Javidi, B.,
Wang, J.,
Optimum Filter for Detecting a Target in
Multiplicative Noise and Additive Noise,
JOSA-A(14), No. 4, April 1997, pp. 836-844.
9704
BibRef
Farbiz, F.[Farzam],
Menhaj, M.B.[Mohammad Bagher],
Motamedi, S.A.[Seyed Ahmad],
Hagan, M.T.,
A New Fuzzy Logic Filter for Image Enhancement,
SMC-B(30), No. 1, February 2000, pp. 110-120.
IEEE Top Reference.
0004
BibRef
Farbiz, F.[Farzam],
Menhaj, M.B.[Mohammad Bagher],
Motamedi, S.A.[Seyed Ahmad],
A Modified Iterative Fuzzy Control Based Filter for Image Enhancement
with Multiplicative Noise Removal Property,
ICIP99(I:539-544).
IEEE DOI
BibRef
9900
Earlier:
Fixed point filter design for image enhancement using fuzzy logic,
ICIP98(II: 838-842).
IEEE DOI
9810
BibRef
Rangayyan, R.M.,
Das, A.,
Filtering Multiplicative Noise in Images Using Adaptive
Region Based Statistics,
JEI(7), No. 1, January 1998, pp. 222-230.
9807
BibRef
Aiazzi, B.[Bruno],
Alparone, L.[Luciano],
Baronti, S.[Stefano],
Borri, G.,
Pyramid-Based Multiresolution Adaptive Filters for
Additive and Multiplicative Image Noise,
CirSysSignal(45), No. 8, August 1998, pp. 1092-1097.
9809
BibRef
Aiazzi, B.[Bruno],
Alparone, L.[Luciano],
Baronti, S.[Stefano],
Multiresolution Local-Statistics Speckle Filtering Based on a Ratio
Laplacian Pyramid,
GeoRS(36), No. 5, September 1998, pp. 1466.
IEEE Top Reference.
BibRef
9809
Earlier:
Multiresolution Adaptive Filtering of Signal-Dependent Noise Based
on a Generalized Laplacian Pyramid,
ICIP97(I: 381-384).
IEEE DOI
BibRef
Alparone, L.[Luciano],
Baronti, S.[Stefano],
Aiazzi, B.[Bruno],
Garzelli, A.,
Spatial Methods for Multispectral Pansharpening: Multiresolution
Analysis Demystified,
GeoRS(54), No. 5, May 2016, pp. 2563-2576.
IEEE DOI
1604
Laplace equations
BibRef
Hawwar, Y.,
Reza, A.,
Spatially adaptive multiplicative noise image denoising technique,
IP(11), No. 12, December 2002, pp. 1397-1404.
IEEE DOI
0301
BibRef
Huang, L.L.[Li-Li],
Xiao, L.[Liang],
Wei, Z.H.[Zhi-Hui],
Multiplicative Noise Removal via a Novel Variational Model,
JIVP(2010), No. 2010, pp. xx-yy.
DOI Link
1003
BibRef
Zhang, J.[Jun],
Wei, Z.H.[Zhi-Hui],
Xiao, L.[Liang],
Adaptive Fractional-order Multi-scale Method for Image Denoising,
JMIV(43), No. 1, May 2012, pp. 39-49.
WWW Link.
1204
BibRef
Aja-Fernandez, S.[Santiago],
Vegas-Sanchez-Ferrero, G.[Gonzalo],
Martin-Fernandez, M.[Marcos],
Alberola-Lopez, C.[Carlos],
Automatic noise estimation in images using local statistics. Additive
and multiplicative cases,
IVC(27), No. 6, 4 May 2009, pp. 756-770.
Elsevier DOI
0904
Noise estimation; Mode; Restoration; Gaussian noise; Local statistics
BibRef
Steidl, G.,
Teuber, T.,
Removing Multiplicative Noise by Douglas-Rachford Splitting Methods,
JMIV(36), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
BibRef
Setzer, S.[Simon],
Steidl, G.,
Teuber, T.,
Deblurring Poissonian images by split Bregman techniques,
JVCIR(21), No. 3, April 2010, pp. 193-199.
Elsevier DOI
1003
Deblurring; Poisson noise; I-divergence; Kullback-Leibler divergence;
TV; Alternating split Bregman algorithm; Douglas-Rachford splitting
BibRef
Bioucas-Dias, J.M.,
Figueiredo, M.A.T.,
Multiplicative Noise Removal Using Variable Splitting and Constrained
Optimization,
IP(19), No. 7, July 2010, pp. 1720-1730.
IEEE DOI
1007
BibRef
Afonso, M.V.,
Bioucas-Dias, J.M.,
Figueiredo, M.A.T.,
Fast Image Recovery Using Variable Splitting and Constrained
Optimization,
IP(19), No. 9, September 2010, pp. 2345-2356.
IEEE DOI
1008
BibRef
Teodoro, A.M.,
Bioucas-Dias, J.M.,
Figueiredo, M.A.T.,
A Convergent Image Fusion Algorithm Using Scene-Adapted
Gaussian-Mixture-Based Denoising,
IP(28), No. 1, January 2019, pp. 451-463.
IEEE DOI
1810
BibRef
Earlier:
Image restoration and reconstruction using variable splitting and
class-adapted image priors,
ICIP16(3518-3522)
IEEE DOI
1610
Convex functions, Noise reduction, Convergence, Noise measurement,
Image fusion, Linear programming, Inverse problems, Plug-and-play.
Gaussian mixture model
BibRef
Afonso, M.V.,
Bioucas-Dias, J.M.[Jose M.],
Figueiredo, M.A.T.[Mario A. T.],
An Augmented Lagrangian Approach to the Constrained Optimization
Formulation of Imaging Inverse Problems,
IP(20), No. 3, March 2011, pp. 681-695.
IEEE DOI
1103
BibRef
Figueiredo, M.A.T.[Mario A. T.],
Bioucas-Dias, J.M.[Jose M.],
Restoration of Poissonian Images Using Alternating Direction
Optimization,
IP(19), No. 12, December 2010, pp. 3133-3145.
IEEE DOI
1011
BibRef
And:
Frame-based deconvolution of Poissonian images using alternating
direction optimization,
ICIP10(3549-3552).
IEEE DOI
1009
BibRef
Rodrigues, I.[Isabel],
Sanches, J.M.[Joao M.],
Fluorescence microscopy imaging denoising with log-Euclidean priors and
photobleaching compensation,
ICIP09(809-812).
IEEE DOI
0911
BibRef
Rodrigues, I.[Isabel],
Sanches, J.M.[Joao M.],
Bioucas-Dias, J.M.[Jose M.],
Denoising of medical images corrupted by Poisson noise,
ICIP08(1756-1759).
IEEE DOI
0810
See also Medical Image Noise Reduction Using the Sylvester-Lyapunov Equation.
BibRef
Li, F.[Fang],
Ng, M.K.[Michael K.],
Shen, C.M.[Chao-Min],
Multiplicative Noise Removal With Spatially Varying
Regularization Parameters,
SIIMS(3), No. 1, 2010, pp. 1-20.
DOI Link
1002
multiplicative noise; total variation; textures; spatially varying
regularization parameters
BibRef
Fang, F.M.[Fa-Ming],
Li, F.[Fang],
Yang, X.M.[Xiao-Mei],
Shen, C.M.[Chao-Min],
Zhang, G.X.[Gui-Xu],
Single image dehazing and denoising with variational method,
IASP10(219-222).
IEEE DOI
1004
BibRef
Shi, J.N.[Jia-Ning],
Osher, S.J.[Stanley J.],
A Nonlinear Inverse Scale Space Method For A Convex Multiplicative
Noise Model,
SIIMS(1), No. 3, 2008, pp. 294-321.
inverse scale space; total variation; multiplicative noise; denoising;
Bregman distance
DOI Link
BibRef
0800
Durand, S.[Sylvain],
Fadili, J.[Jalal],
Nikolova, M.[Mila],
Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients,
JMIV(36), No. 3, March 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Earlier:
Multiplicative Noise Cleaning via a Variational Method Involving
Curvelet Coefficients,
SSVM09(282-294).
Springer DOI
0906
BibRef
Chen, D.Q.,
Cheng, L.Z.,
Spatially Adapted Total Variation Model to Remove Multiplicative Noise,
IP(21), No. 4, April 2012, pp. 1650-1662.
IEEE DOI
1204
BibRef
Shi, B.[Baoli],
Huang, L.H.[Li-Hong],
Pang, Z.F.[Zhi-Feng],
Fast algorithm for multiplicative noise removal,
JVCIR(23), No. 1, January 2012, pp. 126-133.
Elsevier DOI
1112
Multiplicative noise; Anisotropic total variation; Maximum a
posteriori; Convex function; Alternating minimization algorithm;
Proximal operator; Gamma distribution; Newton method
BibRef
Yun, S.,
Woo, H.,
A New Multiplicative Denoising Variational Model Based on m th Root
Transformation,
IP(21), No. 5, May 2012, pp. 2523-2533.
IEEE DOI
1204
BibRef
Chan, R.H.,
Ma, J.,
A Multiplicative Iterative Algorithm for Box-Constrained Penalized
Likelihood Image Restoration,
IP(21), No. 7, July 2012, pp. 3168-3181.
IEEE DOI
1206
BibRef
Huang, Y.M.,
Moisan, L.,
Ng, M.K.,
Zeng, T.,
Multiplicative Noise Removal via a Learned Dictionary,
IP(21), No. 11, November 2012, pp. 4534-4543.
IEEE DOI
1210
BibRef
Xiao, Y.[Yu],
Zeng, T.Y.[Tie-Yong],
Poisson noise removal via learned dictionary,
ICIP10(1177-1180).
IEEE DOI
1009
BibRef
Liu, J.[Jun],
Huang, T.Z.[Ting-Zhu],
Xu, Z.B.[Zong-Ben],
Lv, X.G.[Xiao-Guang],
High-order total variation-based multiplicative noise removal with
spatially adapted parameter selection,
JOSA-A(30), No. 10, October 2013, pp. 1956-1966.
DOI Link
1310
BibRef
Kang, M.J.[Myung-Joo],
Yun, S.W.[Sang-Woon],
Woo, H.[Hyenkyun],
Two-Level Convex Relaxed Variational Model for Multiplicative Denoising,
SIIMS(6), No. 2, 2013, pp. 875-903.
DOI Link
1307
BibRef
Dong, Y.Q.,
Zeng, T.Y.,
A Convex Variational Model for Restoring Blurred Images with
Multiplicative Noise,
SIIMS(6), No. 3, 2013, pp. 1598-1625.
DOI Link
1310
BibRef
Sciacchitano, F.[Federica],
Dong, Y.Q.[Yi-Qiu],
Zeng, T.Y.[Tie-Yong],
Variational Approach for Restoring Blurred Images with Cauchy Noise,
SIIMS(8), No. 3, 2015, pp. 1894-1922.
DOI Link
1511
BibRef
Chen, L.Y.[Li-Yuan],
Zeng, T.Y.[Tie-Yong],
A Convex Variational Model for Restoring Blurred Images with Large
Rician Noise,
JMIV(53), No. 1, September 2015, pp. 92-111.
WWW Link.
1505
BibRef
Hao, Y.[Yan],
Xu, J.L.[Jian-Lou],
An effective dual method for multiplicative noise removal,
JVCIR(25), No. 2, 2014, pp. 306-312.
Elsevier DOI
1402
Image denoising
BibRef
Wang, F.,
Zhao, X.L.,
Ng, M.K.,
Multiplicative Noise and Blur Removal by Framelet Decomposition and
l_1 -Based L-Curve Method,
IP(25), No. 9, September 2016, pp. 4222-4232.
IEEE DOI
1609
convex programming
BibRef
Zhao, X.L.,
Wang, F.,
Ng, M.K.,
A New Convex Optimization Model for Multiplicative Noise and Blur
Removal,
SIIMS(7), No. 1, 2014, pp. 456-475.
DOI Link
1404
BibRef
Chan, R.,
Yang, H.,
Zeng, T.,
A Two-Stage Image Segmentation Method for Blurry Images with Poisson
or Multiplicative Gamma Noise,
SIIMS(7), No. 1, 2014, pp. 98-127.
DOI Link
1404
BibRef
Chen, Y.J.[Yun-Jin],
Feng, W.[Wensen],
Ranftl, R.,
Qiao, H.[Hong],
Pock, T.[Thomas],
A Higher-Order MRF Based Variational Model for Multiplicative Noise
Reduction,
SPLetters(21), No. 11, November 2014, pp. 1370-1374.
IEEE DOI
1408
Markov processes
BibRef
Feng, W.[Wensen],
Qiao, H.[Hong],
Chen, Y.J.[Yun-Jin],
Poisson Noise Reduction with Higher-Order Natural Image Prior Model,
SIIMS(9), No. 3, 2016, pp. 1502-1524.
DOI Link
1610
BibRef
Feng, W.[Wensen],
Chen, Y.J.[Yun-Jin],
Speckle Reduction with Trained Nonlinear Diffusion Filtering,
JMIV(58), No. 1, May 2017, pp. 162-178.
WWW Link.
1704
BibRef
Kang, M.M.[Myeong-Min],
Kang, M.J.[Myung-Joo],
Jung, M.Y.[Mi-Youn],
Nonconvex higher-order regularization based Rician noise removal with
spatially adaptive parameters,
JVCIR(32), No. 1, 2015, pp. 180-193.
Elsevier DOI
1511
Rician noise removal
BibRef
Sharif, M.[Muhammad],
Hussain, A.[Ayyaz],
Jaffar, M.A.[Muhammad Arfan],
Choi, T.S.[Tae-Sun],
Fuzzy-based hybrid filter for Rician noise removal,
SIViP(10), No. 1, February 2016, pp. 215-224.
Springer DOI
1601
BibRef
Chen, L.X.[Li-Xia],
Liu, X.J.[Xu-Jiao],
Wang, X.W.[Xue-Wen],
Zhu, P.F.[Ping-Fang],
Multiplicative Noise Removal via Nonlocal Similarity-Based Sparse
Representation,
JMIV(54), No. 2, February 2016, pp. 199-215.
Springer DOI
1602
BibRef
Liu, M.[Min],
Fan, Q.B.[Qi-Bin],
A modified convex variational model for multiplicative noise removal,
JVCIR(36), No. 1, 2016, pp. 187-198.
Elsevier DOI
1603
Multiplicative noise
BibRef
Ullah, A.[Asmat],
Chen, W.[Wen],
Sun, H.G.[Hong-Guang],
Khan, M.A.[Mushtaq Ahmad],
A modified multi-grid algorithm for a novel variational model to
remove multiplicative noise,
JVCIR(40, Part B), No. 1, 2016, pp. 485-501.
Elsevier DOI
1610
Maximum a posteriori (MAP)
BibRef
Escande, P.[Paul],
Weiss, P.[Pierre],
Zhang, W.X.[Wen-Xing],
A Variational Model for Multiplicative Structured Noise Removal,
JMIV(57), No. 1, January 2017, pp. 43-55.
Springer DOI
1701
BibRef
de los Reyes, J.C.,
Schönlieb, C.B.,
Valkonen, T.,
Bilevel Parameter Learning for Higher-Order Total Variation
Regularisation Models,
JMIV(57), No. 1, January 2017, pp. 1-25.
Springer DOI
1701
BibRef
Karami, A.[Azam],
Tafakori, L.[Laleh],
Image denoising using generalised Cauchy filter,
IET-IPR(11), No. 9, September 2017, pp. 767-776.
DOI Link
1709
BibRef
Xu, X.L.[Xin-Li],
Yu, T.[Teng],
Xu, X.M.[Xin-Mei],
Hou, G.J.[Guo-Jia],
Liu, R.W.[Ryan Wen],
Pan, H.Z.[Hui-Zhu],
Variational total curvature model for multiplicative noise removal,
IET-CV(12), No. 4, June 2018, pp. 542-552.
DOI Link
1805
BibRef
Chen, L.X.[Li-Xia],
Zhu, P.F.[Ping-Fang],
Wang, X.W.[Xue-Wen],
Low-rank constraint with sparse representation for image restoration
under multiplicative noise,
SIViP(13), No. 1, February 2019, pp. 179-187.
WWW Link.
1901
BibRef
Yao, W.,
Guo, Z.,
Sun, J.,
Wu, B.,
Gao, H.,
Multiplicative Noise Removal for Texture Images Based on Adaptive
Anisotropic Fractional Diffusion Equations,
SIIMS(12), No. 2, 2019, pp. 839-873.
DOI Link
1907
BibRef
Ren, F.[Fuquan],
Zhou, R.R.[Roberta Rui],
Optimization model for multiplicative noise and blur removal based on
Gaussian curvature regularization,
JOSA-A(35), No. 5, May 2018, pp. 798-812.
DOI Link
1912
Image reconstruction-restoration, Inverse problems,
Noise in imaging systems, Fourier transforms, Synthetic aperture radar
BibRef
Liu, P.F.[Peng-Fei],
Hybrid higher-order total variation model for multiplicative noise
removal,
IET-IPR(14), No. 5, 17 April 2020, pp. 862-873.
DOI Link
2004
BibRef
Liu, X.X.[Xiao-Xia],
Lu, J.[Jian],
Shen, L.X.[Li-Xin],
Xu, C.[Chen],
Xu, Y.[Yuesheng],
Multiplicative Noise Removal: Nonlocal Low-Rank Model and Its
Proximal Alternating Reweighted Minimization Algorithm,
SIIMS(13), No. 3, 2020, pp. 1595-1629.
DOI Link
2010
BibRef
Yang, H.[Huan],
Li, H.W.[Hong-Wei],
Duan, Y.P.[Yu-Ping],
Adaptive trainable non-linear reaction diffusion for Rician noise
removal,
IET-IPR(14), No. 14, December 2020, pp. 3547-3561.
DOI Link
2012
BibRef
Liu, Z.F.[Zhi-Fang],
Chang, H.[Huibin],
Duan, Y.P.[Yu-Ping],
Variational Rician Noise Removal via Splitting on Spheres,
SIIMS(15), No. 2, 2022, pp. 521-549.
DOI Link
2205
BibRef
Wu, T.T.[Ting-Ting],
Gu, X.Y.[Xiao-Yu],
Li, Z.[Zeyu],
Li, Z.[Zhi],
Niu, J.W.[Jian-Wei],
Zeng, T.Y.[Tie-Yong],
Efficient Boosted DC Algorithm for Nonconvex Image Restoration with
Rician Noise,
SIIMS(15), No. 2, 2022, pp. 424-454.
DOI Link
2205
BibRef
Seelamantula, C.S.[Chandra Sekhar],
Blu, T.[Thierry],
Image denoising in multiplicative noise,
ICIP15(1528-1532)
IEEE DOI
1512
Gamma distribution
BibRef
Kitchener, M.A.[Matthew Andrew],
Bouzerdoum, A.[Abdesselam],
Phung, S.L.[Son Lam],
Adaptive regularization for multiple image restoration using an
extended Total Variations approach,
ICIP11(697-700).
IEEE DOI
1201
BibRef
Aubert, G.[Gilles],
Aujol, J.F.[Jean-François],
A Nonconvex Model to Remove Multiplicative Noise,
SSVM07(68-79).
Springer DOI
0705
BibRef
Ponomarenko, N.N.[Nikolay N.],
Lukin, V.V.[Vladimir V.],
Astola, J.T.[Jaakko T.],
Egiazarian, K.O.[Karen O.],
Non-local Sigma Filter,
CIAP15(II:483-493).
Springer DOI
1511
See also Automatic Design of Locally Adaptive Filters for Pre-processing of Images Subject to Further Interpretation.
BibRef
Ponomarenko, N.N.[Nikolay N.],
Lukin, V.V.[Vladimir V.],
Egiazarian, K.O.[Karen O.],
Astola, J.T.[Jaakko T.],
Vozel, B.[Benoit],
Chehdi, K.[Kacem],
Hybrid Sigma Filter for Processing Images Corrupted by Multiplicative
Noise,
ACIVS06(46-54).
Springer DOI
0609
BibRef
Alamgeer, S.[Sana],
Farias, M.C.Q.[Mylène C. Q.],
Light Field Image Quality Assessment with Dense Atrous Convolutions,
ICIP22(2441-2445)
IEEE DOI
2211
Image quality, Deep learning, Image coding, Convolution,
Neural networks, Streaming media, Feature extraction,
Light Field Images
BibRef
You, J.Y.[Jun-Yong],
Yan, J.[Jie],
Explore Spatial and Channel Attention in Image Quality Assessment,
ICIP22(26-30)
IEEE DOI
2211
Image quality, Visualization, Sensitivity, Codes, Spatial databases,
Quality assessment, Contrast sensitivity, visual mechanism
BibRef
Tliba, M.[Marouane],
Sekhri, A.[Aymen],
Kerkouri, M.A.[Mohamed Amine],
Chetouani, A.[Aladine],
Deep-Based Quality Assessment of Medical Images Through Domain
Adaptation,
ICIP22(3692-3696)
IEEE DOI
2211
Measurement, Image quality, Adaptation models, Ultrasonic imaging,
Predictive models, Data models, Quality assessment, Medical images,
self-attention
BibRef
Sendjasni, A.[Abderrezzaq],
Traparic, D.[David],
Larabi, M.C.[Mohamed-Chaker],
Investigating Normalization Methods for CNN-Based Image Quality
Assessment,
ICIP22(4113-4117)
IEEE DOI
2211
Training, Degradation, Image quality, Databases,
Image color analysis, Robustness, Distance measurement,
model performance
BibRef
Jiang, W.[Wei],
Li, L.[Litian],
Ma, Y.[Yi],
Zhai, Y.Q.[Yong-Qi],
Yang, Z.[Zheng],
Wang, R.G.[Rong-Gang],
Image Quality Assessment with Transformers and Multi-Metric Fusion
Modules,
CLIC22(1804-1808)
IEEE DOI
2210
Measurement, Image quality, Nonlinear distortion, Superresolution,
Transformers, Feature extraction, Quality assessment
BibRef
Yu, L.W.[Liang-Wei],
Wang, Z.[Zhao],
Ye, Y.[Yan],
Zhu, L.Y.[Ling-Yu],
Wang, S.Q.[Shi-Qi],
A Soft-ranked Index Fusion Framework with Saliency Weighting for
Image Quality Assessment,
CLIC22(1809-1813)
IEEE DOI
2210
Image quality, Visualization, Image coding, Memory,
Robustness, Quality assessment
BibRef
He, G.[Gang],
Wang, Y.[Yong],
Xu, L.[Li],
Zhang, W.L.[Wen-Li],
Sun, M.[Ming],
Wen, X.[Xing],
Focused Feature Differentiation Network for Image Quality Assessment,
CLIC22(1799-1803)
IEEE DOI
2210
Image quality, Deep learning, Fuses, Convolution, Machine vision,
Conferences, Neural networks
BibRef
Estrada, D.N.D.[David Norman Díaz],
Pedersen, M.[Marius],
Impact of Pooling Methods on Image Quality Metrics,
IPTA22(1-6)
IEEE DOI
2206
Measurement, Image quality, Databases, Image processing,
image quality, metrics, pooling
BibRef
Anikeeva, I.,
Chibunichev, A.,
Requirements for Aerial Images Quality, Obtained for Mapping Purposes,
ISPRS21(B2-2021: 777-784).
DOI Link
2201
BibRef
Yalcin, I.,
Kocaman, S.,
Saunier, S.,
Albinet, C.,
Radiometric Quality Assessment for Maxar HD Imagery,
ISPRS21(B3-2021: 797-804).
DOI Link
2201
BibRef
Bang, D.[Duhyeon],
Shim, H.J.[Hyun-Jung],
MGGAN: Solving Mode Collapse Using Manifold-Guided Training,
MELEX21(2347-2356)
IEEE DOI
2112
Training, Manifolds, Image quality, Visualization, Transforms, Tools,
Network architecture
BibRef
Hammou, D.[Dounia],
Fezza, S.A.[Sid Ahmed],
Hamidouche, W.[Wassim],
EGB: Image Quality Assessment based on Ensemble of Gradient Boosting,
NTIRE21(541-549)
IEEE DOI
2109
Image quality, Measurement, Computational modeling, Tools, Boosting,
Prediction algorithms, Feature extraction
BibRef
Guo, Q.Y.[Qian-Yu],
Wen, J.[Jing],
Multi-level Fusion Based Deep Convolutional Network for Image Quality
Assessment,
MOI2QDN20(670-678).
Springer DOI
2103
BibRef
Xu, S.[Sascha],
Bauer, J.[Jan],
Axmann, B.[Benjamin],
Maass, W.[Wolfgang],
Cd2: Combined Distances of Contrast Distributions for Image Quality
Analysis,
ISVC20(II:444-457).
Springer DOI
2103
BibRef
Hao, S.,
Li, S.,
A Weighted Mean Absolute Error Metric for Image Quality Assessment,
VCIP20(330-333)
IEEE DOI
2102
Distortion, Image quality, Databases, Mathematical model,
Image edge detection, Quality assessment, PSNR, Error map, MAE, FR-IQA,
distortion significance coefficient
BibRef
Gu, S.Y.[Shu-Yang],
Bao, J.M.[Jian-Min],
Chen, D.[Dong],
Wen, F.[Fang],
GIQA: Generated Image Quality Assessment,
ECCV20(XI:369-385).
Springer DOI
2011
BibRef
Endo, K.,
Tanaka, M.,
Okutomi, M.,
Classifying Degraded Images Over Various Levels Of Degradation,
ICIP20(1691-1695)
IEEE DOI
2011
Image restoration, Transform coding, Degradation, Q-factor,
Estimation, Image coding, Gaussian noise, Degraded Image,
Restoration
BibRef
Chiu, T.,
Zhao, Y.,
Gurari, D.,
Assessing Image Quality Issues for Real-World Problems,
CVPR20(3643-3653)
IEEE DOI
2008
Task analysis, Image quality, Visualization, Image recognition,
Prediction algorithms, Cameras
BibRef
Fuoli, D.,
Huang, Z.,
Danelljan, M.,
Timofte, R.,
Wang, H.,
Jin, L.,
Su, D.,
Liu, J.,
Lee, J.,
Kudelski, M.,
Bala, L.,
Hrybov, D.,
Mozejko, M.,
Li, M.,
Li, S.,
Pang, B.,
Lu, C.,
Li, C.,
He, D.,
Li, F.,
Wen, S.,
NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results,
NTIRE20(1962-1974)
IEEE DOI
2008
Video recording, Quality assessment,
Generative adversarial networks, Target tracking, Training,
Image coding
BibRef
Ma, X.,
Mezghani, L.,
Wilber, K.,
Hong, H.,
Piramuthu, R.,
Naaman, M.,
Belongie, S.,
Understanding Image Quality and Trust in Peer-to-Peer Marketplaces,
WACV19(511-520)
IEEE DOI
1904
electronic commerce, Internet, peer-to-peer computing,
retail data processing, set theory, social networking (online),
Computational modeling
BibRef
Pramerdorfer, C.[Christopher],
Kampel, M.[Martin],
Deep Objective Image Quality Assessment,
CAIP17(II: 127-138).
Springer DOI
1708
BibRef
Ortiz-Jaramillo, B.,
Platisa, L.,
Philips, W.,
iFAS: Image Fidelity Assessment,
CCIW17(83-94).
Springer DOI
1704
BibRef
Tchendjou, G.T.,
Alhakim, R.,
Simeu, E.,
Fuzzy logic modeling for objective image quality assessment,
DASIP16(98-105)
IEEE DOI
1704
correlation methods
BibRef
Wu, J.,
Shi, G.,
Zhang, M.,
Chen, G.,
Visual information measurement with quality assessment,
VCIP16(1-4)
IEEE DOI
1701
Databases
BibRef
Liang, Y.D.[Yu-Dong],
Wang, J.J.[Jin-Jun],
Wan, X.Y.[Xing-Yu],
Gong, Y.H.[Yi-Hong],
Zheng, N.N.[Nan-Ning],
Image Quality Assessment Using Similar Scene as Reference,
ECCV16(V: 3-18).
Springer DOI
1611
BibRef
Saad, M.,
Nicholas, D.,
McKnight, P.,
Quartuccio, J.,
Jaladi, R.,
Corriveau, P.,
Subtle consumer-photo quality evaluation,
ICIP16(3778-3782)
IEEE DOI
1610
Cameras
BibRef
Shi, W.,
Jiang, F.,
Zhao, D.,
Image Entropy of Primitive and visual quality assessment,
ICIP16(2087-2091)
IEEE DOI
1610
Decision support systems
BibRef
Temel, D.,
Al Regib, G.,
ReSIFT: Reliability-weighted sift-based image quality assessment,
ICIP16(2047-2051)
IEEE DOI
1610
Correlation
BibRef
Cheeseman, A.K.[Alison K.],
Kowalik-Urbaniak, I.A.[Ilona A.],
Vrscay, E.R.[Edward R.],
Objective Image Quality Measures of Degradation in Compressed Natural
Images and their Comparison with Subjective Assessments,
ICIAR16(163-172).
Springer DOI
1608
BibRef
Lu, Y.,
Tu, Q.,
Zhao, M.,
Gao, R.,
Men, A.,
Yang, B.,
Gradient magnitude similarity for tone-mapped image quality
assessment,
VCIP15(1-4)
IEEE DOI
1605
Brightness
BibRef
Buczkowski, M.,
Stasinski, R.[Ryszard],
Effective coverage as a new metric for image quality assessment
databases comparison,
WSSIP17(1-5)
IEEE DOI
1707
Distortion, Image quality, Measurement, Silicon, Spatial, databases
BibRef
Grzywalski, T.,
Stasinski, R.[Ryszard],
Test of six image quality assessment methods,
WSSIP15(33-36)
IEEE DOI
1603
Internet
BibRef
Pambrun, J.F.[Jean-Francois],
Noumeir, R.[Rita],
Limitations of the SSIM quality metric in the context of diagnostic
imaging,
ICIP15(2960-2963)
IEEE DOI
1512
SSIM
BibRef
Balanov, A.[Amnon],
Schwartz, A.[Arik],
Moshe, Y.[Yair],
Peleg, N.[Nimrod],
Image quality assessment based on DCT subband similarity,
ICIP15(2105-2109)
IEEE DOI
1512
Discrete Cosine Transform (DCT)
BibRef
Guo, P.F.[Peng-Fei],
Zhao, X.[Xin],
Zeng, D.[Delu],
Liu, H.T.[Han-Tao],
A Metric for Quantifying Image Quality Induced Saliency Variation,
ICIP21(1459-1463)
IEEE DOI
2201
Image quality, Statistical analysis, Image processing, Buildings,
Benchmark testing, Distortion, Image quality assessment, saliency,
visual attention
BibRef
Zhang, W.[Wei],
Talens-Noguera, J.V.[Juan V.],
Liu, H.T.[Han-Tao],
The quest for the integration of visual saliency models in objective
image quality assessment:
A distraction power compensated combination strategy,
ICIP15(1250-1254)
IEEE DOI
1512
Visual saliency
BibRef
Dabrowski, R.,
Orych, A.,
Jenerowicz, A.,
Walczykowski, P.,
Preliminary Results from the Portable Imagery Quality Assessment Test
Field (PIQuAT) of UAV Imagery for Imagery Reconnaissance Purposes,
UAV-g15(111-115).
DOI Link
1512
BibRef
Dabrowski, R.,
Jenerowicz, A.,
Portable Imagery Quality Assessment Test Field For UAV Sensors,
UAV-g15(117-122).
DOI Link
1512
BibRef
Martinez, J.[Jorge],
Pistonesi, S.[Silvina],
Maciel, M.C.[María Cristina],
Flesia, A.G.[Ana Georgina],
Image Fusion Quality Measure Based on a Multi-scale Approach,
ISVC16(I: 836-845).
Springer DOI
1701
BibRef
Pistonesi, S.[Silvina],
Martinez, J.[Jorge],
Ojeda, S.M.[Silvia María],
Vallejos, R.[Ronny],
A Novel Quality Image Fusion Assessment Based on Maximum Codispersion,
CIARP15(383-390).
Springer DOI
1511
BibRef
Oskarsson, M.[Magnus],
Regularizing Image Intensity Transformations Using the Wasserstein
Metric,
SCIA15(275-286).
Springer DOI
1506
discretization effects in intensity transformations of images.
BibRef
Zhang, W.[Wei],
Borji, A.,
Yang, F.Z.[Fu-Zheng],
Jiang, P.[Ping],
Liu, H.T.[Han-Tao],
Studying the added value of computational saliency in objective image
quality assessment,
VCIP14(21-24)
IEEE DOI
1504
computer vision
BibRef
Guettari, N.[Nadjib],
Capelle-Laize, A.S.[Anne Sophie],
Carre, P.[Philippe],
Fusion of imprecise data applied to image quality assessment,
ICIP14(521-525)
IEEE DOI
1502
Feature extraction
BibRef
Islam, S.M.R.,
Huang, X.[Xu],
Le, K.[Kim],
Novel Evaluation Index for Image Quality,
DICTA14(1-8)
IEEE DOI
1502
image denoising
BibRef
Omura, H.[Hajime],
Minamoto, T.[Teruya],
Image quality degradation assessment based on the dual-tree complex
discrete wavelet transform for evaluating digital image watermarking,
ICWAPR16(270-275)
IEEE DOI
1611
Degradation
BibRef
And:
Image Quality Assessment for Measuring the Degradation by
Using the Dual-Tree Complex Discrete Wavelet Transform,
ITNG15(323-328).
IEEE DOI Information Technology - New Generations (ITNG)
BibRef
Minamoto, T.[Teruya],
Ohmura, H.[Hajime],
Indices for image quality degradation evaluation based on wavelet
transforms,
ICWAPR14(146-152)
IEEE DOI
1402
Continuous wavelet transforms
BibRef
Skurowski, P.[Przemyslaw],
Janiak, M.[Mateusz],
Component Weight Tuning of SSIM Image Quality Assessment Measure,
ICCVG14(57-65).
Springer DOI
1410
BibRef
Savaux, V.[Vincent],
Cormier, G.[Geoffroy],
Carrault, G.[Guy],
Djoko-Kouam, M.[Moïse],
Laferté, J.M.[Jean-Marc],
Louët, Y.[Yves],
Skrzypczak, A.[Alexandre],
Picture Quality Prediction in Image Processing,
ICISP14(358-366).
Springer DOI
1406
BibRef
Liu, X.W.[Xin-Wei],
Pedersen, M.[Marius],
Hardeberg, J.Y.[Jon Yngve],
CID:IQ: A New Image Quality Database,
ICISP14(193-202).
Springer DOI
1406
Dataset, Image Quality.
BibRef
Richter, T.[Thomas],
A global image fidelity metric: Visual distance and its properties,
ICIP13(369-373)
IEEE DOI
1402
Equations
BibRef
Wang, S.G.[Shui-Gen],
Deng, C.W.[Chen-Wei],
Lin, W.S.[Wei-Si],
Zhao, B.J.[Bao-Jun],
Chen, J.[Jie],
A novel SVD-based image quality assessment metric,
ICIP13(423-426)
IEEE DOI
1402
Degradation
BibRef
Petrovic, V.[Vladimir],
Dimitrijevic, V.[Vladimir],
Focused pooling for objective quality estimation,
ICIP13(221-225)
IEEE DOI
1402
Data models
BibRef
Pesquer, L.[Lluís],
Domingo, C.[Cristina],
Pons, X.[Xavier],
A Geostatistical Approach for Selecting the Highest Quality MODIS Daily
Images,
IbPRIA13(608-615).
Springer DOI
1307
BibRef
Åström, F.[Freddie],
Felsberg, M.[Michael],
Baravdish, G.[George],
Lundström, C.[Claes],
Targeted Iterative Filtering,
SSVM13(1-11).
Springer DOI
1305
assessment of image denoising
BibRef
Linner, E.,
Strand, R.,
Comparison of restoration quality on square and hexagonal grids using
normalized convolution,
ICPR12(3046-3049).
WWW Link.
1302
BibRef
Zhang, L.[Lin],
Li, H.Y.[Hong-Yu],
SR-SIM: A fast and high performance IQA index based on spectral
residual,
ICIP12(1473-1476).
IEEE DOI
1302
BibRef
Liu, M.[Mohan],
Konya, I.[Iuliu],
Nandzik, J.[Jan],
Flores-Herr, N.[Nicolas],
Eickeler, S.[Stefan],
Ndjiki-Nya, P.[Patrick],
A new framework for automatic quality assessment of print media,
ICIP12(789-792).
IEEE DOI
1302
BibRef
Lu, W.J.[Wen-Jun],
Wu, M.[Min],
Reduced-reference quality assessment for retargeted images,
ICIP12(1497-1500).
IEEE DOI
1302
BibRef
Decombas, M.[Marc],
Dufaux, F.[Frederic],
Renan, E.[Erwann],
Pesquet-Popescu, B.[Beatrice],
Capman, F.[Francois],
A new object based quality metric based on SIFT and SSIM,
ICIP12(1493-1496).
IEEE DOI
1302
BibRef
Yeh, M.C.[Mei-Chen],
Cheng, Y.C.[Yu-Chen],
Relative features for photo quality assessment,
ICIP12(2861-2864).
IEEE DOI
1302
BibRef
Hsu, M.C.[Ming-Chung],
Wu, G.L.[Guan-Lin],
Chien, S.Y.[Shao-Yi],
Combination of SSIM and JND with content-transition classification for
image quality assessment,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Yin, W.Y.[Wen-Yuan],
Mei, T.[Tao],
Chen, C.W.[Chang Wen],
Assessing photo quality with geo-context and crowdsourced photos,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Jang, W.D.[Won-Dong],
Kim, C.S.[Chang-Su],
SEQM: Edge quality assessment based on structural pixel matching,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Abdelouahad, A.A.[Abdelkaher Ait],
El Hassouni, M.[Mohammed],
Cherifi, H.[Hocine],
Aboutajdine, D.[Driss],
Image Quality Assessment Measure Based on Natural Image Statistics in
the Tetrolet Domain,
ICISP12(451-458).
Springer DOI
1208
See also HOS-Based Image Sequence Noise Removal.
BibRef
Vu, C.T.[Cuong T.],
Phan, T.D.[Thien D.],
Banga, P.S.[Punit S.],
Chandler, D.M.[Damon M.],
On the quality assessment of enhanced images:
A database, analysis, and strategies for augmenting existing methods,
Southwest12(181-184).
IEEE DOI
1205
BibRef
Behrens, A.[Alexander],
Bommes, M.[Michael],
Gross, S.[Sebastian],
Aach, T.[Til],
Image quality assessment of endoscopic panorama images,
ICIP11(3113-3116).
IEEE DOI
1201
BibRef
Zhu, J.Z.[Jia-Zhen],
Fang, Y.C.[Yu-Chun],
Ji, P.J.[Peng-Jun],
Abdl, M.E.[Moad-El],
Dai, W.[Wang],
RRAR: A novel reduced-reference IQA algorithm for facial images,
ICIP11(3313-3316).
IEEE DOI
1201
BibRef
Bondzulic, B.P.[Boban P.],
Petrovic, V.S.[Vladimir S.],
Edge-based objective evaluation of image quality,
ICIP11(3305-3308).
IEEE DOI
1201
BibRef
Luo, T.[Tao],
Wang, C.[Chao],
Mou, X.Q.[Xuan-Qin],
Content-based image quality assessment of natural scene image distorted
by quantization,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Chen, X.L.[Xiao-Lin],
Zhang, R.[Rui],
Zheng, S.B.[Shi-Bao],
Image quality assessment based on local edge direction histogram,
IASP11(108-112).
IEEE DOI
1112
BibRef
Wang, X.J.[Xiao-Jun],
Wang, H.[Helei],
Meng, C.Z.[Cang-Zeng],
Yan, S.S.[Shu-Sheng],
Li, L.H.[Lian-Hua],
Hypothesis test on quality measures for synthetic aperture radar images,
IASP11(123-127).
IEEE DOI
1112
BibRef
Li, Q.[Qian],
Yang, C.[Cui],
Liu, H.M.[Hong-Mei],
Zhang, F.F.[Fang-Fang],
Structure analysis image quality measurement,
IASP11(439-443).
IEEE DOI
1112
BibRef
Zhang, R.[Rui],
Zhang, X.W.[Xiao-Wei],
Gong, Z.H.[Zhi-Hui],
Luo, S.[Sheng],
Ji, X.G.[Xiao-Gang],
Fusion Image Quality Assessment Based on Modulation Transfer Function,
ISIDF11(1-5).
IEEE DOI
1111
BibRef
Zhang, R.[Rui],
Jiang, T.[Ting],
Yu, Y.Y.[Yao-Yao],
Gong, H.[Hui],
Dong, G.J.[Guang-Jun],
Fusion Image Quality Assessment Based on Quaternion,
ISIDF11(1-6).
IEEE DOI
1111
BibRef
Li, P.X.[Ping-Xiang],
Shi, L.[Lei],
Yang, J.[Jie],
Lu, L.J.[Li-Jun],
Assessment of Polarimetric and Interferometric Image Quality for
Chinese Domestic X-Band Airborne SAR System,
ISIDF11(1-8).
IEEE DOI
1111
BibRef
Hofbauer, H.[Heinz],
Uhl, A.[Andreas],
An effective and efficient visual quality index based on local edge
gradients,
EUVIP11(162-167).
IEEE DOI
1110
BibRef
Sendjasni, A.[Abderrezzaq],
Larabi, M.C.[Mohamed-Chaker],
Transfer Learning from Vision Transformers or ConvNets for 360-Degree
Images Quality Assessmentƒ,
ICIP22(4133-4137)
IEEE DOI
2211
Image quality, Training, Adaptation models, Transfer learning,
Training data, Perceptual quality, Image quality assessment,
Vision transformer
BibRef
Nauge, M.[Michael],
Larabi, M.C.[Mohamed-Chaker],
Fernandez, C.[Christine],
Quality estimation based on interest points through hierarchical
saliency maps,
EUVIP11(186-191).
IEEE DOI
1110
BibRef
Hofbauer, H.,
Uhl, A.,
Visual quality indices and lowquality images,
EUVIP10(171-176).
IEEE DOI
1110
BibRef
Pan, F.[Feng],
Huang, J.W.[Ji-Wu],
Discriminating Computer Graphics Images and Natural Images Using Hidden
Markov Tree Model,
DW10(23-28).
Springer DOI
1010
BibRef
Sai, S.V.[Sergey V.],
Sai, I.S.[Ilya S.],
Sorokin, N.Y.[Nikolay Y.],
A Criterion of Noisy Images Quality,
ACIVS10(I: 1-9).
Springer DOI
1012
BibRef
Gkioulekas, I.[Ioannis],
Evangelopoulos, G.[Georgios],
Maragos, P.[Petros],
Spatial bayesian surprise for image saliency and quality assessment,
ICIP10(1081-1084).
IEEE DOI
1009
BibRef
Hore, A.[Alain],
Ziou, D.[Djemel],
Image Quality Metrics: PSNR vs. SSIM,
ICPR10(2366-2369).
IEEE DOI
1008
BibRef
Almohammad, A.[Adel],
Ghinea, G.[Gheorghita],
Stego image quality and the reliability of PSNR,
IPTA10(215-220).
IEEE DOI
1007
BibRef
Geary, B.[Bobby],
Grecos, C.[Christos],
Image quality assessment using a rotated Gaussian discrimination
function,
CVCGI10(47-52).
IEEE DOI
1006
BibRef
Vazquez-Fernandez, E.[Esteban],
Dacal-Nieto, A.[Angel],
Martin, F.[Fernando],
Torres-Guijarro, S.[Soledad],
Entropy of Gabor Filtering for Image Quality Assessment,
ICIAR10(I: 52-61).
Springer DOI
1006
BibRef
Rouse, D.M.[David M.],
Hemami, S.S.[Sheila S.],
Natural image utility assessment using image contours,
ICIP09(2217-2220).
IEEE DOI
0911
BibRef
Asatryan, D.,
Egiazarian, K.O.,
Quality assessment measure based on image structural properties,
LNLA09(70-73).
IEEE DOI
0908
BibRef
Xu, Y.F.[Yan-Fang],
Zhang, D.N.[Ding-Nan],
Gao, N.[Ning],
A Method for Evaluation of the Font Definition Quality of eBook Readers,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, W.[Weibao],
Allebach, J.P.[Jan P.],
Guo, Y.D.[Yan-Dong],
Image quality evaluation using image quality ruler and graphical
model,
ICIP15(2256-2259)
IEEE DOI
1512
graphical model
BibRef
Han, C.Y.[Chun-Yan],
Hou, Y.[Yemao],
Wang, W.J.[Wen-Jia],
Image Quality Evaluation Method Based on the Relevant Parameters,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, M.[Ming],
Yang, J.[Jie],
Multivariate Statistical Analysis of Existing Image Quality Metrics
Over Turbulent Images,
CISP09(1-5).
IEEE DOI
0910
BibRef
Tian, Y.F.[Ya-Fei],
Qin, Y.X.[Yun-Xia],
Yang, J.Y.[Jia-Yuan],
Guo, A.P.[Ai-Ping],
An Approach of Image Fusion Based on General Image Quality Evaluation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Liu, L.X.[Li-Xiong],
Wang, Y.Q.[Yuan-Quan],
Wu, Y.W.[Yu-Wei],
A Wavelet-Domain Structure Similarity for Image Quality Assessment,
CISP09(1-5).
IEEE DOI
0910
BibRef
Mansoor, A.B.[Atif Bin],
Anwar, A.[Adeel],
Subjective Evaluation of Image Quality Measures for White Noise
Distorted Images,
ACIVS10(I: 10-17).
Springer DOI
1012
BibRef
Mansoor, A.B.[Atif Bin],
Haider, M.[Maaz],
Mian, A.S.[Ajmal S.],
Khan, S.A.[Shoab A.],
A Hybrid Image Quality Measure for Automatic Image Quality Assessment,
SCIA09(91-98).
Springer DOI
0906
BibRef
Shao, H.[Hang],
Cao, X.[Xun],
Er, G.H.[Gui-Hua],
Objective quality assessment of depth image based rendering in 3DTV
system,
3DTV09(1-4).
IEEE DOI
0905
BibRef
Ma, Q.[Qi],
Zhang, L.M.[Li-Ming],
Image quality assessment with visual attention,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Watanabe, K.[Keishiro],
Yamagishi, K.[Kazuhisa],
Okamoto, J.[Jun],
Takahashi, A.[Akira],
Proposal of new QoE assessment approach for quality management of IPTV
services,
ICIP08(2060-2063).
IEEE DOI
0810
BibRef
Gaubatz, M.D.[Matthew D.],
Hemami, S.S.[Sheila S.],
On the nearly scale-independent rank behavior of image quality metrics,
ICIP08(701-704).
IEEE DOI
0810
BibRef
Blanchet, G.[Gwendoline],
Moisan, L.[Lionel],
Rouge, B.[Bernard],
Measuring the Global Phase Coherence of an image,
ICIP08(1176-1179).
IEEE DOI
0810
BibRef
Tourancheau, S.[Sylvain],
Autrusseau, F.[Florent],
Sazzad, Z.M.P.[Z.M. Parvez],
Horita, Y.[Yuukou],
Impact of subjective dataset on the performance of image quality
metrics,
ICIP08(365-368).
IEEE DOI
0810
BibRef
Dumic, E.,
Grgic, S.,
Grgic, M.,
Hidden influences on image quality when comparing interpolation methods,
WSSIP08(367-372).
IEEE DOI
0806
BibRef
Luo, Y.W.[Yi-Wen],
Tang, X.[Xiaoou],
Photo and Video Quality Evaluation: Focusing on the Subject,
ECCV08(III: 386-399).
Springer DOI
0810
BibRef
Ke, Y.[Yan],
Tang, X.[Xiaoou],
Jing, F.[Feng],
The Design of High-Level Features for Photo Quality Assessment,
CVPR06(I: 419-426).
IEEE DOI
0606
BibRef
Munoz-Moreno, E.[Emma],
Aja-Fernandez, S.[Santiago],
Martin-Fernandez, M.[Marcos],
A methodology for quality assessment in tensor images,
Tensor08(1-6).
IEEE DOI
0806
BibRef
Dirik, A.E.,
Bayram, S.,
Sencar, H.T.,
Memon, N.,
New Features to Identify Computer Generated Images,
ICIP07(IV: 433-436).
IEEE DOI
0709
Discriminate real from computer generated images.
BibRef
de Waele, S.,
Verberne, M.J.,
Coding Gain and Tuning for Parametrized Visual Quality Metrics,
ICIP07(VI: 461-464).
IEEE DOI
0709
BibRef
Schlaisich-Frank, I.[Isolde],
Agouris, P.[Peggy],
A Dependency Matrix to Assist in the Visualization of Geospatial Image
Quality,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Weiss, Y.[Yair],
Freeman, W.T.[William T.],
What makes a good model of natural images?,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Yao, H.X.[Hong-Xun],
Huseh, M.Y.[Min-Yu],
Yao, G.L.[Gui-Lin],
Liu, Y.Z.[Ya-Zhou],
Image Evaluation Factors,
ICIAR05(255-262).
Springer DOI
0509
BibRef
Zhang, D.[Di],
Jernigan, E.,
An Information Theoretic Criterion for Image Quality Assessment Based
on Natural Scene Statistics,
ICIP06(2953-2956).
IEEE DOI
0610
BibRef
Sendashonga, M.,
Labeau, F.,
Low Complexity Image Quality Assessment Using Frequency Domain
Transforms,
ICIP06(385-388).
IEEE DOI
0610
BibRef
Zhang, C.N.[Chu-Ne],
Qiu, Z.D.[Zheng-Ding],
Sun, D.M.[Dong-Mei],
Wu, J.[Jie],
Euclidean Quality Assessment for Binary Images,
ICPR06(II: 300-303).
IEEE DOI
0609
BibRef
Fronthaler, H.,
Kollreider, K.,
Bigun, J.,
Automatic Image Quality Assessment with Application in Biometrics,
Biometrics06(30).
IEEE DOI
0609
BibRef
Kalenova, D.,
Toivanen, P.J.,
Bochko, V.,
Preferential Spectral Image Quality Model,
SCIA05(389-398).
Springer DOI
0506
BibRef
Menegaz, G.,
Zambon, R.,
Towards a Semantic-Driven Metric for Image Quality,
ICIP05(III: 1176-1179).
IEEE DOI
0512
BibRef
Lehmussola, A.,
Ruusuvuori, P.,
Yli-Harja, O.,
Exploring subjective image quality through isopreference curves,
ICIP05(I: 413-416).
IEEE DOI
0512
BibRef
Yang, C.L.[Chun-Ling],
Gao, W.R.[Wen-Rui],
Po, L.M.[Lai-Man],
Discrete wavelet transform-based structural similarity for image
quality assessment,
ICIP08(377-380).
IEEE DOI
0810
BibRef
Chen, G.H.[Guan-Hao],
Yang, C.L.[Chun-Ling],
Xie, S.L.[Sheng-Li],
Gradient-Based Structural Similarity for Image Quality Assessment,
ICIP06(2929-2932).
IEEE DOI
0610
BibRef
Boman, R.[Robert],
A Theoretical Limit on the Number of Effective Pixels that can be
Optically Resolved on a Non-Planar Subject,
ICCV05(I: 365-369).
IEEE DOI
0510
The theoretical limit is based only on the subject size and depth.
BibRef
Hao, P.W.[Peng-Wei],
Zhang, C.[Chao],
Dang, A.R.[An-Rong],
Co-histogram and Image Degradation Evaluation,
ICIAR04(I: 195-203).
Springer DOI
0409
BibRef
Yu, Q.J.[Qing-Jun],
Xie, S.L.[Sheng-Li],
An image quality assessment method based on fuzzy inference rules,
ICARCV04(I: 702-705).
IEEE DOI
0412
BibRef
Kdrkkdinen, I.,
Franti, P.,
Variable metric for binary vector quantization,
ICIP04(V: 3499-3502).
IEEE DOI
0505
BibRef
Kwon, Y.B.[Young-Bin],
Park, J.[Jaehwa],
Optimum block size detection for image quality measure,
ICPR04(IV: 491-494).
IEEE DOI
0409
BibRef
Singh, M.[Maneesh],
Arora, H.[Himanshu],
Ahuja, N.[Narendra],
A Robust Probabilistic Estimation Framework for Parametric Image Models,
ECCV04(Vol I: 508-522).
Springer DOI
0405
BibRef
Souza, A.,
Cheriet, M.,
Naoi, S.,
Suen, C.Y.,
Automatic filter selection using image quality assessment,
ICDAR03(508-512).
IEEE DOI
0311
BibRef
Lin, W.S.[Wei-Si],
Li, D.[Dong],
Xue, P.[Ping],
Discriminative analysis of pixel difference towards picture quality
prediction,
ICIP03(III: 193-196).
IEEE DOI
0312
BibRef
Perko, R.[Roland],
Gruber, M.[Michael],
Comparison of Quality and Information Content of Digital and Film-Based
Images,
PCV02(B: 206).
0305
BibRef
Orchard, M.,
On Modeling Location Uncertainty in Images,
ICIP01(I: 13).
IEEE DOI
0108
BibRef
de Ridder, H.,
Image Processing and the Problem of Quantifying Image Quality,
ICIP01(II: 3-6).
IEEE DOI
0108
BibRef
Janssen, T.,
Understanding Image Quality,
ICIP01(II: 7).
IEEE DOI
0108
BibRef
Kusayama, T.,
Hamamoto, T.,
Hangai, S.,
A Proposal of Objective Measure Considering Subjective Observation
Areas,
ICIP01(II: 1089-1092).
IEEE DOI
0108
BibRef
Orwell, J.,
Greenhill, D.R.,
Rymel, J.,
Jones, G.A.,
Modelling Profiles with a Mixture of Gaussians,
ICIP00(Vol I: 280-283).
IEEE DOI
0008
BibRef
Sanubari, J.[Junibakti],
Tokuda, K.[Keiichi],
Image Modeling Using Two Dimensional Exponential Systems,
ICIP99(IV:386-389).
IEEE DOI
BibRef
9900
Hermiston, K.J.,
Booth, D.M.,
Image Quality Measurement using Integer Wavelet Transformations,
ICIP99(II:293-297).
IEEE DOI
BibRef
9900
Earlier:
NIIRS and Objective Image Quality Measures,
CAIP99(385-394).
Springer DOI
9909
BibRef
Denes, L.J.,
Gottlieb, M.,
Kaminsky, B.,
Metes, P.,
Imaging Through Scattering Media,
DARPA98(1091-1096).
BibRef
9800
Ahang, Z.[Zhong],
Blum, R.S.[Rick S.],
Image Quality Estimation Using Edge Intensity Histogram and a Mixture
Model,
DARPA98(1053-1058).
BibRef
9800
Fleury, P.[Pascal],
Reichel, J.,
Ebrahimi, T.,
Image Quality Prediction for Bitrate Allocation,
ICIP96(III: 339-342).
IEEE DOI
BibRef
9600
Bernardini, R.,
Kovacevic, J.,
Designing local orthogonal bases for evaluating image quality,
ICIP96(I: 577-580).
IEEE DOI
9610
BibRef
Earlier:
Local orthogonal bases,
ICIP95(III: 580-583).
IEEE DOI
9510
BibRef
Silverstein, D.A.,
Farrell, J.E.,
The relationship between image fidelity and image quality,
ICIP96(I: 881-884).
IEEE DOI
9610
BibRef
de Ridder, H.,
Current issues and new techniques in visual quality assessment,
ICIP96(I: 869-872).
IEEE DOI
9610
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Image Quality Evaluation, Visual Quality, Quality Assessment, and Imaging Models .