Zavalas, R.[Richard],
Ierodiaconou, D.[Daniel],
Ryan, D.[David],
Rattray, A.[Alex],
Monk, J.[Jacquomo],
Habitat Classification of Temperate Marine Macroalgal Communities
Using Bathymetric LiDAR,
RS(6), No. 3, 2014, pp. 2154-2175.
DOI Link
1404
BibRef
Song, W.L.[Wei-Long],
Dolan, J.M.[John M.],
Cline, D.[Danelle],
Xiong, G.M.[Guang-Ming],
Learning-Based Algal Bloom Event Recognition for Oceanographic
Decision Support System Using Remote Sensing Data,
RS(7), No. 10, 2015, pp. 13564.
DOI Link
1511
BibRef
Xing, Q.G.[Qian-Guo],
Hu, C.M.[Chuan-Min],
Tang, D.L.[Dan-Ling],
Tian, L.Q.[Li-Qiao],
Tang, S.L.[Shi-Lin],
Wang, X.H.[Xiao Hua],
Lou, M.J.[Ming-Jing],
Gao, X.L.[Xue-Lu],
World's Largest Macroalgal Blooms Altered Phytoplankton Biomass in
Summer in the Yellow Sea: Satellite Observations,
RS(7), No. 9, 2015, pp. 12297.
DOI Link
1511
BibRef
Zhang, Y.C.[Yu-Chao],
Ma, R.H.[Rong-Hua],
Zhang, M.[Min],
Duan, H.T.[Hong-Tao],
Loiselle, S.[Steven],
Xu, J.D.[Jin-Duo],
Fourteen-Year Record (2000-2013) of the Spatial and Temporal Dynamics
of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of
MODIS Images,
RS(7), No. 8, 2015, pp. 10523.
DOI Link
1509
BibRef
Kamerosky, A.[Andrew],
Cho, H.J.[Hyun Jung],
Morris, L.[Lori],
Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL,
USA, Using MERIS,
RS(7), No. 2, 2015, pp. 1441-1460.
DOI Link
1503
BibRef
Zhao, J.[Jun],
Temimi, M.[Marouane],
Ghedira, H.[Hosni],
Characterization of harmful algal blooms (HABs) in the Arabian Gulf
and the Sea of Oman using MERIS fluorescence data,
PandRS(101), No. 1, 2015, pp. 125-136.
Elsevier DOI
1503
HAB
BibRef
El-Habashi, A.[Ahmed],
Ioannou, I.[Ioannis],
Tomlinson, M.C.[Michelle C.],
Stumpf, R.P.[Richard P.],
Ahmed, S.[Sam],
Satellite Retrievals of Karenia brevis Harmful Algal Blooms in the
West Florida Shelf Using Neural Networks and Comparisons with Other
Techniques,
RS(8), No. 5, 2016, pp. 377.
DOI Link
1606
BibRef
Ouyang, Z.T.[Zu-Tao],
Shao, C.L.[Chang-Liang],
Chu, H.[Housen],
Becker, R.[Richard],
Bridgeman, T.[Thomas],
Stepien, C.A.[Carol A.],
John, R.[Ranjeet],
Chen, J.[Jiquan],
The Effect of Algal Blooms on Carbon Emissions in Western Lake Erie:
An Integration of Remote Sensing and Eddy Covariance Measurements,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Zeng, C.[Chen],
Zeng, T.[Tao],
Fischer, A.M.[Andrew M.],
Xu, H.P.[Hui-Ping],
Fluorescence-Based Approach to Estimate the Chlorophyll-A
Concentration of a Phytoplankton Bloom in Ardley Cove (Antarctica),
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Shehhi, M.R.A.[Maryam R. Al],
Gherboudj, I.[Imen],
Zhao, J.[Jun],
Ghedira, H.[Hosni],
Improved atmospheric correction and chlorophyll-a remote sensing
models for turbid waters in a dusty environment,
PandRS(133), No. Supplement C, 2017, pp. 46-60.
Elsevier DOI
1711
Harmful algal blooms, Chlorophyll a, Atmospheric correction,
Arabian Gulf, Sea of Oman, Arabian Sea, Dusty climate,
Shallow water, Turbid, water
BibRef
Tan, W.X.[Wen-Xia],
Liu, P.C.[Peng-Cheng],
Liu, Y.[Yi],
Yang, S.[Shao],
Feng, S.[Shunan],
A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using
Landsat Imagery: 1987 to 2016,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Wu, L.[Lin],
Wang, L.[Le],
Min, L.[Lin],
Hou, W.[Wei],
Guo, Z.W.[Zheng-Wei],
Zhao, J.H.[Jian-Hui],
Li, N.[Ning],
Discrimination of Algal-Bloom Using Spaceborne SAR Observations of
Great Lakes in China,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Cui, T.W.,
Liang, X.J.,
Gong, J.L.,
Tong, C.,
Xiao, Y.F.,
Liu, R.J.,
Zhang, X.,
Zhang, J.,
Assessing and refining the satellite-derived massive green
macro-algal coverage in the Yellow Sea with high resolution images,
PandRS(144), 2018, pp. 315-324.
Elsevier DOI
1809
Green macro-algal bloom, Coverage, MODIS, SAR,
Pixel un-mixing, Mixed pixel effect
BibRef
Harun-Al-Rashid, A.[Ahmed],
Yang, C.S.[Chan-Su],
Improved Detection of Tiny Macroalgae Patches in Korea Bay and
Gyeonggi Bay by Modification of Floating Algae Index,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Gao, B.C.[Bo-Cai],
Li, R.R.[Rong-Rong],
FVI: A Floating Vegetation Index Formed with Three Near-IR Channels in
the 1.0-1.24 µm Spectral Range for the Detection of Vegetation
Floating over Water Surfaces,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Karki, S.[Sita],
Sultan, M.[Mohamed],
Elkadiri, R.[Racha],
Elbayoumi, T.[Tamer],
Mapping and Forecasting Onsets of Harmful Algal Blooms Using MODIS
Data over Coastal Waters Surrounding Charlotte County, Florida,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Li, J.[Jing],
Ma, R.H.[Rong-Hua],
Xue, K.[Kun],
Zhang, Y.C.[Yu-Chao],
Loiselle, S.[Steven],
A Remote Sensing Algorithm of Column-Integrated Algal Biomass
Covering Algal Bloom Conditions in a Shallow Eutrophic Lake,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Shin, J.[Jisun],
Kim, K.[Keunyong],
Son, Y.B.[Young Baek],
Ryu, J.H.[Joo-Hyung],
Synergistic Effect of Multi-Sensor Data on the Detection of
Margalefidinium polykrikoides in the South Sea of Korea,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Mcilwaine, B.[Ben],
Casado, M.R.[Monica Rivas],
Leinster, P.[Paul],
Using 1st Derivative Reflectance Signatures within a Remote Sensing
Framework to Identify Macroalgae in Marine Environments,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Marmorino, G.O.[George O.],
Chen, W.[Wei],
Use of WorldView-2 Along-Track Stereo Imagery to Probe a Baltic Sea
Algal Spiral,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
El-Alem, A.,
Chokmani, K.,
Laurion, I.,
El-Adlouni, S.E.,
Raymond, S.,
Ratté-Fortin, C.,
Ensemble-Based Systems to Monitor Algal Bloom With Remote Sensing,
GeoRS(57), No. 10, October 2019, pp. 7955-7971.
IEEE DOI
1910
calibration, hydrological techniques, lakes, remote sensing,
water pollution, water quality, monitor algal bloom,
remote sensing
BibRef
Bi, S.,
Li, Y.,
Lyu, H.,
Mu, M.,
Xu, J.,
Lei, S.,
Miao, S.,
Hong, T.,
Zhou, L.,
Quantifying Spatiotemporal Dynamics of the Column-Integrated Algal
Biomass in Nonbloom Conditions Based on OLCI Data: A Case Study of
Lake Dianchi, China,
GeoRS(57), No. 10, October 2019, pp. 7447-7459.
IEEE DOI
1910
lakes, oceanographic regions, remote sensing, water quality,
nonbloom areas, nonbloom regions, water surface biomass,
Ocean and Land Color Instrument (OLCI)
BibRef
Jing, Y.Y.[Yuan-Yuan],
Zhang, Y.C.[Yu-Chao],
Hu, M.Q.[Min-Qi],
Chu, Q.[Qiao],
Ma, R.H.[Rong-Hua],
MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics
and Drivers of Algal Blooms in a Plateau Lake Dianchi, China,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Malthus, T.J.[Tim J.],
Lehmann, E.[Eric],
Ho, X.[Xavier],
Botha, E.[Elizabeth],
Anstee, J.[Janet],
Implementation of a Satellite Based Inland Water Algal Bloom Alerting
System Using Analysis Ready Data,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Mora-Soto, A.[Alejandra],
Palacios, M.[Mauricio],
Macaya, E.C.[Erasmo C.],
Gómez, I.[Iván],
Huovinen, P.[Pirjo],
Pérez-Matus, A.[Alejandro],
Young, M.[Mary],
Golding, N.[Neil],
Toro, M.[Martin],
Yaqub, M.[Mohammad],
Macias-Fauria, M.[Marc],
A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera)
Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2
Imagery,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Schimel, A.C.G.[Alexandre C. G.],
Brown, C.J.[Craig J.],
Ierodiaconou, D.[Daniel],
Automated Filtering of Multibeam Water-Column Data to Detect Relative
Abundance of Giant Kelp (Macrocystis pyrifera),
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Lõugas, L.[Laura],
Kutser, T.[Tiit],
Kotta, J.[Jonne],
Vahtmäe, E.[Ele],
Detecting Long Time Changes in Benthic Macroalgal Cover Using Landsat
Image Archive,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ni, T.N.K.[Tran Ngoc Khanh],
Tin, H.C.[Hoang Cong],
Thach, V.T.[Vo Trong],
Jamet, C.[Cédric],
Saizen, I.[Izuru],
Mapping Submerged Aquatic Vegetation along the Central Vietnamese
Coast Using Multi-Source Remote Sensing,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Shin, J.[Jisun],
Kim, S.M.[Soo Mee],
Kim, K.[Keunyong],
Ryu, J.H.[Joo-Hyung],
Quantification of Margalefidinium polykrikoides Blooms along the
South Coast of Korea Using Airborne Hyperspectral Imagery,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Kislik, C.[Chippie],
Genzoli, L.[Laurel],
Lyons, A.[Andy],
Kelly, M.[Maggi],
Application of UAV Imagery to Detect and Quantify Submerged
Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Cao, M.M.[Meng-Meng],
Mao, K.B.[Ke-Biao],
Shen, X.Y.[Xin-Yi],
Xu, T.R.[Tong-Ren],
Yan, Y.[Yibo],
Yuan, Z.J.[Zi-Jin],
Monitoring the Spatial and Temporal Variations in The Water Surface
and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term
MODIS Image Time Series,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Lee, M.S.[Min-Sun],
Park, K.A.[Kyung-Ae],
Micheli, F.[Fiorenza],
Derivation of Red Tide Index and Density Using Geostationary Ocean
Color Imager (GOCI) Data,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Ma, J.Y.[Jie-Ying],
Jin, S.G.[Shuang-Gen],
Li, J.[Jian],
He, Y.[Yang],
Shang, W.[Wei],
Spatio-Temporal Variations and Driving Forces of Harmful Algal Blooms
in Chaohu Lake: A Multi-Source Remote Sensing Approach,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Zhang, Y.C.[Yu-Chao],
Loiselle, S.[Steven],
Shi, K.[Kun],
Han, T.[Tao],
Zhang, M.[Min],
Hu, M.Q.[Min-Qi],
Jing, Y.Y.[Yuan-Yuan],
Lai, L.[Lai],
Zhan, P.F.[Peng-Fei],
Wind Effects for Floating Algae Dynamics in Eutrophic Lakes,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Schreyers, L.[Louise],
van Emmerik, T.[Tim],
Biermann, L.[Lauren],
Le Lay, Y.F.[Yves-François],
Spotting Green Tides over Brittany from Space: Three Decades of
Monitoring with Landsat Imagery,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Aláez, F.M.B.[Francisco M. Bellas],
Palenzuela, J.M.T.[Jesus M. Torres],
Spyrakos, E.[Evangelos],
Vilas, L.G.[Luis González],
Machine Learning Methods Applied to the Prediction of
Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain),
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
Refers to Oceanography paper.
BibRef
de Lucia Lobo, F.[Felipe],
Nagel, G.W.[Gustavo Willy],
Maciel, D.A.[Daniel Andrade],
de Carvalho, L.A.S.[Lino Augusto Sander],
Martins, V.S.[Vitor Souza],
Barbosa, C.C.F.[Cláudio Clemente Faria],
de Moraes Novo, E.M.L.[Evlyn Márcia Leão ],
AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in
Latin America,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Brando, V.E.[Vittorio E.],
Sammartino, M.[Michela],
Colella, S.[Simone],
Bracaglia, M.[Marco],
di Cicco, A.[Annalisa],
d'Alimonte, D.[Davide],
Kajiyama, T.[Tamito],
Kaitala, S.[Seppo],
Attila, J.[Jenni],
Phytoplankton Bloom Dynamics in the Baltic Sea Using a Consistently
Reprocessed Time Series of Multi-Sensor Reflectance and Novel
Chlorophyll-a Retrievals,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, G.Z.[Guang-Zong],
Wu, M.Q.[Meng-Quan],
Wei, J.[Juan],
He, Y.F.[Yu-Fang],
Niu, L.F.[Li-Feng],
Li, H.Y.[Han-Yu],
Xu, G.C.[Guo-Chang],
Adaptive Threshold Model in Google Earth Engine: A Case Study of Ulva
prolifera Extraction in the South Yellow Sea, China,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zeng, C.Q.[Chui-Qing],
Binding, C.E.[Caren E.],
Consistent Multi-Mission Measures of Inland Water Algal Bloom Spatial
Extent Using MERIS, MODIS and OLCI,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
An, D.Y.[De-Yu],
Yu, D.F.[Ding-Feng],
Zheng, X.Y.[Xiang-Yang],
Zhou, Y.[Yan],
Meng, L.[Ling],
Xing, Q.G.[Qian-Guo],
Monitoring the Dissipation of the Floating Green Macroalgae Blooms in
the Yellow Sea (2007-2020) on the Basis of Satellite Remote Sensing,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Izadi, M.[Moein],
Sultan, M.[Mohamed],
El Kadiri, R.[Racha],
Ghannadi, A.[Amin],
Abdelmohsen, K.[Karem],
A Remote Sensing and Machine Learning-Based Approach to Forecast the
Onset of Harmful Algal Bloom,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Park, J.[Jinku],
Lee, S.J.[Sung-Jae],
Jo, Y.H.[Young-Heon],
Kim, H.C.[Hyun-Cheol],
Phytoplankton Bloom Changes under Extreme Geophysical Conditions in
the Northern Bering Sea and the Southern Chukchi Sea,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Pan, Y.F.[Yu-Feng],
Ding, D.[Dong],
Li, G.X.[Guang-Xue],
Liu, X.[Xue],
Liang, J.[Jun],
Wang, X.D.[Xiang-Dong],
Liu, S.D.[Shi-Dong],
Shi, J.H.[Jing-Hao],
Potential Temporal and Spatial Trends of Oceanographic Conditions
with the Bloom of Ulva Prolifera in the West of the Southern Yellow
Sea,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, Y.R.[Yuan-Rui],
Zhou, Q.C.[Qi-Chao],
Zhang, Y.[Yun],
Li, J.Y.[Jing-Yi],
Shi, K.[Kun],
Research Trends in the Remote Sensing of Phytoplankton Blooms:
Results from Bibliometrics,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Liu, M.[Miao],
Ling, H.[Hong],
Wu, D.[Dan],
Su, X.M.[Xiao-Mei],
Cao, Z.G.[Zhi-Gang],
Sentinel-2 and Landsat-8 Observations for Harmful Algae Blooms in a
Small Eutrophic Lake,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Khan, R.M.[Rabia Munsaf],
Salehi, B.[Bahram],
Mahdianpari, M.[Masoud],
Mohammadimanesh, F.[Fariba],
Mountrakis, G.[Giorgos],
Quackenbush, L.J.[Lindi J.],
A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and
Monitoring: A Remote Sensing Perspective,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, X.[Xue],
Shang, S.L.[Shao-Ling],
Lee, Z.P.[Zhong-Ping],
Lin, G.[Gong],
Zhang, Y.N.[Yong-Nian],
Wu, J.Y.[Jing-Yu],
Kang, Z.J.[Zhen-Jun],
Liu, X.X.[Xiang-Xu],
Yin, C.[Cheng],
Gao, Y.[Yue],
Detection and Biomass Estimation of Phaeocystis globosa Blooms off
Southern China From UAV-Based Hyperspectral Measurements,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Sea measurements, Unmanned aerial vehicles, Time measurement,
Sensors, Hyperspectral imaging, Spatial resolution, Satellites,
unmanned aerial vehicle (UAV)
BibRef
Ciancia, E.[Emanuele],
Lacava, T.[Teodosio],
Pergola, N.[Nicola],
Vellucci, V.[Vincenzo],
Antoine, D.[David],
Satriano, V.[Valeria],
Tramutoli, V.[Valerio],
Quantifying the Variability of Phytoplankton Blooms in the NW
Mediterranean Sea with the Robust Satellite Techniques (RST),
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhao, X.[Xin],
Liu, R.J.[Rong-Jie],
Ma, Y.[Yi],
Xiao, Y.F.[Yan-Fang],
Ding, J.[Jing],
Liu, J.Q.[Jian-Qiang],
Wang, Q.B.[Quan-Bin],
Red Tide Detection Method for HY-1D Coastal Zone Imager Based on
U-Net Convolutional Neural Network,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Laneve, G.[Giovanni],
Bruno, M.[Milena],
Mukherjee, A.[Arghya],
Messineo, V.[Valentina],
Giuseppetti, R.[Roberto],
de Pace, R.[Rita],
Magurano, F.[Fabio],
d'Ugo, E.[Emilio],
Remote Sensing Detection of Algal Blooms in a Lake Impacted by
Petroleum Hydrocarbons,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Laneve, G.[Giovanni],
Téllez, A.[Alejandro],
Kuruvila, A.K.[Ashish Kallikkattil],
Bruno, M.[Milena],
Messineo, V.[Valentina],
Eutrophication and HAB Occurrence Control in Lakes of Different
Origins: A Multi-Source Remote Sensing Detection Strategy,
RS(16), No. 10, 2024, pp. 1792.
DOI Link
2405
BibRef
Liu, R.J.[Rong-Jie],
Xiao, Y.F.[Yan-Fang],
Ma, Y.[Yi],
Cui, T.W.[Ting-Wei],
An, J.[Jubai],
Red tide detection based on high spatial resolution broad band
optical satellite data,
PandRS(184), 2022, pp. 131-147.
Elsevier DOI
2202
Pseudo hue angle, Red tide, Remote sensing, Detection method, Broad band sensor
BibRef
Cui, B.[Binge],
Zhang, H.Q.[Hao-Qing],
Jing, W.[Wei],
Liu, H.F.[Hui-Fang],
Cui, J.M.[Jian-Ming],
SRSe-Net: Super-Resolution-Based Semantic Segmentation Network for
Green Tide Extraction,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Duan, H.Y.[Hong-Yu],
Yao, X.J.[Xiao-Jun],
Zhang, D.[Dahong],
Jin, H.[Huian],
Wei, Q.X.[Qi-Xin],
Long-Term Temporal and Spatial Monitoring of Cladophora Blooms in
Qinghai Lake Based on Multi-Source Remote Sensing Images,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Pu, J.[Jing],
Song, K.[Kaishan],
Lv, Y.F.[Yun-Feng],
Liu, G.[Ge],
Fang, C.[Chong],
Hou, J.B.[Jun-Bin],
Wen, Z.D.[Zhi-Dan],
Distinguishing Algal Blooms from Aquatic Vegetation in Chinese Lakes
Using Sentinel 2 Image,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, C.P.[Chang-Peng],
Tao, B.Y.[Bang-Yi],
Liu, Y.L.[Ya-Lin],
Zhang, S.[Shugang],
Zhang, Z.[Zhao],
Song, Q.J.[Qing-Jun],
Jiang, Z.B.[Zhi-Bing],
He, S.Y.[Shuang-Yan],
Huang, H.Q.[Hai-Qing],
Mao, Z.H.[Zhi-Hua],
Assessment of VIIRS on the Identification of Harmful Algal Bloom
Types in the Coasts of the East China Sea,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Al-Shehhi, M.R.[Maryam R.],
Samad, Y.A.[Yarjan Abdul],
Identifying Algal Bloom 'Hotspots' in Marginal Productive Seas:
A Review and Geospatial Analysis,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, S.L.[Shuang-Ling],
Meng, Y.[Yu],
Phytoplankton Blooms Expanding Further Than Previously Thought in the
Ross Sea: A Remote Sensing Perspective,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lu, W.F.[Wen-Fang],
Gao, X.Y.[Xin-Yu],
Wu, Z.[Zelun],
Wang, T.H.[Tian-Hao],
Lin, S.[Shaowen],
Xiao, C.[Canbo],
Lai, Z.G.[Zhi-Gang],
Framework to Extract Extreme Phytoplankton Bloom Events with Remote
Sensing Datasets: A Case Study,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shin, J.[Jisun],
Khim, B.K.[Boo-Keun],
Jang, L.H.[Lee-Hyun],
Lim, J.[Jinwook],
Jo, Y.H.[Young-Heon],
Convolutional neural network model for discrimination of harmful
algal bloom (HAB) from non-HABs using Sentinel-3 OLCI imagery,
PandRS(191), 2022, pp. 250-262.
Elsevier DOI
2208
Sentinel-3 OLCI, Convolutional neural network
BibRef
Zhang, Y.C.[Yu-Chao],
Shi, K.[Kun],
Cao, Z.[Zhen],
Lai, L.[Lai],
Geng, J.P.[Jian-Ping],
Yu, K.T.[Kui-Ting],
Zhan, P.F.[Peng-Fei],
Liu, Z.M.[Zhao-Min],
Effects of satellite temporal resolutions on the remote derivation of
trends in phytoplankton blooms in inland waters,
PandRS(191), 2022, pp. 188-202.
Elsevier DOI
2208
Temporal resolutions, Phytoplankton blooms, Inland waters,
MODIS, Lake Taihu
BibRef
Ma, J.[Jinge],
He, F.[Feng],
Qi, T.[Tianci],
Sun, Z.[Zhe],
Shen, M.[Ming],
Cao, Z.G.[Zhi-Gang],
Meng, D.[Di],
Duan, H.T.[Hong-Tao],
Luo, J.[Juhua],
Thirty-Four-Year Record (1987-2021) of the Spatiotemporal Dynamics of
Algal Blooms in Lake Dianchi from Multi-Source Remote Sensing
Insights,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ye, W.W.[Wei-Wen],
Zhang, F.[Feng],
Du, Z.H.[Zhen-Hong],
Machine Learning in Extreme Value Analysis, an Approach to Detecting
Harmful Algal Blooms with Long-Term Multisource Satellite Data,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ananias, P.H.M.[Pedro Henrique M.],
Negri, R.G.[Rogério G.],
Dias, M.A.[Maurício A.],
Silva, E.A.[Erivaldo A.],
Casaca, W.[Wallace],
A Fully Unsupervised Machine Learning Framework for Algal Bloom
Forecasting in Inland Waters Using MODIS Time Series and Climatic
Products,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yang, K.Y.[Kai-Yuan],
Wang, Z.H.[Zhong-Hao],
Yang, Z.[Zheng],
Zheng, P.Y.[Pei-Yang],
Yao, S.L.[Shan-Liang],
Zhu, X.H.[Xiao-Hui],
Yue, Y.[Yong],
Wang, W.[Wei],
Zhang, J.[Jie],
Ma, J.[Jieming],
RecepNet: Network with Large Receptive Field for Real-Time Semantic
Segmentation and Application for Blue-Green Algae,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zou, Y.[Yibo],
Wang, X.L.[Xiao-Liang],
Wang, L.[Lei],
Chen, K.[Ke],
Ge, Y.[Yan],
Zhao, L.L.[Lin-Lin],
A High-Quality Instance-Segmentation Network for Floating-Algae
Detection Using RGB Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chen, Y.[Ying],
Pan, G.[Gang],
Mortimer, R.[Robert],
Zhao, H.[Hui],
Possible Mechanism of Phytoplankton Blooms at the Sea Surface after
Tropical Cyclones,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Z.[Zhuyi],
Fan, B.[Bowen],
Yu, D.F.[Ding-Feng],
Fan, Y.G.[Yan-Guo],
An, D.Y.[De-Yu],
Pan, S.Q.[Shun-Qi],
Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the
Yellow Sea (2020-2022) Based on Satellite Remote Sensing,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
Green tide.
BibRef
Feng, C.[Chi],
Zhu, Y.[Yuanli],
Shen, A.[Anglu],
Li, C.P.[Chang-Peng],
Song, Q.J.[Qing-Jun],
Tao, B.[Bangyi],
Zeng, J.N.[Jiang-Ning],
Assessment of GCOM-C Satellite Imagery in Bloom Detection:
A Case Study in the East China Sea,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Shang, W.T.[Wei-Tao],
Gao, Z.Q.[Zhi-Qiang],
Gao, M.[Meng],
Jiang, X.P.[Xiao-Peng],
Monitoring Green Tide in the Yellow Sea Using High-Resolution Imagery
and Deep Learning,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Rodríguez-López, L.[Lien],
Duran-Llacer, I.[Iongel],
Alvarez, L.B.[Lisandra Bravo],
Lami, A.[Andrea],
Urrutia, R.[Roberto],
Recovery of Water Quality and Detection of Algal Blooms in Lake
Villarrica through Landsat Satellite Images and Monitoring Data,
RS(15), No. 7, 2023, pp. 1929.
DOI Link
2304
BibRef
Cui, H.L.[Han-Lin],
Chen, S.[Shuguo],
Hu, L.[Lianbo],
Wang, J.W.[Jun-Wei],
Cai, H.B.[Hao-Bin],
Ma, C.F.[Chao-Fei],
Liu, J.Q.[Jian-Qiang],
Zou, B.[Bin],
HY1C/D-CZI Noctiluca scintillans Bloom Recognition Network Based on
Hybrid Convolution and Self-Attention,
RS(15), No. 7, 2023, pp. 1757.
DOI Link
2304
Alga.
BibRef
Xu, S.W.[Shu-Wen],
Yu, T.[Tan],
Xu, J.M.[Jin-Meng],
Pan, X.[Xishan],
Shao, W.Z.[Wei-Zeng],
Zuo, J.C.[Jun-Cheng],
Yu, Y.[Yang],
Monitoring and Forecasting Green Tide in the Yellow Sea Using
Satellite Imagery,
RS(15), No. 8, 2023, pp. 2196.
DOI Link
2305
BibRef
Kim, Y.J.[Young Jun],
Kim, W.[Wonkook],
Im, J.[Jungho],
Choi, J.[Jongkuk],
Lee, S.[Sunju],
Atmospheric-correction-free red tide quantification algorithm for
GOCI based on machine learning combined with a radiative transfer
simulation,
PandRS(199), 2023, pp. 197-213.
Elsevier DOI
2305
Red tide, Margalefidinium, GOCI, Radiative transfer,
Machine learning, Atmospheric correction
BibRef
Zhen, Y.Q.[Yin-Qing],
Yan, Q.Y.[Qing-Yun],
Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological
Data,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Tian, W.[Wei],
Wang, J.[Juan],
Zhang, F.[Fengli],
Liu, X.D.[Xu-Dong],
Yang, J.[Jian],
Yuan, J.[Junna],
Mi, X.F.[Xiao-Fei],
Shao, Y.[Yun],
The Detection of Green Tide Biomass by Remote Sensing Images and In
Situ Measurement in the Yellow Sea of China,
RS(15), No. 14, 2023, pp. 3625.
DOI Link
2307
BibRef
Liu, D.D.[Dan-Dan],
Ding, H.[Hu],
Han, X.X.[Xing-Xing],
Lang, Y.C.[Yun-Chao],
Chen, W.[Wei],
Mapping Algal Blooms in Aquatic Ecosystems Using Long-Term Landsat
Data: A Case Study of Yuqiao Reservoir from 1984-2022,
RS(15), No. 17, 2023, pp. 4317.
DOI Link
2310
BibRef
Quan, W.T.[Wen-Ting],
Chen, J.[Jun],
Algal Biological Features Viewed in Satellite Observations:
A Case Study of the Bohai Sea,
RS(15), No. 20, 2023, pp. 4999.
DOI Link
2310
BibRef
Bondur, V.[Valery],
Chvertkova, O.[Olga],
Zamshin, V.[Viktor],
Studying Conditions of Intense Harmful Algal Blooms Based on
Long-Term Satellite Data,
RS(15), No. 22, 2023, pp. 5308.
DOI Link
2311
BibRef
Mishra, S.[Sachidananda],
Stumpf, R.P.[Richard P.],
Meredith, A.[Andrew],
Constructing a Consistent and Continuous Cyanobacteria Bloom
Monitoring Product from Multi-Mission Ocean Color Instruments,
RS(15), No. 22, 2023, pp. 5291.
DOI Link
2311
BibRef
Xue, M.Y.[Ming-Yue],
Wu, M.Q.[Meng-Quan],
Zheng, L.X.[Long-Xiao],
Liu, J.Y.[Jia-Yan],
Liu, L.X.[Long-Xing],
Zhu, S.[Shan],
Liu, S.[Shubin],
Liu, L.J.[Li-Juan],
Multi-Factors Synthetically Contribute to Ulva prolifera Outbreaks in
the South Yellow Sea of China,
RS(15), No. 21, 2023, pp. 5151.
DOI Link
2311
BibRef
Li, C.[Chuan],
Zhu, X.Y.[Xiang-Yu],
Li, X.[Xuwen],
Jiang, S.[Sheng],
Shi, H.[Hao],
Zhang, Y.[Yue],
Chen, B.[Bing],
Ge, Z.W.[Zhi-Wei],
Mao, L.F.[Ling-Feng],
All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on
Sentinel-1, Sentinel-3, and NPP Satellite Data,
RS(15), No. 24, 2023, pp. 5772.
DOI Link
2401
BibRef
Vilas, L.G.[Luis González],
Spyrakos, E.[Evangelos],
Pazos, Y.[Yolanda],
Palenzuela, J.M.T.[Jesus M. Torres],
A New Algorithm Using Support Vector Machines to Detect and Monitor
Bloom-Forming Pseudo-nitzschia from OLCI Data,
RS(16), No. 2, 2024, pp. 298.
DOI Link
2402
BibRef
Xu, W.T.[Wen-Ting],
Shen, Q.[Qian],
Zhang, B.[Bo],
Yao, Y.[Yue],
Zhou, Y.T.[Yu-Ting],
Shi, J.R.[Jia-Rui],
Zhang, Z.J.[Zhi-Jun],
Li, L.W.[Li-Wei],
Li, J.S.[Jun-Sheng],
Remote Sensing Identification and Spatiotemporal Change Analysis of
Cladophora with Different Morphologies,
RS(16), No. 3, 2024, pp. 602.
DOI Link
2402
Algae
BibRef
Cui, B.[Binge],
Liu, M.T.[Meng-Ting],
Chen, R.P.[Rui-Peng],
Zhang, H.Q.[Hao-Qing],
Zhang, X.J.[Xiao-Jun],
Anisotropic Green Tide Patch Information Extraction Based on
Deformable Convolution,
RS(16), No. 7, 2024, pp. 1162.
DOI Link
2404
BibRef
Liao, Z.H.[Zi-Hang],
Lv, S.[Shun],
Zhang, C.[Chenwu],
Zha, Y.[Yong],
Wang, S.[Suyang],
Shao, M.[Min],
Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over
the Past Two Decades and Development of a VOCs Emission Inventory for
Algal Bloom,
RS(16), No. 10, 2024, pp. 1680.
DOI Link
2405
BibRef
Zhang, C.X.[Cheng-Xin],
Tao, B.[Bangyi],
Li, Y.Z.[Yun-Zhou],
Ai, L.[Libo],
Zhu, Y.X.[Yi-Xian],
Liang, L.[Liansong],
Huang, H.Q.[Hai-Qing],
Li, C.P.[Chang-Peng],
Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of
Algal Blooms in Optically Complex Coasts of East China Sea,
RS(16), No. 13, 2024, pp. 2304.
DOI Link
2407
BibRef
Joshi, N.[Neha],
Park, J.[Jongmin],
Zhao, K.[Kaiguang],
Londo, A.[Alexis],
Khanal, S.[Sami],
Monitoring Harmful Algal Blooms and Water Quality Using Sentinel-3
OLCI Satellite Imagery with Machine Learning,
RS(16), No. 13, 2024, pp. 2444.
DOI Link
2407
BibRef
Haro, S.[Sara],
Morrison, L.[Liam],
Caballero, I.[Isabel],
Figueroa, F.L.[Félix L.],
Korbee, N.[Nathalie],
Navarro, G.[Gabriel],
Bermejo, R.[Ricardo],
Assessing Golden Tides from Space: Meteorological Drivers in the
Accumulation of the Invasive Algae Rugulopteryx okamurae on Coasts,
RS(16), No. 15, 2024, pp. 2689.
DOI Link
2408
BibRef
Ji, M.[Menghao],
Dou, X.[Xin],
Zhao, C.Y.[Cheng-Yi],
Zhu, J.T.[Jian-Ting],
Exploring the Green Tide Transport Mechanisms and Evaluating Leeway
Coefficient Estimation via Moderate-Resolution Geostationary Images,
RS(16), No. 16, 2024, pp. 2934.
DOI Link
2408
BibRef
Bak, S.H.,
Hwang, D.H.,
Enkhjargal, U.,
Yoon, H.J.,
Prediction and Mapping of Cochlodinium Polykrikoides Red Tide Using
Machine Learning Under Imbalanced Data,
GGT19(143-145).
DOI Link
1912
BibRef
Hwang, D.H.,
Bak, S.H.,
Enkhjargal, U.,
Jeong, M.J.,
Yoon, H.J.,
Seo, W.C.,
Analysis of The Red Tide Occurrence Pattern When High Water Temperature,
GGT19(267-269).
DOI Link
1912
BibRef
Khalili, M.H.,
Hasanlou, M.,
Harmful Algal Blooms Monitoring Using Sentinel-2 Satellite Images,
SMPR19(609-613).
DOI Link
1912
BibRef
Medina, E.,
Petraglia, M.R.,
Gomes, J.G.R.C.,
Petraglia, A.,
Comparison of CNN and MLP classifiers for algae detection in
underwater pipelines,
IPTA17(1-6)
IEEE DOI
1804
biology computing
learning (artificial intelligence), microorganisms,
Image processing
BibRef
Kumar, A.C.,
Bhandarkar, S.M.,
A Deep Learning Paradigm for Detection of Harmful Algal Blooms,
WACV17(743-751)
IEEE DOI
1609
Feature extraction, Hyperspectral sensors, Lakes, Monitoring,
Satellites, Twitter, HAB detection, citizen science, deep learning,
image segmentation, texture, classification
BibRef
Lu, C.G.[Chun-Guang],
Tian, Q.J.[Qing-Jiu],
Extracting Temporal And Spatial Distributions Information About Algal
Blooms Based On Multitemporal Modis,
ISPRS12(XXXIX-B7:131-136).
DOI Link
1209
BibRef
Gokaraju, B.[Balakrishna],
Durbha, S.S.[Surya S.],
King, R.L.[Roger L.],
Younan, N.H.[Nicolas H.],
Investigation of evolutionary feature subset selection in
multi-temporal datasets for harmful algal bloom detection,
MultiTemp11(149-152).
IEEE DOI
1109
BibRef
Qing-Yu, W.[Wei],
Nan, J.[Jiang],
Heng, L.[Lu],
Bin, H.[Hu],
A System for Dynamically Monitoring and Warning Algae Blooms in Taihu
Lake Based on Remote Sensing,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhang, M.R.[Ming-Rui],
Hall, L.O.,
Goldgof, D.B.,
Knowledge-Based Classification of CZCS Images and Monitoring of
Red Tides off the West Florida Shelf,
ICPR96(II: 452-456).
IEEE DOI
9608
(Univ. of South Florida, USA)
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Cyanobacteria, Analysis, Detection .