang],
Zhou, Z.J.[Zhen-Jiang],
Estimation of Dry Matter and N Nutrient Status of Choy Sum by
Analyzing Canopy Images and Plant Height Information,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, B.[Bin],
Zhao, T.Z.[Tian-Zhong],
Su, X.H.[Xiao-Hui],
Fan, G.P.[Guang-Peng],
Zhang, W.J.[Wen-Jie],
Deng, Z.[Zhuo],
Yu, Y.H.[Yong-Hui],
Correction of Terrain Effects on Forest Canopy Height Estimation
Using ICESat-2 and High Spatial Resolution Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, N.[Nan],
Chen, M.J.[Ming-Jie],
Yang, F.[Fan],
Yang, C.C.[Can-Can],
Yang, P.H.[Peng-Hui],
Gao, Y.S.[Yu-Shan],
Shang, Y.[Yue],
Peng, D.[Daoli],
Forest Height Mapping Using Feature Selection and Machine Learning by
Integrating Multi-Source Satellite Data in Baoding City, North China,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Managhebi, T.[Tayebe],
Maghsoudi, Y.[Yasser],
Amani, M.[Meisam],
Forest Height Retrieval Based on the Dual PolInSAR Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xie, J.[Jinwei],
Li, L.[Lei],
Zhuang, L.[Long],
Zheng, Y.[Yu],
A New Strategy for Forest Height Estimation Using Airborne X-Band
PolInSAR Data,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Sothe, C.[Camile],
Gonsamo, A.[Alemu],
Lourenço, R.B.[Ricardo B.],
Kurz, W.A.[Werner A.],
Snider, J.[James],
Spatially Continuous Mapping of Forest Canopy Height in Canada by
Combining GEDI and ICESat-2 with PALSAR and Sentinel,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhang, Q.[Qi],
Hensley, S.[Scott],
Zhang, R.H.[Rui-Heng],
Liu, C.[Chang],
Ge, L.L.[Lin-Lin],
Improved Model-Based Forest Height Inversion Using Airborne L-Band
Repeat-Pass Dual-Baseline Pol-InSAR Data,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Ge, S.J.[Shao-Jia],
Su, W.M.[Wei-Min],
Gu, H.[Hong],
Rauste, Y.[Yrjö],
Praks, J.[Jaan],
Antropov, O.[Oleg],
Improved LSTM Model for Boreal Forest Height Mapping Using Sentinel-1
Time Series,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tiwari, K.[Kasip],
Narine, L.L.[Lana L.],
A Comparison of Machine Learning and Geostatistical Approaches for
Mapping Forest Canopy Height over the Southeastern US Using ICESat-2,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Luo, H.B.[Hong-Bin],
Yue, C.R.[Cai-Rong],
Xie, F.M.[Fu-Ming],
Zhu, B.D.[Bo-Dong],
Chen, S.[Si],
A Method for Forest Canopy Height Inversion Based on Machine Learning
and Feature Mining Using UAVSAR,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Luo, H.B.[Hong-Bin],
Yue, C.R.[Cai-Rong],
Wang, N.[Ning],
Luo, G.F.[Guang-Fei],
Chen, S.[Si],
Correcting Underestimation and Overestimation in PolInSAR Forest
Canopy Height Estimation Using Microwave Penetration Depth,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ghosh, S.M.[Sujit M.],
Behera, M.D.[Mukunda D.],
Kumar, S.[Subham],
Das, P.[Pulakesh],
Prakash, A.J.[Ambadipudi J.],
Bhaskaran, P.K.[Prasad K.],
Roy, P.S.[Parth S.],
Barik, S.K.[Saroj K.],
Jeganathan, C.[Chockalingam],
Srivastava, P.K.[Prashant K.],
Behera, S.K.[Soumit K.],
Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data
Using Machine Learning over India,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lahssini, K.[Kamel],
Baghdadi, N.[Nicolas],
le Maire, G.[Guerric],
Fayad, I.[Ibrahim],
Influence of GEDI Acquisition and Processing Parameters on Canopy
Height Estimates over Tropical Forests,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, L.[Lei],
Zhou, Y.S.[Yu-Shan],
Shen, G.[Gaoyun],
Xiong, J.[Junnan],
Shi, H.T.[Hong-Tao],
Forest Height Inversion Based on Time-Frequency RVoG Model Using
Single-Baseline L-Band Sublook-InSAR Data,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Sui, A.[Ao],
Michel, O.O.[Opelele Omeno],
Mao, Y.[Yu],
Fan, W.[Wenyi],
An Improved Forest Height Model Using L-Band Single-Baseline
Polarimetric InSAR Data for Various Forest Densities,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Malambo, L.[Lonesome],
Popescu, S.[Sorin],
Liu, M.[Meng],
Landsat-Scale Regional Forest Canopy Height Mapping Using ICESat-2
Along-Track Heights: Case Study of Eastern Texas,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhou, X.C.[Xiao-Cheng],
Hao, Y.[Youzhuang],
Di, L.P.[Li-Ping],
Wang, X.Q.[Xiao-Qin],
Chen, C.C.[Chong-Cheng],
Chen, Y.Z.[Yun-Zhi],
Nagy, G.[Gábor],
Jancso, T.[Tamas],
Improving GEDI Forest Canopy Height Products by Considering the Stand
Age Factor Derived from Time-Series Remote Sensing Images: A Case
Study in Fujian, China,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Cheng, K.[Kai],
Su, Y.J.[Yan-Jun],
Guan, H.[Hongcan],
Tao, S.L.[Sheng-Li],
Ren, Y.[Yu],
Hu, T.Y.[Tian-Yu],
Ma, K.P.[Ke-Ping],
Tang, Y.H.[Yan-Hong],
Guo, Q.H.[Qing-Hua],
Mapping China's planted forests using high resolution imagery and
massive amounts of crowdsourced samples,
PandRS(196), 2023, pp. 356-371.
Elsevier DOI
2302
Planted forest, Crowdsourced samples, Landsat, Sentinel-1,
Digital Elevation Model, Forest canopy height
BibRef
Ngo, Y.N.[Yen-Nhi],
Minh, D.H.T.[Dinh Ho Tong],
Baghdadi, N.[Nicolas],
Fayad, I.[Ibrahim],
Tropical Forest Top Height by GEDI: From Sparse Coverage to
Continuous Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Goldbergs, G.[Grigorijs],
Comparison of Canopy Height Metrics from Airborne Laser Scanner and
Aerial/Satellite Stereo Imagery to Assess the Growing Stock of
Hemiboreal Forests,
RS(15), No. 6, 2023, pp. 1688.
DOI Link
2304
BibRef
Pourrahmati, M.R.[Manizheh Rajab],
Baghdadi, N.[Nicolas],
Fayad, I.[Ibrahim],
Comparison of GEDI LiDAR Data Capability for Forest Canopy Height
Estimation over Broadleaf and Needleleaf Forests,
RS(15), No. 6, 2023, pp. 1522.
DOI Link
2304
BibRef
Xing, C.[Cheng],
Wang, H.[Hongmiao],
Zhang, Z.J.[Zhan-Jie],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
A Review of Forest Height Inversion by PolInSAR: Theory, Advances,
and Perspectives,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Guan, X.[Xuebing],
Yang, X.[Xiguang],
Yu, Y.[Ying],
Pan, Y.[Yan],
Dong, H.[Hanyuan],
Yang, T.[Tao],
Canopy-Height and Stand-Age Estimation in Northeast China at
Sub-Compartment Level Using Multi-Resource Remote Sensing Data,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhu, X.X.[Xiao-Xiao],
Nie, S.[Sheng],
Zhu, Y.M.[Ya-Min],
Chen, Y.M.[Yi-Ming],
Yang, B.[Bo],
Li, W.[Wang],
Evaluation and Comparison of ICESat-2 and GEDI Data for Terrain and
Canopy Height Retrievals in Short-Stature Vegetation,
RS(15), No. 20, 2023, pp. 4969.
DOI Link
2310
BibRef
Zhou, G.Q.[Guo-Qing],
Li, H.[Haowen],
Huang, J.[Jing],
Gao, E.[Ertao],
Song, T.Y.[Tian-Yi],
Han, X.T.[Xiao-Ting],
Zhu, S.G.[Shuai-Guang],
Liu, J.[Jun],
Weighted Differential Gradient Method for Filling Pits in Light
Detection and Ranging (LiDAR) Canopy Height Model,
RS(16), No. 7, 2024, pp. 1304.
DOI Link
2404
BibRef
Alvites, C.[Cesar],
O'Sullivan, H.[Hannah],
Francini, S.[Saverio],
Marchetti, M.[Marco],
Santopuoli, G.[Giovanni],
Chirici, G.[Gherardo],
Lasserre, B.[Bruno],
Marignani, M.[Michela],
Bazzato, E.[Erika],
High-Resolution Canopy Height Mapping: Integrating NASA's Global
Ecosystem Dynamics Investigation (GEDI) with Multi-Source Remote
Sensing Data,
RS(16), No. 7, 2024, pp. 1281.
DOI Link
2404
BibRef
Sui, A.[Ao],
Fan, W.[Wenyi],
Inversion of Boreal Forest Height Using the CRITIC Weighted Least
Squares Three-Stage Temporal Decorrelation Iterative Algorithm,
RS(16), No. 7, 2024, pp. 1137.
DOI Link
2404
BibRef
Oliveira, P.V.C.[Pedro V. C.],
Zhang, H.K.[Hankui K.],
Zhang, X.Y.[Xiao-Yang],
Estimating Brazilian Amazon Canopy Height Using Landsat Reflectance
Products in a Random Forest Model with Lidar as Reference Data,
RS(16), No. 14, 2024, pp. 2571.
DOI Link
2408
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Tree Height Measurement .