Deng, Z.H.[Zhao-Hong],
Chung, F.L.[Fu-Lai],
Wang, S.T.[Shi-Tong],
FRSDE: Fast reduced set density estimator using minimal enclosing ball
approximation,
PR(41), No. 4, April 2008, pp. 1363-1372.
Elsevier DOI
0801
Reduced set density estimator; Minimal enclosing ball;
Core-set; Data condensation
BibRef
Ozertem, U.[Umut],
Erdogmus, D.[Deniz],
Jenssen, R.[Robert],
Mean shift spectral clustering,
PR(41), No. 6, June 2008, pp. 1924-1938.
Elsevier DOI
0802
Similarity based clustering; Nonparametric density estimation;
Mean shift; Connected components; Spectral clustering
BibRef
Zhang, X.C.[Xian-Chao],
Li, J.W.[Jing-Wei],
Yu, H.[Hong],
Local density adaptive similarity measurement for spectral clustering,
PRL(32), No. 2, 15 January 2011, pp. 352-358.
Elsevier DOI
1101
Clustering; Spectral clustering; Similarity measure
BibRef
Ye, Y.D.[Yang-Dong],
Ren, Y.L.[Yong-Li],
Li, G.[Gang],
Using local density information to improve IB algorithms,
PRL(32), No. 2, 15 January 2011, pp. 310-320.
Elsevier DOI
1101
Information Bottleneck; Density; Neighborhood information;
Hierarchical tree-structure
BibRef
Fu, G.[Gang],
Shih, F.Y.[Frank Y.],
Wang, H.M.[Hai-Min],
A kernel-based parametric method for conditional density estimation,
PR(44), No. 2, February 2011, pp. 284-294.
Elsevier DOI
1011
Conditional density estimation; Kernel principal component analysis;
Kernel function; Nadaraya-Watson estimator
BibRef
Leiva-Murillo, J.M.[José M.],
Artés-Rodríguez, A.[Antonio],
Algorithms for maximum-likelihood bandwidth selection in kernel density
estimators,
PRL(33), No. 13, 1 October 2012, pp. 1717-1724.
Elsevier DOI
1208
Kernel density estimation; Multivariate density modeling; Pattern
recognition
BibRef
Tu, Q.,
Lu, J.F.,
Yuan, B.,
Tang, J.B.,
Yang, J.Y.,
Density-based hierarchical clustering for streaming data,
PRL(33), No. 5, 1 April 2012, pp. 641-645.
Elsevier DOI
1202
Streaming data; Density-based clustering; Hierarchical method
BibRef
Sarmah, S.[Sauravjyoti],
Bhattacharyya, D.K.[Dhruba K.],
A grid-density based technique for finding clusters in satellite image,
PRL(33), No. 5, 1 April 2012, pp. 589-604.
Elsevier DOI
1202
Clustering; Grid; Density; High resolution; High dimensional satellite
images; Gabor wavelets.
Clusters are very different sizes.
BibRef
Mountrakis, G.[Giorgos],
Xi, B.[Bo],
Assessing reference dataset representativeness through confidence
metrics based on information density,
PandRS(78), No. 1, April 2013, pp. 129-147.
Elsevier DOI
1304
Representativeness; Classification; Quality; Reference data;
Reliability; Training
BibRef
Parker, J.K.[Jonathon K.],
Downs, J.A.[Joni A.],
Footprint generation using fuzzy-neighborhood clustering,
GeoInfo(17), No. 2, April 2013, pp. 285-299.
Springer DOI
1304
Expand on Density-Based Spatial Clustering with Noise (DBSCAN).
BibRef
Hou, J.[Jian],
Pelillo, M.[Marcello],
A simple feature combination method based on dominant sets,
PR(46), No. 11, November 2013, pp. 3129-3139.
Elsevier DOI
1306
Feature combination; Object classification; Dominant sets;
Kernel accuracy
BibRef
Hou, J.[Jian],
Zhang, A.H.[Ai-Hua],
Qi, N.M.[Nai-Ming],
Density peak clustering based on relative density relationship,
PR(108), 2020, pp. 107554.
Elsevier DOI
2008
Density based clustering, Density peak, Cluster center,
Relative density relationship
BibRef
Hou, J.[Jian],
Cui, H.X.[Hong-Xia],
Density Normalization in Density Peak Based Clustering,
GbRPR17(187-196).
Springer DOI
1706
BibRef
Hou, J.[Jian],
Pelillo, M.[Marcello],
A new density kernel in density peak based clustering,
ICPR16(468-473)
IEEE DOI
1705
Clustering algorithms, Correlation, Data models,
Density measurement, Estimation, Kernel, Shape
BibRef
Lourenço, A.[André],
Bulň, S.R.[Samuel Rota],
Rebagliati, N.[Nicola],
Fred, A.[Ana],
Figueiredo, M.A.T.[Mário A.T.],
Consensus Clustering Using Partial Evidence Accumulation,
IbPRIA13(69-78).
Springer DOI
1307
BibRef
Inkaya, T.[Tülin],
Kayaligil, S.[Sinan],
Özdemirel, N.E.[Nur Evin],
An adaptive neighbourhood construction algorithm based on density and
connectivity,
PRL(52), No. 1, 2015, pp. 17-24.
Elsevier DOI
1412
Data neighbourhood
BibRef
Kumar, K.M.[K. Mahesh],
Reddy, A.R.M.[A. Rama Mohan],
A fast DBSCAN clustering algorithm by accelerating neighbor searching
using Groups method,
PR(58), No. 1, 2016, pp. 39-48.
Elsevier DOI
1606
Density Based Spatial Clustering of Applications with Noise.
Unsupervised learning
BibRef
Du, Q.Y.[Qing-Yun],
Dong, Z.[Zhi],
Huang, C.D.[Chu-Dong],
Ren, F.[Fu],
Density-Based Clustering with Geographical Background Constraints
Using a Semantic Expression Model,
IJGI(5), No. 5, 2016, pp. 72.
DOI Link
1606
four types of constraints for geographical backgrounds: No Constraints,
Constraints, Cannot-Link Constraints, and Must-Link Constraints.
BibRef
Louhichi, S.[Soumaya],
Gzara, M.[Mariem],
Ben-Abdallah, H.[Hanęne],
Unsupervised varied density based clustering algorithm using spline,
PRL(93), No. 1, 2017, pp. 48-57.
Elsevier DOI
1706
Data, mining
BibRef
Deutsch, L.[Lior],
Horn, D.[David],
The Weight-Shape decomposition of density estimates:
A framework for clustering and image analysis algorithms,
PR(81), 2018, pp. 190-199.
Elsevier DOI
1806
Density estimate, Quantum clustering, Mean-shift clustering,
Maximum entropy, Image contour extraction
BibRef
Tu, D.[Ding],
Chen, L.[Ling],
Yu, X.K.[Xiao-Kang],
Chen, G.C.[Gen-Cai],
Semisupervised Prior Free Rare Category Detection With Mixed Criteria,
Cyber(48), No. 1, January 2018, pp. 115-126.
IEEE DOI
1801
Clustering methods, Data models, Estimation, Kernel, Measurement,
Semisupervised learning, Density-based clustering,
semisupervised learning
BibRef
Liu, A.[Anjin],
Lu, J.[Jie],
Liu, F.[Feng],
Zhang, G.Q.[Guang-Quan],
Accumulating regional density dissimilarity for concept drift
detection in data streams,
PR(76), No. 1, 2018, pp. 256-272.
Elsevier DOI
1801
Concept drift
BibRef
Wang, T.F.[Tian-Fu],
Ren, C.[Chang],
Luo, Y.[Yun],
Tian, J.[Jing],
NS-DBSCAN: A Density-Based Clustering Algorithm in Network Space,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Alshammari, M.[Mashaan],
Takatsuka, M.[Masahiro],
Approximate spectral clustering density-based similarity for noisy
datasets,
PRL(128), 2019, pp. 155-161.
Elsevier DOI
1912
BibRef
Wells, J.R.[Jonathan R.],
Ting, K.M.[Kai Ming],
A new simple and efficient density estimator that enables fast
systematic search,
PRL(122), 2019, pp. 92-98.
Elsevier DOI
1904
Density estimation, Histogram, Outlying aspect mining
BibRef
Cervellera, C.[Cristiano],
Macciň, D.[Danilo],
Voronoi tree models for distribution-preserving sampling and
generation,
PR(97), 2020, pp. 107002.
Elsevier DOI
1910
Voronoi tree models, Sampling, Generative models,
Density estimation, Noparametric models
BibRef
Li, H.[Hao],
Liu, X.J.[Xiao-Jie],
Li, T.[Tao],
Gan, R.D.[Run-Dong],
A novel density-based clustering algorithm using nearest neighbor
graph,
PR(102), 2020, pp. 107206.
Elsevier DOI
2003
Density-based clustering, Nearest neighbor graph, DBSCAN
BibRef
Maheshwari, R.[Rashmi],
Mohanty, S.K.[Sraban Kumar],
Mishra, A.C.[Amaresh Chandra],
DCSNE: Density-based Clustering using Graph Shared Neighbors and
Entropy,
PR(137), 2023, pp. 109341.
Elsevier DOI
2302
Density-based clustering, Neighborhood information, Randomness,
Shared neighbor, Disorderliness, Entropy
BibRef
Chowdhury, S.[Stiphen],
Helian, N.[Na],
Cordeiro-de Amorim, R.[Renato],
Feature weighting in DBSCAN using reverse nearest neighbours,
PR(137), 2023, pp. 109314.
Elsevier DOI
2302
Density-based clustering, Reverse nearest neighbour, DBSCAN
BibRef
Ghosh, S.[Soumyadeep],
Singh, R.[Richa],
Vatsa, M.[Mayank],
On Learning Density Aware Embeddings,
CVPR19(4879-4887).
IEEE DOI
2002
BibRef
Xu, S.,
Dai, J.,
shi, H.,
Semi-supervised Feature Selection by Mutual Information Based on
Kernel Density Estimation,
ICPR18(818-823)
IEEE DOI
1812
Feature extraction, Mutual information, Kernel, Entropy, Estimation,
Probability density function, Bandwidth
BibRef
Chang, S.R.[Shao-Rong],
Dasgupta, N.[Nilanjan],
Carin, L.[Lawrence],
A Bayesian Approach to Unsupervised Feature Selection and Density
Estimation Using Expectation Propagation,
CVPR05(II: 1043-1050).
IEEE DOI
0507
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Binary Clustering, Two Class Classification .